
Probabilistic Programming

Probabilistic Programming
Lecture #18: Bayesian Networks

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/34

Probabilistic Programming

Overview

1 Motivation

2 Inference by program verification

3 How long to sample a Bayesian network?

Joost-Pieter Katoen Probabilistic Programming 2/34

Probabilistic Programming Motivation

Overview

1 Motivation

2 Inference by program verification

3 How long to sample a Bayesian network?

Joost-Pieter Katoen Probabilistic Programming 3/34

Probabilistic Programming Motivation

Inference

Inference (of conditional probabilities)

Let B be a BN with set V of vertices and the evidence E ⊆ V and the
questions Q ⊆ V .
The probabilistic inference problem is to determine the conditional
probability:

Pr(Q = q ∣ E = e) =
Pr(Q = q ∧ E = e)

Pr(E = e) .

Inference is the main focus when reasoning about Bayesian networks.
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Probabilistic Programming Motivation

Inference example: student exam’s mood

How likely does a student end up with a bad mood after getting
a bad grade for an easy exam, given that she is well prepared?
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Probabilistic Programming Motivation

Inference example: Printer troubleshooting in
Windows 95

How likely is it that your print is garbled given that
the ps-file is not and the page orientation is portrait?
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Probabilistic Programming Inference by program verification

Bayesian inference
▶ Exact inference of Bayesian networks is NP-hard

▶ Variable Elimination
▶ Join-tree Algorithm
▶ . . . . . .

▶ Approximate inference of BNs is NP-hard too

▶ Typical fallback: use simulation
▶ Rejection Sampling
▶ Markov Chain Monte Carlo (MCMC)
▶ Metropolis-Hastings
▶ Gibbs Sampling
▶ Importance Sampling
▶ . . . . . .

Most sampling-based methods exploit rejection sampling.
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Probabilistic Programming Inference by program verification

Rejection sampling

For a given Bayesian network and some evidence:

1. Sample from the joint distribution described by the BN
2. If the sample complies with the evidence, accept the sample and halt
3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Potential problem: What happens if the evidence has low probability? E.g., zero.
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Probabilistic Programming Inference by program verification

Removal of conditioning = rejection sampling

Recall conditioning removal:

x := 0 [p] x := 1;
y := 0 [p] y := 1;
observe(x != y)

sx, sy := x, y; flag := true;
while(flag) {

x, y := sx, sy; flag := false;
x := 0 [p] x := 1;
y := 0 [p] y := 1;
flag := (x = y)

}

This program transformation replaces observe-statements by loops.
The resulting loopy programs represent rejection sampling.

Joost-Pieter Katoen Probabilistic Programming 10/34

Probabilistic Programming Inference by program verification

Student exam’s mood example

How likely does a student end up with a bad mood after getting
a bad grade for an easy exam, given that she is well prepared?
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Probabilistic Programming Inference by program verification

Bayesian networks as programs
▶ Take a topological sort of the BN’s vertices, e.g., D;P;G ;M

▶ Map each conditional probability table (aka: node) to a program, e.g.:
if (xD = 0 && xP = 0) {

xG := 0 [0.95] xG := 1
} else if (xD = 1 && xP = 1) {
xG := 0 [0.05] xG := 1
} else if (xD = 0 && xP = 1) {
xG := 0 [0.5] xG := 1
} else if (xD = 1 && xP = 0) {
xG := 0 [0.6] xG := 1

}

▶ Condition on the evidence, e.g., for P = 1 (“well-prepared”):

repeat { progD ; progP; progG ; progM } until (P=1)
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Probabilistic Programming Inference by program verification

Properties of BN programs

repeat { progD ; progP; progG ; progM } until (P=1)

1. Every BN-program naturally represents rejection sampling

2. The loop in a BN-program is simple
▶ No “data-flow” between successive loop iterations
▶ Loop invariants are not needed (as we will see)

3. BN-programs may be not positively a.s.-terminating
Such BNs are ill-conditioned’ their evidence has probability zero

4. A BN-program’s size is linear in the BN’s size
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Probabilistic Programming Inference by program verification

Soundness

For BN B with evidence E ⊆ V and value v for vertex v :

wp(prog(B, e), ⋀
v∈V \E

xv = v )

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
wp of the BN program of B

= Pr
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⎝
⋀
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v = v ∣ ⋀

e∈E
e = e

⎞
⎟
⎠

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
joint distribution of BN B

where prog(B, e) equals repeat progB until (⋀e∈E xe = e).

