Probabilistic Programming

Lecture #18: Bayesian Networks

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/3

Overview

- Motivation
- 2 What are Bayesian networks?
- 3 Conditional independence

4 Inference

Overview

- Motivation
- 2 What are Bayesian networks?
- 3 Conditional independence
- 4 Inference

Joost-Pieter Katoen Probabilistic Programming

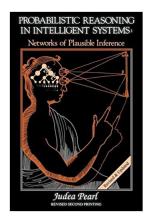
The importance of Bayesian networks

"Bayesian networks are as important to AI and machine learning as Boolean circuits are to computer science."

[Stuart Russell (Univ. of California, Berkeley), 2009]

Joost-Pieter Katoen Probabilistic Programming 4/3

Judea Pearl: The father of Bayesian networks



Turing Award 2011: "for fundamental contributions to AI through the development of a calculus for probabilistic and causal reasoning".

Joost-Pieter Katoen Probabilistic Programming 5/

Probabilistic graphical models

- Combine graph theory and probability theory
 - Vertices are random variables
 - Edges are dependencies between these variables
 - ► Enable usage of graph algorithms
 - Graph representation makes (conditional) independence explicit
- Two main types of probabilistic graphical models
 - directed acyclic graphs: Bayesian networks
 - undirected graphs: Markov random fields
- ▶ We consider only discrete random variables

Joost-Pieter Katoen Probabilistic Programming 6/35

Overview

- Motivation
- 2 What are Bayesian networks?
- 3 Conditional independence
- 4 Inference

Bayesian networks

Bayesian network

A Bayesian network (BN, for short) is a tuple $B = (V, E, \Theta)$ where

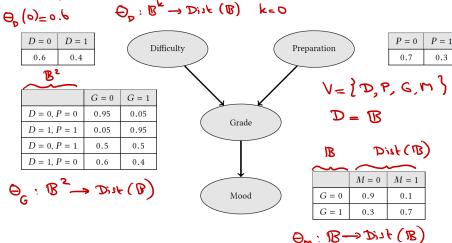
- ▶ (V, E) is a directed acyclic graph with finite V in which each $v \in V$ represents a random variable with values from finite domain D, and $(v, w) \in E$ represents the (causal) dependencies of w on v, and
- ▶ for each vertex v with k parents, the function $\Theta_v : D^k \to Dist(D)$ is the conditional probability table of (the random variable represented by) vertex v.

Here, $w \in V$ is a parent of $v \in V$ whenever $(w, v) \in E$.

The graph structure induces a natural ordering on the parents of a vertex v; the i-th entry in a tuple $\mathbf{d} \in D^k$ of Θ_v corresponds to the value assigned to the i-th parent of v.

Joost-Pieter Katoen Probabilistic Programming 8/35

Example: Student's mood after an exam



The interpretation of an entry in a vertex' conditional probability table is:

 $Pr(v = d \mid parents(v) = \mathbf{d}) = \Theta_v(\mathbf{d})(d)$, with **d** the values of v's parents

Joost-Pieter Katoen Probabilistic Programming 9/

Joint probability function of a Bayesian network

Let $B = (V, E, \Theta)$ be a BN, and $W \subseteq V$ be a downward closed set of vertices where $w \in W$ has value $w \in D$. The (unique) joint probability function of BN B in which the nodes in W assume values W equals:

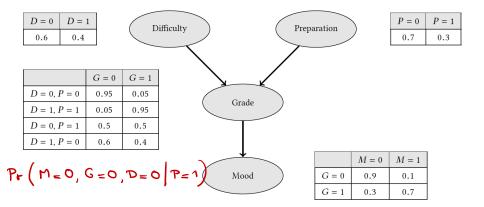
$$Pr(W = \underline{W}) = \prod_{w \in W} Pr(w = \underline{w} \mid parents(w) = \underline{parents(w)})$$

$$= \prod_{w \in W} \Theta_w(\underline{parents(w)})(\underline{w}).$$
also called factorisation

The conditional probability distribution of $W \subseteq V$ given observations on a set $O \subseteq V$ of vertices is given by $Pr(W = \underline{W} \mid O = \underline{O}) = \frac{Pr(W = \underline{W} \land O = \underline{O})}{Pr(O = O)}$.

Joost-Pieter Katoen Probabilistic Programming

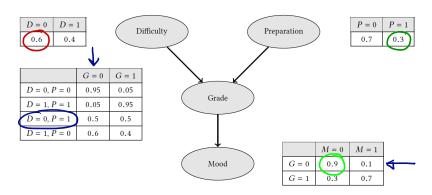
Example



How likely does a student end up with a bad mood after getting a bad grade for an easy exam, **given that** she is well prepared?

Joost-Pieter Katoen Probabilistic Programming 11,

Example



$$Pr(D = 0, G = 0, M = 0 \mid P = 1) = \frac{Pr(D = 0, G = 0, M = 0, P = 1)}{Pr(P = 1)}$$

$$= \frac{0.6 \cdot 0.5 \cdot 0.9 \cdot 0.3}{0.3} = 0.27$$

Joost-Pieter Katoen Probabilistic Programming 13

The benefits of Bayesian networks

Bayesian networks provide a compact representation of joint distribution functions if the dependencies between the random variables are sparse.

