Probabilistic Programming Lecture #19: Verifying Bayesian Networks

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Overview

2 Inference by program verification

Overview

Inference by program verification

How long to sample a Bayesian network?

Inference

Inference (of conditional probabilities)

Let *B* be a BN with set *V* of vertices and the evidence $\mathbf{E} \subseteq V$ and the questions $\mathbf{Q} \subseteq V$.

The probabilistic inference problem is to determine the conditional probability:

$$Pr(\mathbf{Q} = \mathbf{q} | \mathbf{E} = \mathbf{e}) = \frac{Pr(\mathbf{Q} = \mathbf{q} \land \mathbf{E} = \mathbf{e})}{Pr(\mathbf{E} = \mathbf{e})}$$

Inference is the main focus when reasoning about Bayesian networks.

Inference example: student exam's mood

How likely does a student end up with a bad mood after getting a bad grade for an easy exam, **given that** she is well prepared?

Joost-Pieter Katoen

Probabilistic Programming

Inference example: Printer troubleshooting in Windows 95

How likely is it that your print is garbled **given that** the ps-file is not and the page orientation is portrait?

Overview

2 Inference by program verification

How long to sample a Bayesian network?

Bayesian inference

- Exact inference of Bayesian networks is NP-hard
 - Variable Elimination
 - Join-tree Algorithm
 -

Approximate inference of BNs is NP-hard too

- Typical fallback: use simulation
 - Rejection Sampling
 - Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings
 - Gibbs Sampling
 - Importance Sampling
 - • • • •

Most sampling-based methods exploit rejection sampling.

Rejection sampling

For a given Bayesian network and some evidence:

- 1. Sample from the joint distribution described by the BN
- 2. If the sample complies with the evidence, accept the sample and halt
- 3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Potential problem: What happens if the evidence has low probability? E.g., zero.

Removal of conditioning = rejection sampling

Recall conditioning removal:

x := 0 [p] x := 1; y := 0 [p] y := 1; observe(x != y) sx, sy := x, y; flag := true; while(flag) { x, y := sx, sy; flag := false; x := 0 [p] x := 1; y := 0 [p] y := 1; flag := (x = y) }

This program transformation replaces observe-statements by loops. The resulting loopy programs represent rejection sampling.

Student exam's mood example

How likely does a student end up with a bad mood after getting a bad grade for an easy exam, **given that** she is well prepared?

Bayesian networks as programs

► Take a topological sort of the BN's vertices, e.g., D; P; G; M

Map each conditional probability table (aka: node) to a program, e.g.:

if
$$(xD = 0 \&\& xP = 0)$$
 {
 $xG := 0 [0.95] xG := 1$
 $\} else if (xD = 1 \&\& xP = 1)$ {
 $xG := 0 [0.05] xG := 1$
 $\} else if (xD = 0 \&\& xP = 1)$ {
 $xG := 0 [0.5] xG := 1$
 $\} else if (xD = 1 \&\& xP = 0)$ {
 $xG := 0 [0.6] xG := 1$
 $\}$

Properties of BN programs

(xP=1) repeat { progD ; progP; progG ; progM } until (P=1)

1. Every BN-program naturally represents rejection sampling

Properties of BN programs

1. Every BN-program naturally represents rejection sampling

2. The loop in a BN-program is simple

- No "data-flow" between successive loop iterations
- Loop invariants are not needed (as we will see)

Properties of BN programs

repeat { progD ; progP; progG ; progM } until (P=1)

- 1. Every BN-program naturally represents rejection sampling
- 2. The loop in a BN-program is simple
 - No "data-flow" between successive loop iterations
 - Loop invariants are not needed (as we will see)
- 3. BN-programs may be not positively a.s.-terminating Such BNs are ill-conditioned' their evidence has probability zero
- 4. A BN-program's size is linear in the BN's size

Soundness

For BN **B** with evidence $E \subseteq V$ and value \underline{v} for vertex v:

$$\underbrace{wp(\operatorname{prog}(B, \mathbf{e}), \bigwedge_{v \in V \setminus E} x_v = \underline{v})}_{\text{wp of the BN program of } B} = \underbrace{Pr\left(\bigwedge_{v \in V \setminus E} v = \underline{v} \mid \bigwedge_{e \in E} e = \underline{e}\right)}_{\text{joint distribution of BN } B}$$

where prog(B, e) equals repeat progB until $(\bigwedge_{e \in E} x_e = \underline{e})$.