Thus: inference of BNs can be done using wp-reasoning
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Probabilistic Programming Inference by program verification

Inference by wp-reasoning

Ergo: exact Bayesian inference can be done by wp-reasoning, e.g.,

wp(Pmood , [xD = 0 ∧ xG = 0 ∧ xM = 0]) =
Pr(D = 0,G = 0,M = 0,P = 1)

Pr(P = 1) = 0.27
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Probabilistic Programming Inference by program verification

Reasoning about loops

Reasoning about loops is hard.
Typically, loop invariants are used to capture the effect of loops.

Finding such loop invariants in general is undecidable.

Bayesian networks correspond to “simple” probabilistic programs.
Loops in such programs are “data-flow” free.

Their effect can be given as closed-form solution.
This can be done algorithmically.
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Probabilistic Programming Inference by program verification

I.i.d-loops

Loop while(G)P is iid wrt. expectation f whenever:

both wp(P, [G]) and wp(P, [¬G] ⋅ f ) are unaffected by P.

f is unaffected by P if none of f ’s variables are modified by P:

x is a variable of f iff ∃s.∃v , u ∶ f (s[x = v ]) ≠ f (s[x = u])

If g is unaffected by program P, then: wp(P, g ⋅ f ) = g ⋅ wp(P, f )
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Probabilistic Programming Inference by program verification

Example: sampling within a circle

while ((x-5)**2 + (y-5)**2 >= 25){
x := uniform(0..10);
y := uniform(0..10)

}

This program is iid for every f , as both are unaffected by P’s body:

wp(P, [G]) =
48
121 and

wp(P, [¬G]⋅f ) =
1
121

10p

∑
i=0

10p

∑
j=0

[(i/p−5)2 + (j/p−5)2 < 25] ⋅ f (x/(i/p), y/(j/p))
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Probabilistic Programming Inference by program verification

Weakest precondition of iid-loops

If while(G)P is iid for expectation f , it holds for every state s:

wp(while(G)P, f )(s) = [G](s) ⋅ wp(P, [¬G]⋅f )(s)
1 − wp(P, [G])(s) + [¬G](s) ⋅ f (s)

where we let 0
0 = 0.

Proof: use wp(whilen(G)P, f ) = [G] ⋅ wp(P, [¬G]⋅f ) ⋅
n−2

∑
i=0

(wp(P, [G])i ) + [¬G] ⋅ f

No loop invariant or martingale needed. Fully automatable.
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Probabilistic Programming How long to sample a Bayesian network?

How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

“the main challenge in this setting [sampling-based approaches] is that many
samples that are generated during execution are ultimately rejected for not
satisfying the observations."
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Probabilistic Programming How long to sample a Bayesian network?

Recall: Rejection sampling

For a given Bayesian network and some evidence:

1. Sample from the joint distribution described by the BN
2. If the sample complies with the evidence, accept the sample and halt
3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Q: How many samples do we need on average for a single iid-sample?
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Probabilistic Programming How long to sample a Bayesian network?

Sampling time of a toy Bayesian network

This BN is parametric (in a)

How many samples are needed on average
for a single iid-sample for evidence G = 0?
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Probabilistic Programming How long to sample a Bayesian network?

Sampling time for example BN

Rejection sampling for G = 0 requires 200a2 − 40a − 460
89a2 − 69a − 21

samples:

For a ∈ [0.1, 0.78], < 18 samples; for a ≥ 0.98, 100 samples are needed

For real-life BNs, one may exceed 1015 (or more) samples
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Probabilistic Programming How long to sample a Bayesian network?

Deriving sampling times via expected runtimes
Let ert() ∶ pGCL → (T → T) where:

▶ ert(P, t)(s) is the expected runtime of P on input state s if t captures
the runtime of computation following P.

▶ ert(P, 0)(s) is the expected runtime of P on input state s.
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Probabilistic Programming How long to sample a Bayesian network?