Another advantage of BNs is

the explicit representation of conditional independencies.

Joost-Pieter Katoen Probabilistic Programming 13/38

Overview

- Motivation
- 2 What are Bayesian networks?
- Conditional independence
- 4 Inference

Conditional independence

Two independent events may become dependent given some observation. This is captured by the following notion.

Conditional independence

Let X, Y, Z be (discrete) random variables. X is conditionally independent of Y given Z, denoted I(X, Z, Y), whenever:

$$Pr(X \wedge Y \mid Z) = Pr(X \mid Z) \cdot Pr(Y \mid Z)$$
 or $Pr(Z) = 0$.

$$X$$
 and Y are independent
 $Pr(X=x, Y=y) = Pr(X=x) \cdot Pr(Y=y)$

Joost-Pieter Katoen Probabilistic Programming 15/

Conditional independence

Two independent events may become dependent given some observation. This is captured by the following notion.

Conditional independence

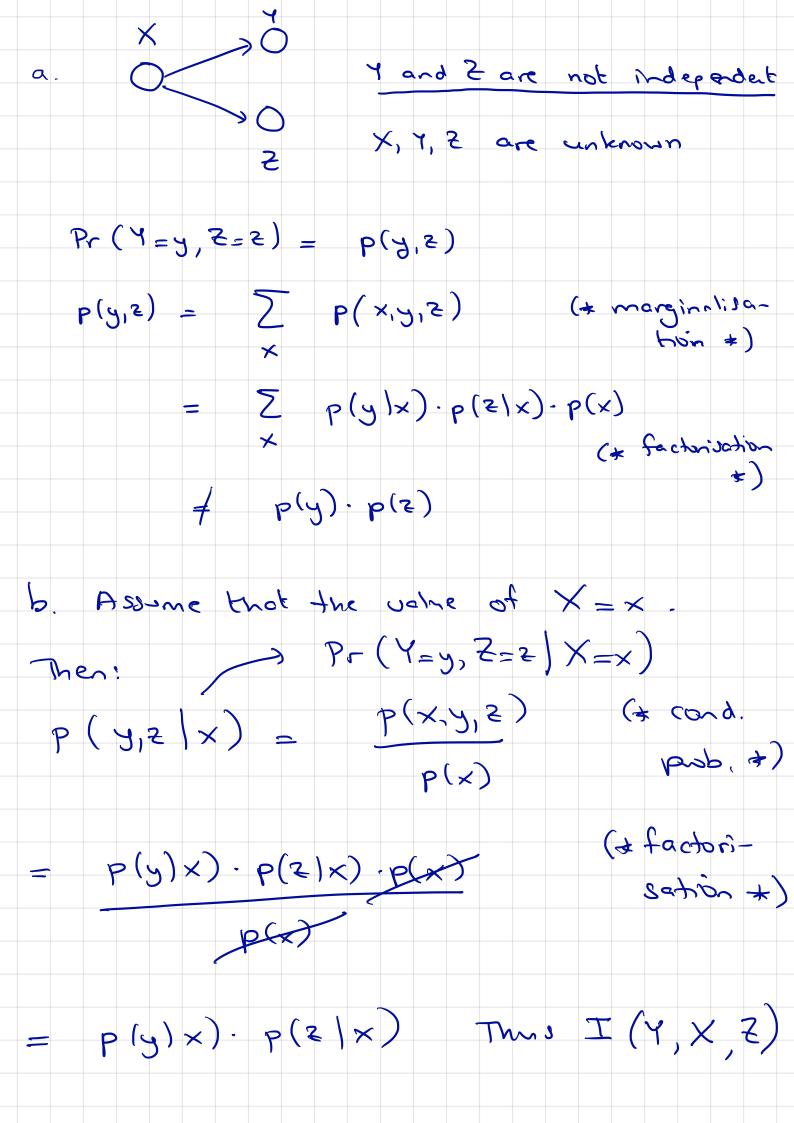
Let X, Y, Z be (discrete) random variables. X is conditionally independent of Y given Z, denoted I(X, Z, Y), whenever:

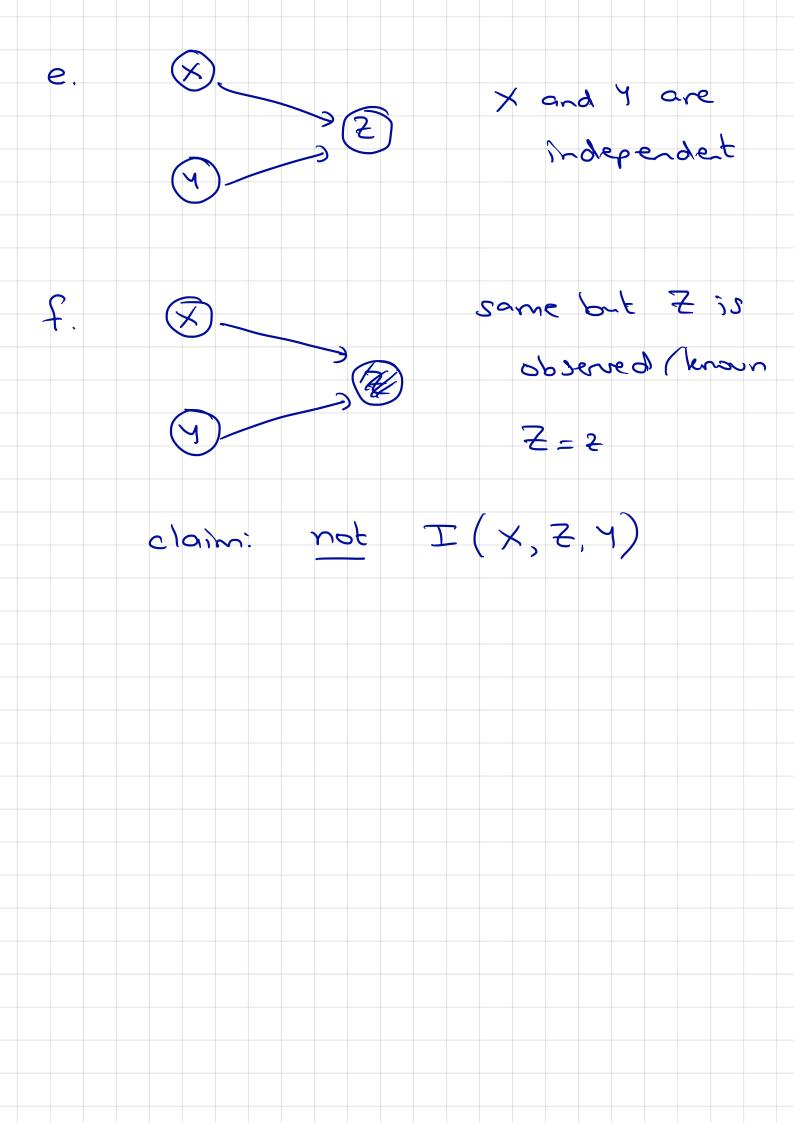
$$Pr(X \wedge Y \mid Z) = Pr(X \mid Z) \cdot Pr(Y \mid Z)$$
 or $Pr(Z) = 0$.

Equivalent formulation:
$$Pr(X \mid Y \land Z) = Pr(X \mid Z)$$
 or $Pr(Y \land Z) = 0$.

These notions can be easily lifted in a point-wise manner to sets of random variables, e.g., $\mathbf{X} = \{X_1, \dots, X_k\}$.

Examples on the black board.





$$c \quad \otimes \longrightarrow \mathcal{A} \longrightarrow \mathcal{E} \qquad x \text{ and } \mathcal{E} \text{ are not independent}$$

$$p(x,z) = \sum_{y} p(x,y,z) = \sum_{y} p(z|y) \cdot p(y|x) \cdot p(x)$$

$$= p(z|x) \cdot p(x)$$

$$\neq p(z) \cdot p(x)$$

$$\neq p(z) \cdot p(x)$$

$$= p(x,z|y) = \frac{p(x,y,z)}{p(y)}$$

$$= p(x) \cdot p(y|x) \cdot p(z|y)$$

Graphoid axioms of Bayesian networks

Graphoid axioms

[Dawid, 1979], [Spohn, 1980]

Conditional independence satisfies the following axioms for disjoint sets of random variables **W**, **X**, **Y**, **Z**:

1. I(X, Z, Y) if and only if I(Y, Z, X)

- Symmetry Decomposition
- /(X, Z, Y ∪ W) implies (/(X, Z, Y) and /(X, Z, W))
 /(X, Z, Y ∪ W) implies /(X, Z ∪ Y, W)

- Weak union
- 4. $(I(X, Z, Y) \text{ and } I(X, Z \cup Y, W)) \text{ implies } I(X, Z, Y \cup W)$
- Contraction

5. *I*(**X**, **Z**, ∅)

Triviality

Decomposition+Weak union+Contraction together are equivalent to:

$$I(X, Z, Y \cup W)$$
 if and only if $I(X, Z, Y)$ and $I(X, Z \cup Y, W)$.

$$T(x, z, y \circ w)$$

$$T(x, z, y \circ w) \wedge T(x, z, y \circ w)$$

$$T(x, z, y) \wedge T(x, z, y \circ w)$$

$$T(x, z, y) \wedge T(x, z, y \circ w)$$

$$T(x, z, y) \wedge T(x, z, y \circ w)$$

$$T(x, z, y) \wedge T(x, z, y \circ w)$$

$$T(x, z, y) \wedge T(x, z, y \circ w)$$

$$T(x, z, y) \wedge T(x, z, y \circ w)$$

Checking conditional independencies

Deriving the (conditional) independencies is non-trivial.

The graphical structure of Bayesian networks enable a simple test.

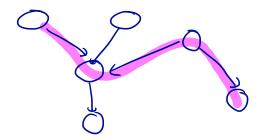
This is based on the concept of d-separation.

Joost-Pieter Katoen Probabilistic Programming 17/3

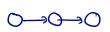
Consider undirected paths in the underlying DAG G = (V, E) of the BN.

Lo "simple" paths, so no duplicate visits to any vertex

- Consider undirected paths in the underlying DAG G = (V, E) of the BN.
- ▶ View every such path as a pipe, and each vertex W on the path as a valve.



