Probabilistic Programming

Lecture #18: Bayesian Networks

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen	Probabilistic Programming	1/34
Probabilistic Programming	Motivation	
Overview		
1 Motivation		
Inference by program verification		

3 How long to sample a Bayesian network?

Probabilistic Programming

Overview

1 Motivation

2 Inference by program verification

3 How long to sample a Bayesian network?

Joost-Pieter Katoen	Probabilistic Programming	2/34
Probabilistic Programming	Motivation	
Inference		

Inference (of conditional probabilities)

Let *B* be a BN with set *V* of vertices and the evidence $\mathbf{E} \subseteq V$ and the questions $\mathbf{Q} \subseteq V$.

The probabilistic inference problem is to determine the conditional probability:

$$Pr(\mathbf{Q} = \mathbf{q} | \mathbf{E} = \mathbf{e}) = \frac{Pr(\mathbf{Q} = \mathbf{q} \wedge \mathbf{E} = \mathbf{e})}{Pr(\mathbf{E} = \mathbf{e})}.$$

Inference is the main focus when reasoning about Bayesian networks.

Motiva

Inference example: student exam's mood

How likely does a student end up with a bad mood after getting a bad grade for an easy exam, **given that** she is well prepared?

Joost-Pieter Katoen	Probabilistic Programming	5/34
Probabilistic Programming	Inference by program verification	
Overview		
 Motivation 		
Informed by program varification		
Interence by program vernication		
3 How long to sample a Bayesian net		

Probabilistic Programming

Inference example: Printer troubleshooting in Windows 95

How likely is it that your print is garbled **given that** the ps-file is not and the page orientation is portrait?

- Gibbs Sampling
- Importance Sampling

Most sampling-based methods exploit rejection sampling.

loost_	Pieter	Katoon
JOOSL-		rvatoen

Inference by program verification

Rejection sampling

For a given Bayesian network and some evidence:

- 1. Sample from the joint distribution described by the BN
- 2. If the sample complies with the evidence, accept the sample and halt
- 3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Potential problem: What happens if the evidence has low probability? E.g., zero.

Probabilistic Programming

Joost-Pieter Katoer

Probabilistic Programming

Removal of conditioning = rejection sampling

Recall conditioning removal:

x	:=	0	[p]	х	:=	1;	
у	:=	0	[p]	у	:=	1;	
ob	sei	cve	x)	!=	y)		

Bayesian networks as programs

if (xD = 0 && xP = 0) {

xG := 0 [0.95] xG := 1

xG := 0 [0.05] xG := 1

xG := 0 [0.5] xG := 1

xG := 0 [0.6] xG := 1

} else if (xD = 1 && xP = 1) {

} else if (xD = 0 && xP = 1) {

} else if (xD = 1 && xP = 0) {

```
sx, sy := x, y; flag := true;
while(flag) {
    x, y := sx, sy; flag := false;
    x := 0 [p] x := 1;
    y := 0 [p] y := 1;
    flag := (x = y)
}
```

G = 0

0.95

0.05

0.5

0.6

D = 0, P = 0

D = 1, P = 1

D = 0, P = 1

D = 1, P = 0

G = 1

0.05

0.95

0.5

0.4

This program transformation replaces observe-statements by loops. The resulting loopy programs represent rejection sampling.

Take a topological sort of the BN's vertices, e.g., D; P; G; M

Condition on the evidence, e.g., for P = 1 ("well-prepared"):

repeat { progD ; progP; progG ; progM } until (P=1)

Map each conditional probability table (aka: node) to a program, e.g.:

Probabilistic Programmi

Inference by program verification

Joost-Pieter Katoen	Probabilistic Programming		
Probabilistic Programming	Inference by program verification		
Student exam's mood exa	mple		
D = 0 $D = 1$ Difficulty	Preparation	P = 0 P = 1	

How likely does a student end up with a bad mood after getting a bad grade for an easy exam, **given that** she is well prepared?

t D		1/ - +	
OST-P	lerer	N aroen	
051		ratoch	

}

Inference by program verification

Properties of BN programs

repeat { progD ; progP; progG ; progM } until (P=1)

- 1. Every BN-program naturally represents rejection sampling
- 2. The loop in a BN-program is simple
 - No "data-flow" between successive loop iterations
 - Loop invariants are not needed (as we will see)
- 3. BN-programs may be not positively a.s.-terminating Such BNs are ill-conditioned' their evidence has probability zero
- 4. A BN-program's size is linear in the BN's size

Joost-Pieter Ka	toen				Probabilist	ic Programming		13/34
Probabilistic Pro	gramming				Inference b	v program verifica	tion	
Infere	nce by	, mb	o-rea	soning	5			
	D = 0 $D = 00.6 0.4$	1	Diff	ficulty	F	Preparation	P = 0 $P = 1$ 0.7 0.3	
		<i>G</i> = 0	<i>G</i> = 1		\square			
	D = 0, P = 0 D = 1, P = 1	0.95	0.05		Grade			
	D = 0, P = 1	0.5	0.5		T			
	D = 1, P = 0	0.6	0.4					
	D = 1, P = 0	0.6	0.4		ł	<i>M</i> = 0	M = 1	