Thus: inference of BNs can be done using wp-reasoning

Inference by wp-reasoning

Reasoning about loops

Reasoning about loops is hard. Typically, loop invariants are used to capture the effect of loops. Finding such loop invariants in general is <u>undecidable</u>.

Bayesian networks correspond to "simple" probabilistic programs. Loops in such programs are "data-flow" free. Their effect can be given as closed-form solution. This can be done algorithmically.

I.i.d-loops

Loop while(G)P is iid wrt. expectation f whenever:

both wp(P, [G]) and $wp(P, [\neg G] \cdot f)$ are unaffected by P.

f is *unaffected* by *P* if none of *f*'s variables are modified by *P*: x is a variable of *f* iff $\exists s. \exists v, u: f(s[x = v]) \neq f(s[x = u])$

If g is unaffected by program P, then: $wp(P, g \cdot f) = g \cdot wp(P, f)$

Example: sampling within a circle

. .

This program is iid for every f, as both are unaffected by P's body:

$$wp(P, [G]) = \frac{48}{121} \text{ and}$$

$$wp(P, [\neg G] \cdot \mathbf{f}) = \frac{1}{121} \sum_{i=0}^{10p} \sum_{j=0}^{10p} [(i/p-5)^2 + (j/p-5)^2 < 25] \cdot \mathbf{f} (x/(i/p), y/(j/p))$$

Weakest precondition of iid-loops

If while (G) P is iid for expectation f, it holds for every state s:

$$wp(while(G)P, f)(s) = [G](s) \cdot \frac{wp(P, [\neg G] \cdot f)(s)}{1 - wp(P, [G])(s)} + [\neg G](s) \cdot f(s)$$

where we let $\frac{0}{0} = 0$.

Proof: use
$$wp(while_n(G)P, f) = [G] \cdot wp(P, [\neg G] \cdot f) \cdot \sum_{i=0}^{n-2} (wp(P, [G])^i) + [\neg G] \cdot f$$

Weakest precondition of iid-loops

If while (G) P is iid for expectation f, it holds for every state s:

$$wp(while(G)P, f)(s) = [G](s) \cdot \frac{wp(P, [\neg G] \cdot f)(s)}{1 - wp(P, [G])(s)} + [\neg G](s) \cdot f(s)$$

where we let $\frac{0}{0} = 0$.

Proof: use $wp(while_n(G)P, f) = [G] \cdot wp(P, [\neg G] \cdot f) \cdot \sum_{i=0}^{n-2} (wp(P, [G])^i) + [\neg G] \cdot f$

No loop invariant or martingale needed. Fully automatable.

Overview

Inference by program verification

How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

"the main challenge in this setting [sampling-based approaches] is that many samples that are generated during execution are ultimately rejected for not satisfying the observations."

Recall: Rejection sampling

For a given Bayesian network and some evidence:

- 1. Sample from the joint distribution described by the BN
- 2. If the sample complies with the evidence, accept the sample and halt
- 3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Q: How many samples do we need on average for a single iid-sample?

Sampling time of a toy Bayesian network

S = 0 $S = 1$ $R = 0$ a $1 - a$ $R = 1$ 0.2 0.8		R	R = 0	R = 1 $1 - a$
	G		<i>G</i> = 0	<i>G</i> = 1
		S = 0, R = 0 S = 0, R = 1	0.01	0.99 0.75
		S = 1, R = 0 S = 1, R = 1	0.9	0.1

Sampling time of a toy Bayesian network

S = 0 $S = 1$ $R = 0$ a $1 - a$ $R = 1$ 0.2 0.8		R	R = 0	R = 1 $1 - a$
$P_r(q)G_{=0}$	G	S = 0, R = 0	<i>G</i> = 0 0.01	<i>G</i> = 1 0.99
		S = 0, R = 1	0.25	0.75
		S = 1, R = 0	0.9	0.1
		S = 1, R = 1	0.2	0.8

This BN is parametric (in a)

How many samples are needed on average for a **single** iid-sample for evidence G = 0?

~

Sampling time for example BN

Rejection sampling for
$$G = 0$$
 requires $\frac{200a^2 - 40a - 460}{89a^2 - 69a - 21}$ samples:

For $a \in [0.1, 0.78]$, < 18 samples; for $a \ge 0.98$, 100 samples are needed

For real-life BNs, one may exceed 10¹⁵ (or more) samples

Deriving sampling times via expected runtimes Let *ert*() : pGCL \rightarrow ($\mathbb{T} \rightarrow \mathbb{T}$) where:

- ert(P, t)(s) is the expected runtime of P on input state s if t captures the runtime of computation following P.
- $ert(P, \mathbf{0})(s)$ is the expected runtime of P on input state s.