- \triangleright Consider undirected paths in the underlying DAG G = (V, E) of the BN.
- ▶ View every such path as a pipe, and each vertex W on the path as a valve.
- ▶ Valves have the status open or closed.
- ▶ An undirected path is blocked if at least one valve along the path is closed.
- \blacktriangleright A valve ν is open or closed on a path depending on its type on this path:



Joost-Pieter Katoen Probabilistic Programming 18,

- Consider undirected paths in the underlying DAG G = (V, E) of the BN.
- View every such path as a pipe, and each vertex W on the path as a valve.
- Valves have the status open or closed.
- An undirected path is blocked if at least one valve along the path is closed.

- A valve v is open or closed on a path depending on its type on this path:

 1. Sequential: when v is a parent of one of its neighbours (on the path) and a child of its other neighbour (on the path)
 - 2. Divergent: when v is a parent of both neighbours \rightarrow 3. Convergent: when v is a child of both neighbours

Joost-Pieter Katoen **Probabilistic Programming** 18/35

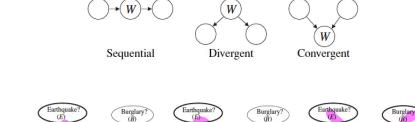
Radio?

Alarm?

Valve types

Radio?

Alarm?



Radio?

Sequential valve

Call?
(C)

Call?
(C)

Call?
(C)

Convergent valve

Alarm?

Joost-Pieter Katoen Probabilistic Programming 19

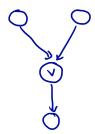
Valve status

set of observed variables

A valve v is closed for set **Z** of variables whenever:

× 2 Y ○→Ø→○

- 1. Sequential: if v (is a variable that) occurs in **Z**
- 2. Divergent: if *v* occurs in **Z**
- Convergent: if neither v nor any of its descendants occurs in Z.
 w is a descendant of v if w is reachable via (directed) edge relation E from v.



Valve status

A valve v is closed for set **Z** of variables whenever:

- 1. Sequential: if v (is a variable that) occurs in **Z**
- 2. Divergent: if *v* occurs in **Z**
- 3. Convergent: if neither v nor any of its descendants occurs in \mathbf{Z} . w is a descendant of v if w is reachable via (directed) edge relation E from v.

Example

- 1. the sequential valve A is closed iff we know the value of A, otherwise an earthquake E may change our belief in getting a call C.
- 2. the divergent valve *E* is closed iff we know the value of variable *E*, otherwise a radio report on an earthquake may change our belief in the alarm triggering.
- 3. the convergent valve A is closed iff neither the value of variable A nor the value of C are known, otherwise, a burglary may change our belief in an earthquake.

Joost-Pieter Katoen Probabilistic Programming 20/3

D-separation

D-separation

Let X, Y, Z be disjoint sets of vertices in the DAG G. X and Y are d-separated by Z in G, denoted $dsep_G(X, Z, Y)$, iff every (undirected) path between a vertex in X and a vertex in Y is blocked by some vertex in Z.

A path is blocked by **Z** iff at least one vertex on the path is closed given **Z**.

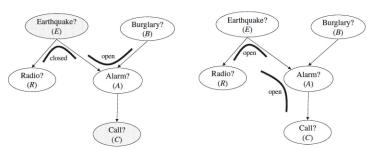


Figure 4.9: On the left, R and B are d-separated by E, C. On the right, R and C are not d-separated.

Joost-Pieter Katoen Probabilistic Programming 21/3

D-separation

D-separation implies independence

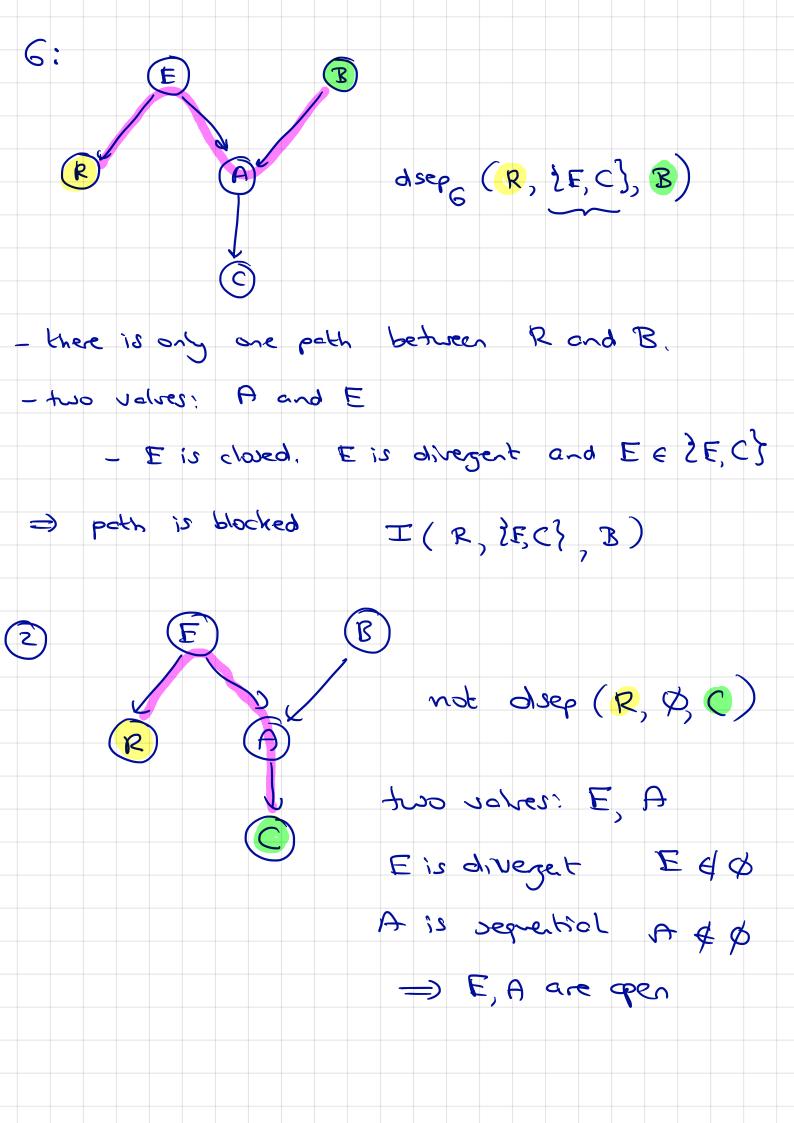
[Pearl 1986], [Verma, 1986]