Ergo: exact Bayesian inference can be done by wp-reasoning, e.g.,

$$wp(P_{mood}, [x_D = 0 \land x_G = 0 \land x_M = 0]) = \frac{Pr(D = 0, G = 0, M = 0, P = 1)}{Pr(P = 1)} = 0.27$$

Soundness

For BN *B* with evidence $E \subseteq V$ and value \underline{v} for vertex v: $\underbrace{wp(\operatorname{prog}(B, \mathbf{e}), \bigwedge_{v \in V \setminus E} x_v = \underline{v})}_{\text{wp of the BN program of } B} = \underbrace{Pr\left(\bigwedge_{v \in V \setminus E} v = \underline{v} \mid \bigwedge_{e \in E} e = \underline{e}\right)}_{\text{joint distribution of BN } B}$ where $\operatorname{prog}(B, \mathbf{e})$ equals repeat $\operatorname{prog}B$ until $(\bigwedge_{e \in E} x_e = \underline{e})$.

Thus: inference of BNs can be done using wp-reasoning

Joost-Pieter Katoen	Probabilistic Programming	14/34
Probabilistic Programming	Inference by program verification	

Reasoning about loops

Reasoning about loops is hard. Typically, loop invariants are used to capture the effect of loops. Finding such loop invariants in general is undecidable.

Bayesian networks correspond to "simple" probabilistic programs. Loops in such programs are "data-flow" free. Their effect can be given as closed-form solution. This can be done algorithmically.

G = 1

0.3

0.7

Inference by program verification

I.i.d-loops

- Loop while (G) P is iid wrt. expectation f whenever: both wp(P, [G]) and $wp(P, [\neg G] \cdot f)$ are unaffected by P.
- f is *unaffected* by P if none of f's variables are modified by P:
- x is a variable of f iff $\exists s. \exists v, u: f(s[x = v]) \neq f(s[x = u])$

If g is unaffected by program P, then: $wp(P, g \cdot f) = g \cdot wp(P, f)$

Joost-Pieter Katoen	Probabilistic Programming	17/34
Probabilistic Programming	Interence by program verification	
r tobabilistic i togramming		
Weakest precondition of ite	d-loops	

If while(G)P is iid for expectation
$$f$$
, it holds for every state s :
 $wp(while(G)P, f)(s) = [G](s) \cdot \frac{wp(P, [\neg G] \cdot f)(s)}{1 - wp(P, [G])(s)} + [\neg G](s) \cdot f(s)$
where we let $\frac{0}{0} = 0$.

Proof: use
$$wp(while_n(G)P, f) = [G] \cdot wp(P, [\neg G] \cdot f) \cdot \sum_{i=0}^{n-2} (wp(P, [G])^i) + [\neg G] \cdot f$$

No loop invariant or martingale needed. Fully automatable.

Example: sampling within a circle

while ((x-5)**2 + (y-5)**2 >= 25){
 x := uniform(0..10);
 y := uniform(0..10)
}

This program is iid for every f, as both are unaffected by P's body:

$$wp(P, [G]) = \frac{48}{121} \text{ and}$$

$$wp(P, [\neg G] \cdot f) = \frac{1}{121} \sum_{i=0}^{10p} \sum_{j=0}^{10p} [(i/p-5)^2 + (j/p-5)^2 < 25] \cdot f(x/(i/p), y/(j/p))$$

Probabilistic Programming

Joost-Pieter Katoen

0

How long to sample a Bayesian network?

Probabilistic Programmin

Overview

Motivation

2 Inference by program verification

3 How long to sample a Bayesian network?

How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

"the main challenge in this setting [sampling-based approaches] is that many samples that are generated during execution are ultimately rejected for not satisfying the observations."

Recall: Rejection sampling

For a given Bayesian network and some evidence:

- 1. Sample from the joint distribution described by the BN
- 2. If the sample complies with the evidence, accept the sample and halt
- 3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Q: How many samples do we need on average for a single iid-sample?

Joost-Pieter Katoen	Probabilistic Programming	21/34
Probabilistic Programming	How long to sample a Bayesian network?	

Sampling time of a toy Bayesian network

This BN is parametric (in a)

How many samples are needed on average for a **single** iid-sample for evidence G = 0?

Sampling time for example BN

For $a \in [0.1, 0.78]$, < 18 samples; for $a \ge 0.98$, 100 samples are needed

For real-life BNs, one may exceed 10¹⁵ (or more) samples

Deriving sampling times via expected runtimes Let *ert*() : pGCL \rightarrow ($\mathbb{T} \rightarrow \mathbb{T}$) where:

- ert(P, t)(s) is the expected runtime of P on input state s if t captures the runtime of computation following P.
- $ert(P, \mathbf{0})(s)$ is the expected runtime of P on input state s.