Expected runtime transformer

Syntax	Semantics <i>ert</i> (<i>P</i> , <i>t</i>)
▶ skip	▶ 1+ <i>t</i>
diverge	▶ ∞
▶ x := E	▶ $1 + t[x := E]$
▶ P1 ; P2	• $ert(P_1, ert(P_2, t))$
▶ if (G)P1 else P2	▶ $1 + [G] \cdot ert(P_1, t) + [\neg G] \cdot ert(P_2, t)$
▶ P1 [p] P2	▶ $1 + p \cdot ert(P_1, t) + (1-p) \cdot ert(P_2, t)$
while(G)P	$ Ifp X. 1 + ([G] \cdot ert(P, X) + [\neg G] \cdot t) $

If p is the least fixed point operator wrt. the ordering \leq on runtimes

Decomposition

Decomposition theorem

For every pGCL program P and expectation f:

$$ert(P, f) = ert(P, 0) + wp(P, f)$$

Expected runtime of iid-loops

For a.s.-terminating iid-loop while(G) P for which every iteration runs in the same expected time, we have:

$$ert(while(G)P, t) = \mathbf{1} + [G] \cdot \frac{\mathbf{1} + ert(P, [\neg G] \cdot t)}{1 - wp(P, [G])} + [\neg G](s) \cdot t$$

where 0/0 := 0 and $a/0 := \infty$ for $a \neq 0$.

Expected runtime of iid-loops

For a.s.-terminating iid-loop while(G)P for which every iteration runs in the same expected time, we have:

$$ert(while(G)P, t) = \mathbf{1} + [G] \cdot \frac{\mathbf{1} + ert(P, [\neg G] \cdot t)}{1 - wp(P, [G])} + [\neg G](s) \cdot t$$

where 0/0 := 0 and $a/0 := \infty$ for $a \neq 0$.

Proof: similar as for the inference (wp) using the decomposition result: ert(P, t) = ert(P, 0) + wp(P, t)

No loop invariant needed. Fully automatable.

Example: sampling within a circle

This iid-loop is a.s.-terminating, and every iteration has same expected time.

Then:
$$ert(P_{circle}, \mathbf{0}) = \mathbf{1} + [(x-5)^2 + (y-5)^2 \ge 25] \cdot \frac{363}{73}$$

So: $1 + \frac{363}{73} \approx 5.97$ operations are required on average using rejection sampling

Sample times of BN programs

Every BN-program is iid for every f, is almost surely terminating, and every loop-iteration takes on average equally long.

This enables determining the exact expected sampling times of BNs in a fully automated manner.

But: BN-programs may be not positively a.s.-terminating This holds for ill-conditioned BNs. The evidence(s) in such BNs are occurring with probability zero.

The student's mood example

Experimental results

Benchmark BNs from www.bnlearn.com

BN	V	<i>E</i>	aMB	E	EST	time (s)	E	EST	time (s)
hailfinder	56	66	3.54	5	5 10 ⁵	0.63	9	9 10 ⁶	0.46
hepar2	70	123	4.51	1	1.5 10 ²	1.84	2	—	MO
win95pts	76	112	5.92	3	4.310 ⁵	0.36	12	4 10 ⁷	0.42
pathfinder	135	200	3.04	3	2.9 10 ⁴	31	7	∞	5.44
andes	223	338	5.61	3	5.2 10 ³	1.66	7	9 10 ⁴	0.99
pigs	441	592	3.92	1	2.9 10 ³	0.74	7	1.5 10 ⁶	1.02
munin	1041	1397	3.54	5	∞	1.43	10	1.2 10 ¹⁸	65
not PAST									

aMB = average Markov Blanket size, a measure of independence in BNs

The last column is the analysis time of ert-analysis of the BN-program.

Printer troubleshooting in Windows 95

Printer troubleshooting in Windows 95

Java implementation executes about 10^7 steps in a single second For $|\mathbf{E}| = 17$, an EST of 10^{15} yields **3.6 years simulation for a single iid-sample**

Take-home messages

- Bayesian networks are directed acyclic graphs of random variables
- ▶ Inference of conditional probabilities on BNs is NP-hard
- BNs are probabilistic programs with "data-flow"-free loops
- No loop invariants are needed to reason about BN programs
- Wp-reasoning can do inference and determines sampling times
- in a fully automated manner.

Written exam: February 25, 2019 (10-12:00) and March 27, 2019 (10-12:00)