 $dsep_G(X, Z, Y)$ implies I(X, Z, Y).

Proof.

Left as an exercise. Note that the reverse implication does not hold.

Joost-Pieter Katoen Probabilistic Programming 22/



D-separation

D-separation implies independence

[Pearl 1986], [Verma, 1986]

 $dsep_G(X, Z, Y)$ implies I(X, Z, Y).

Proof.

Left as an exercise. Note that the reverse implication does not hold.

As d-separation is defined over all paths, this theorem yields an **exponential-time** procedure to check (a sufficient condition for) conditional independence.

Joost-Pieter Katoen Probabilistic Programming 22

A polynomial algorithm for d-separation

Let X, Y, Z be disjoint sets of vertices in the DAG G. Apply the following pruning procedure on the DAG G:

- 1. Eliminate any leaf vertex v from G with $v \notin (X \cup Y \cup Z)$.
- 2. Repeat this elimination procedure until no more leafs can be eliminated.
- 3. Eliminate all edges emanating from vertices in **Z**.

The remaining DAG is referred to as $prune_{X,Y,Z}(G)$.

A polynomial algorithm for d-separation

Let X, Y, Z be disjoint sets of vertices in the DAG G. Apply the following pruning procedure on the DAG G:

- 1. Eliminate any leaf vertex v from G with $v \notin (X \cup Y \cup Z)$.
- 2. Repeat this elimination procedure until no more leafs can be eliminated.
- 3. Eliminate all edges emanating from vertices in **Z**.

The remaining DAG is referred to as $prune_{X,Y,Z}(G)$.

Theorem

Let **X**, **Y**, **Z** be disjoint sets of vertices in the DAG *G*. Then:

 $dsep_G(X, Y, Z)$ iff X and Y are disconnected in $prune_{X,Y,Z}(G)$.

Two sets of vertices are disconnected if there is no path between them.

Joost-Pieter Katoen Probabilistic Programming 23/35

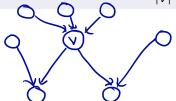
Markov blanket

The complexity of inference on a Bayesian network is measured in terms of the Markov blanket, an indication of the degree of dependence in the BN.

Markov blanket

The Markov blanket for a vertex v in a BN is the set ∂v of vertices composed of v, v's parents, its children, and its children's other parents.

The average Markov blanket of BN B is the average size of the Markov blanket of all its vertices, that is, $\frac{1}{|V|} \sum_{v \in V} |\partial v|$.



Joost-Pieter Katoen Probabilistic Programming 24/35

Markov blanket

The complexity of inference on a Bayesian network is measured in terms of the Markov blanket, an indication of the degree of dependence in the BN.

Markov blanket

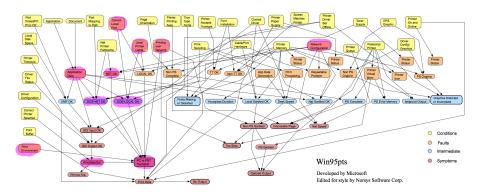
The Markov blanket for a vertex v in a BN is the set ∂v of vertices composed of v, v's parents, its children, and its children's other parents.

The average Markov blanket of BN B is the average size of the Markov blanket of all its vertices, that is, $\frac{1}{|V|} \sum_{v \in V} |\partial v|$.

Every set of nodes in the BN is conditionally independent of v when conditioned on the set ∂v . That is, for distinct vertices v and w:

$$Pr(v \mid \partial v \land w) = Pr(v \mid \partial v)$$
 or, equivalently $I(\{v\}, \partial v, \{w\})$

Printer troubleshooting in Windows 95



The average Markov blanket of this BN is 5.92, |V| = 76, and |E| = 117

- Markov blanket of vertex "DOS-LOCAL OK".