Expected runtime transformer

Syntax	Semantics <i>ert</i> (<i>P</i> , <i>t</i>)
▶ skip	▶ 1+ <i>t</i>
diverge	►∞
▶ x := E	1 + t[x := E]
▶ P1 ; P2	$\blacktriangleright ert(P_1, ert(P_2, t))$
▶ if (G)P1 else P2	$\blacktriangleright 1 + [G] \cdot \operatorname{ert}(P_1, \mathbf{t}) + [\neg G] \cdot \operatorname{ert}(P_2, \mathbf{t})$
▶ P1 [p] P2	▶ $1 + p \cdot ert(P_1, t) + (1-p) \cdot ert(P_2, t)$
while(G)P	▶ Ifp X. $1 + ([G] \cdot ert(P, X) + [\neg G] \cdot t)$

If p is the least fixed point operator wrt. the ordering \leq on runtimes

Joost-Pieter Katoen	Probabilistic Programming	25/34
Dushahilistia Dusawamina	Haw long to comple a Davasian natural 2	
Probabilistic Programming	now long to sample a Dayesian network?	
Decomposition		

Decomposition theorem

For every pGCL program P and expectation f:

$$ert(P, \mathbf{f}) = ert(P, \mathbf{0}) + wp(P, \mathbf{f})$$

 Joost-Pieter Katoen
 Probabilistic Programming
 26/34

 Probabilistic Programming
 How long to sample a Bayesian network?

 Expected runtime of iid-loops

For a.s.-terminating iid-loop while(G)P for which every iteration runs in the same expected time, we have:

$$ert(while(G)P, t) = 1 + [G] \cdot \frac{1 + ert(P, [\neg G] \cdot t)}{1 - wp(P, [G])} + [\neg G](s) \cdot t$$

where 0/0 := 0 and $a/0 := \infty$ for $a \neq 0$.

Proof: similar as for the inference (wp) using the decomposition result: ert(P, t) = ert(P, 0) + wp(P, t)

No loop invariant needed. Fully automatable.

Example: sampling within a circle

This iid-loop is a.s.-terminating, and every iteration has same expected time.

Then:
$$ert(P_{circle}, \mathbf{0}) = \mathbf{1} + [(x-5)^2 + (y-5)^2 \ge 25] \cdot \frac{363}{73}$$

So: $1 + \frac{363}{73} \approx 5.97$ operations are required on average using rejection sampling

Joost-Pieter	Katoen	

29/34

Probabilistic Programming

How long to sample a Bayesian network?

Probabilistic Programmi

The student's mood example

Sample times of BN programs

Every BN-program is iid for every f, is almost surely terminating, and every loop-iteration takes on average equally long.

This enables determining the exact expected sampling times of BNs in a fully automated manner.

But: BN-programs may be not positively a.s.-terminating This holds for ill-conditioned BNs. The evidence(s) in such BNs are occurring with probability zero.

er Katoen	Probabilistic Programming

Probabilistic Programming

Joost-Pie

How long to sample a Bayesian network?

Experimental results

Benchmark BNs from www.bnlearn.com

BN	V	<i>E</i>	aMB	E	EST	time (s)	E	EST	time (s)
hailfinder	56	66	3.54	5	5 10 ⁵	0.63	9	9 10 ⁶	0.46
hepar2	70	123	4.51	1	1.5 10 ²	1.84	2		МО
win95pts	76	112	5.92	3	4.3 10 ⁵	0.36	12	4 10 ⁷	0.42
pathfinder	135	200	3.04	3	2.9 10 ⁴	31	7	×	5.44
andes	223	338	5.61	3	5.2 10 ³	1.66	7	9 10 ⁴	0.99
pigs	441	592	3.92	1	2.9 10 ³	0.74	7	1.5 10 ⁶	1.02
munin	1041	1397	3.54	5	∞	1.43	10	1.2 10 ¹⁸	65

aMB = average Markov Blanket size, a measure of independence in BNs

The last column is the analysis time of ert-analysis of the BN-program.

31/34

Printer troubleshooting in Windows 95

Java implementation executes about 10^7 steps in a single second For $|\mathbf{E}| = 17$, an EST of 10^{15} yields **3.6** years simulation for a single iid-sample

Joost-Pieter Katoen	Probabilistic Programming	33/34

Take-home messages

- Bayesian networks are directed acyclic graphs of random variables
- ▶ Inference of conditional probabilities on BNs is NP-hard
- **BNs** are probabilistic programs with "data-flow"-free loops
- No loop invariants are needed to reason about BN programs
- ▶ Wp-reasoning can do inference and determines sampling times
- ▶ in a fully automated manner.

Written exam: February 25, 2019 (10-12:00) and March 27, 2019 (10-12:00)

Probabilistic Programming