Joost-Pieter Katoen Probabilistic Programming 25/

Some benchmark BN results

Benchmark BNs from www.bnlearn.com

BN	V	<i>E</i>	aMB
hailfinder	56	66	3.54
hepar2	70	123	4.51
win95pts	76	112	5.92
pathfinder	135	200	3.04
andes	223	338	5.61
pigs	441	592	3.92
munin	1041	1397	3.54

aMB = average Markov Blanket size, a measure of independence in BNs

Joost-Pieter Katoen Probabilistic Programming 26/3

Overview

- Motivation
- 2 What are Bayesian networks?
- 3 Conditional independence
- 4 Inference

Probabilistic inference

We consider the following probabilistic inference problem: let B be a BN with set V of vertices and the evidence $\mathbf{E} \subseteq V$ and the questions $\mathbf{Q} \subseteq V$. (Exact) probabilistic inference is to determine the conditional probability

$$Pr(\mathbf{Q} = \mathbf{q} \mid \mathbf{E} = \mathbf{e}) = \frac{Pr(\mathbf{Q} = \mathbf{q} \land \mathbf{E} = \mathbf{e})}{Pr(\mathbf{E} = \mathbf{e})}.$$

We consider:

Decision variants of probabilistic inference

The decision variant of probabilistic inference is: for a given probability $p \in \mathbb{Q} \cap [0, 1)$:

$$ightharpoonup$$
 does $Pr(\mathbf{Q} = \mathbf{q} \mid \mathbf{E} = \mathbf{e}) > p$?

 TI^1

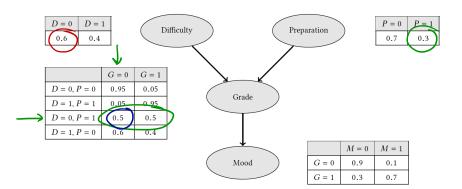
ightharpoonup special case: $Pr(\mathbf{E} = \mathbf{e}) > p$?

STI

28/35

¹TI = Threshold Inference and STI = Simple TI.

Example



$$Pr(D = 0, G = 0, M = 0 \mid P = 1)$$
 = $Pr(D = 0, G = 0, M = 0, P = 1)$ = $Pr(P = 1)$ =

Complexity of probabilistic inference

Decision variants of probabilistic inference

For a given probability $p \in \mathbb{Q} \cap [0, 1)$:

- \triangleright does $Pr(\mathbf{Q} = \mathbf{q} \mid \mathbf{E} = \mathbf{e}) > p$?
- > special case: $Pr(\mathbf{E} = \mathbf{e}) > p$?

Ш

STI

Complexity of probabilistic inference [Cooper, 1990]

The decision problems TI and STI are PP-complete.

Proof.

- Hardness: by a reduction of MAJSAT to STI (since STI is a special case of TI, MAJSAT is reducible to TI).
- 2. Membership: To show TI is in PP, a polynomial-time algorithm is provided that can guess a solution to TI while guaranteeing that the guess is correct with probability exceeding ½.

Joost-Pieter Katoen Probabilistic Programming 30/35

The complexity class PP

PP (Probabilistic Polynomial-Time) is the class of decision problems solvable by a probabilistic Turing machine in polynomial time with an error probability < 1/2.

Formally, a language L is in PP iff there is a probabilistic TM M such that:

- 1. *M* runs in polynomial time on all inputs
- 2. For all $w \in L$, M outputs 1 with probability larger than 1/2
- 3. For all $w \notin L$, M outputs 1 with probability at most $\frac{1}{2}$.

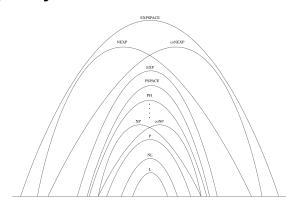
A PP-problem can be solved to any fixed degree of accuracy by running a randomised polynomial-time algorithm a sufficient (but bounded) number of times.

Remark: if all choices are binary and the probability of each transition is 1/2, then the majority of the runs accept input w iff $w \in L$. This majority, however, is not fixed and may (exponentially) depend on the input, e.g., a problem in PP may accept "yes"-instances with size |w| with probability $1/2 + \frac{1}{2|w|}$. This makes problems in PP intractable in general.

Joost-Pieter Katoen Probabilistic Programming 31,

²A probabilistic TM is a non-deterministic TM which chooses between the available transitions at each point according to some probability distribution.

The complexity class PP



 $NP \subseteq PP$ (as SAT lies in PP) and $coNP \subseteq PP$ (as PP is closed under complement). PP is contained in PSPACE (as there is a polynomial-space algorithm for MAJSAT).

PP is comparable to the class #P — the counting variant of NP — the class of function problems "compute f(x)" where f is the number of accepting runs of an NTM running in polynomial time.

Joost-Pieter Katoen Probabilistic Programming 32/3

The decision problems SAT and MAJSAT

The decision problems SAT and MAJSAT

Let α be a propositional logical formula (in conjunctive normal form, CNF) over a finite set **X** of Boolean variables.

- 1. Does there exist a valuation over \mathbf{X} such that α holds?
- 2. Does the majority of the assignments to ${\bf X}$ make α hold? MAJSAT

Known facts

[Cook, 1971] and [??]

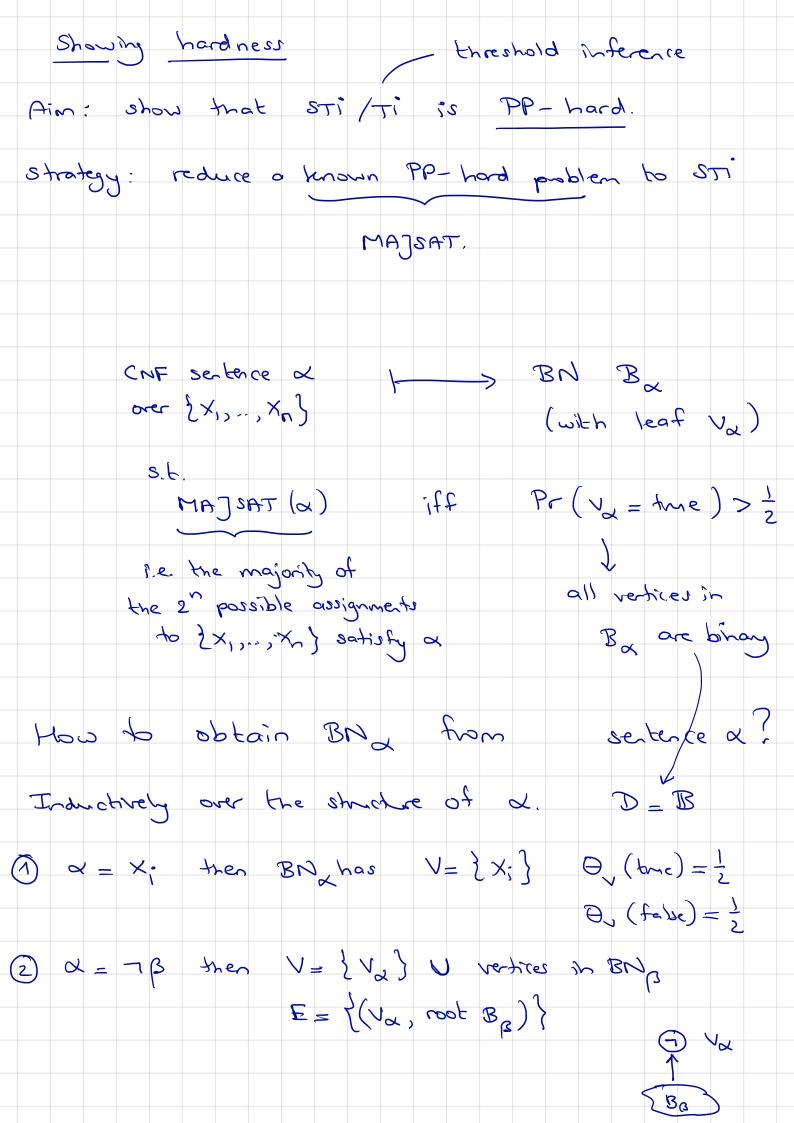
- 1. The SAT problem is NP-complete.
- 2. The MAJSAT problem is PP-complete.

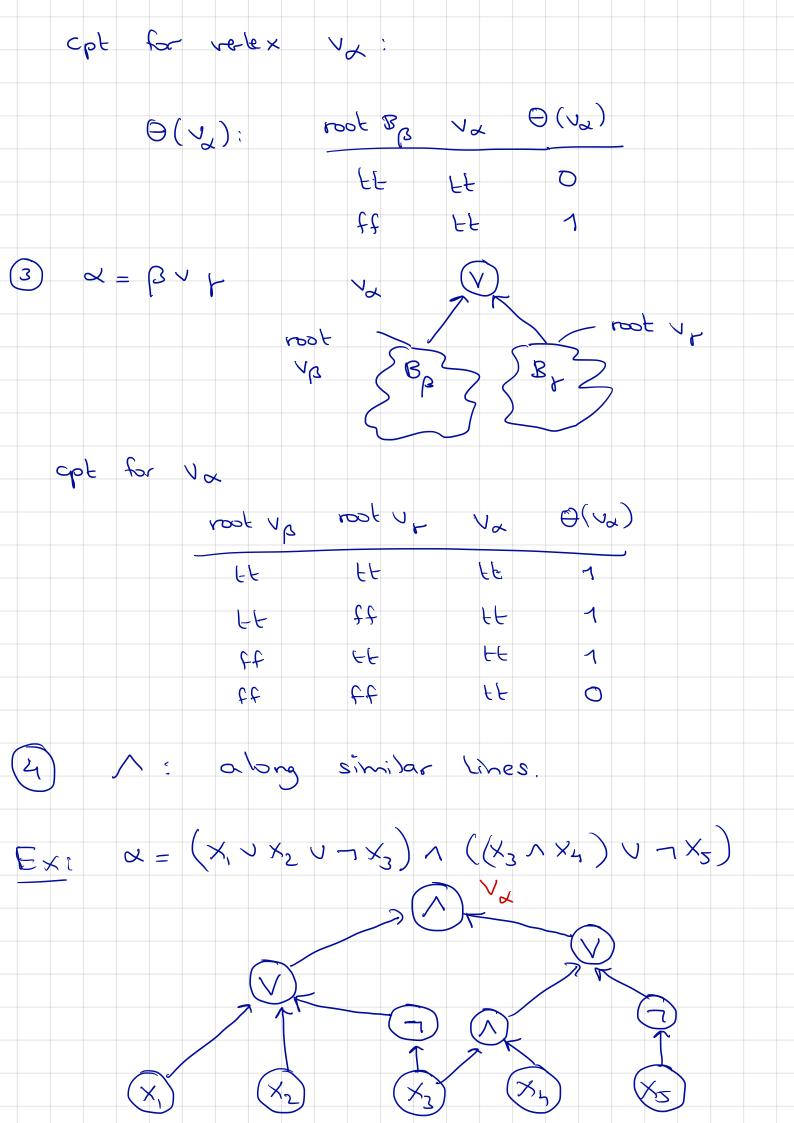
Joost-Pieter Katoen Probabilistic Programming 33/35

Showing membership

By providing a polynomial-time algorithm that can guess a solution to TI while guaranteeing that the guess is correct with probability exceeding 1/2.

Joost-Pieter Katoen Probabilistic Programming 35/3





lemma: 0 7f x,,..,x, ≠ x Theorem MAJSAT (x,,,x, \(\) \ Proof: Pr (Vx = tt) $= \sum_{x_1, \dots, x_n} \Pr \left(\bigvee_{\alpha = t} \{t, x_1, \dots, x_n\} \right) = \sum_{\alpha = t} \{ x_1, \dots, x_n \}$ $= \sum_{\alpha = t} \{ x_1, \dots, x_n \}$ $= \sum_{\alpha = t} \{ x_1, \dots, x_n \}$ $= \sum_{X_1, \dots, X_n} \Pr(V_{\alpha} = \forall t, X_1, \dots, X_n) + \sum_{X_1, \dots, X_n} \Pr(V_{\alpha} = \forall t, X_1, \dots, X_n)$ $\times_{1, \dots, X_n} \vdash \alpha$ $\times_{1, \dots, X_n} \vdash \alpha$ **= 0** $=\frac{2n}{1}\cdot C + 0$ (a above (enna +) # instantiations
of X,..., x Fx = 20 & has 2° possible instantiations majority of these instartiations to a when C> 2 $c > \frac{2}{2n}$ iff $\frac{c}{c} > \frac{1}{2}$ (see $\frac{c}{c} > \frac{1}{2}$

Pr(Q=q.|E=e)>pShowing membership Am: show that Ti EPP. How: give a polytime algorithm for Ti that is correct with publishing > 1 1. let $\alpha(\rho) = \begin{cases} 1 & \text{if } \rho < \frac{1}{2} \\ \frac{1}{2\rho} & \text{else} \end{cases}$ $| (1-2\rho) | \frac{1}{2-2\rho} & \text{if } \rho < \frac{1}{2} \\ 0 & \text{else}$ 2. sample an instantiation for x, ,..., x, randomly 3. declare P(9/e) > p with publicity (a(p)) if x is compatible with a and e b(p) , what compatible with e, but not a Theorem This algorithm declares P(9/e) >p with prob > 2 Proof: the prob. of declaring P(ale) >p is given by: $r = \alpha(p) \cdot Pr(q,e) + b(p) \cdot Pr(\neg q,e) + \frac{1}{2} (\gamma - Pr(e))$ Thus $r > \frac{1}{2}$ iff $a(p) \cdot Pr(q, e) + b(p) \cdot Pr(\neg q, e) > \frac{1}{2} Pr(e)$ \Leftrightarrow $a(p) \cdot Pr(g(e) + b(p) \cdot Pr(ng(e)) > \frac{1}{2}$

$$F > \frac{1}{2} \quad \text{iff} \quad a(p) \cdot P_{r}(a|e) + b(p) \cdot P_{r}(a|e) > \frac{1}{2}$$

$$Distinguish \quad boo cases:$$

$$P < \frac{1}{2} \cdot Then: \quad a(p) \cdot P_{r}(a|e) + b(p) \cdot P_{r}(a|e) > \frac{1}{2}$$

$$P_{r}(a|e) + \left(\frac{1-2p}{2-2p}\right) \cdot \left(1-P_{r}(a|e)\right) > \frac{1}{2}$$

$$P_{r}(a|e) \left(1-\frac{1-2p}{2-2p}\right) > \frac{1}{2-\frac{1-2p}{2-2p}}$$

$$P_{r}(a|e) \left(1-\frac{1-2p}{2-2p}\right) > \frac{1}{2-\frac{1-2p}{2-2p}}$$

$$P_{r}(a|e) \left(1-\frac{1-2p}{2-2p}\right) > \frac{1}{2-\frac{1-2p}{2-2p}}$$

$$P_{r}(a|e) \left(1-\frac{1-2p}{2-2p}\right) > \frac{1}{2-2p}$$

$$P_{r}(a|e) \left(1-\frac{1-2p}{2-2p}\right) > \frac{1}{2-\frac{1-2p}{2-2p}}$$

$$P_{r}(a|e) \left(1-\frac{1-2p}{2-2p}\right) > \frac{1}{2-\frac{1-2p}{2-2p}}$$

$$P_{r}(a|e) \left(1-\frac{1-2p}{2-2p}\right) > \frac{1}{2-\frac{1-2p}{2-2p}}$$

$$P_{r}(a|e) + b(p) \cdot P_{r}(a|e) > \frac{1}{2}$$

$$P_{r}(a|e) + b(p) \cdot P_{r}(a|e) > \frac{1}{2}$$

$$P_{r}(a|e) + p \cdot \frac{1}{2-2p}$$

$$P_{r$$