Expected runtime transformer

Syntax

▶ skip

▶ diverge

▶ x := E

▶ P1 ; P2

▶ if (G) P1 else P2

▶ P1 [p] P2

▶ while(G)P

Semantics ert(P, t)

▶ 1+t
▶ ∞

▶ 1 + t[x ∶= E ]
▶ ert(P1, ert(P2, t))
▶ 1 + [G] ⋅ ert(P1, t) + [¬G] ⋅ ert(P2, t)
▶ 1 + p ⋅ ert(P1, t) + (1−p) ⋅ ert(P2, t)
▶ lfpX . 1 + ([G] ⋅ ert(P,X ) + [¬G] ⋅ t)

lfp is the least fixed point operator wrt. the ordering ≤ on runtimes

Joost-Pieter Katoen Probabilistic Programming 26/34

Probabilistic Programming How long to sample a Bayesian network?

Decomposition

Decomposition theorem
For every pGCL program P and expectation f :

ert(P, f ) = ert(P, 0) + wp(P, f )
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Probabilistic Programming How long to sample a Bayesian network?

Expected runtime of iid-loops

For a.s.-terminating iid-loop while(G)P for which every iteration runs in
the same expected time, we have:

ert(while(G)P, t) = 1 + [G] ⋅ 1 + ert(P, [¬G]⋅t)
1 − wp(P, [G]) + [¬G](s) ⋅ t

where 0/0 ∶= 0 and a/0 ∶=∞ for a ≠ 0.

Proof: similar as for the inference (wp) using the decomposition result:
ert(P, t) = ert(P, 0) + wp(P, t)

No loop invariant needed. Fully automatable.
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Probabilistic Programming How long to sample a Bayesian network?

Example: sampling within a circle

while ((x-5)**2 + (y-5)**2 >= 25){
x := uniform(0..10);
y := uniform(0..10)

}

This iid-loop is a.s.-terminating, and every iteration has same expected time.

Then: ert(Pcircle , 0) = 1 + [(x−5)2 + (y−5)2 ≥ 25] ⋅ 36373
So: 1 + 363/73 ≈ 5.97 operations are required on average using rejection sampling
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Probabilistic Programming How long to sample a Bayesian network?

Sample times of BN programs

Every BN-program is iid for every f , is almost surely terminating, and every
loop-iteration takes on average equally long.

This enables determining the exact expected sampling times of BNs
in a fully automated manner.

But: BN-programs may be not positively a.s.-terminating
This holds for ill-conditioned BNs.

The evidence(s) in such BNs are occurring with probability zero.
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Probabilistic Programming How long to sample a Bayesian network?

The student’s mood example

ert(repeat D; P; G; M until (P=1)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

program of student mood’s BN
, 0) =

1 + ert(D; P; G ; M, 0)
wp(D; P; G ; M, [P = 1]) ≈ 23.46
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Probabilistic Programming How long to sample a Bayesian network?

Experimental results
Benchmark BNs from www.bnlearn.com

BN ∣V ∣ ∣E ∣ aMB ∣E∣ EST time (s) ∣E∣ EST time (s)
hailfinder 56 66 3.54 5 5 105 0.63 9 9 106 0.46

hepar2 70 123 4.51 1 1.5 102 1.84 2 — MO

win95pts 76 112 5.92 3 4.3 105 0.36 12 4 107 0.42

pathfinder 135 200 3.04 3 2.9 104 31 7 ∞ 5.44

andes 223 338 5.61 3 5.2 103 1.66 7 9 104 0.99

pigs 441 592 3.92 1 2.9 103 0.74 7 1.5 106 1.02

munin 1041 1397 3.54 5 ∞ 1.43 10 1.2 1018 65

aMB = average Markov Blanket size, a measure of independence in BNs

The last column is the analysis time of ert-analysis of the BN-program.
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Probabilistic Programming How long to sample a Bayesian network?

Printer troubleshooting in Windows 95

Java implementation executes about 107 steps in a single second
For ∣E∣ = 17, an EST of 1015 yields 3.6 years simulation for a single iid-sample
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Probabilistic Programming How long to sample a Bayesian network?

Take-home messages
▶ Bayesian networks are directed acyclic graphs of random variables

▶ Inference of conditional probabilities on BNs is NP-hard

▶ BNs are probabilistic programs with “data-flow”-free loops

▶ No loop invariants are needed to reason about BN programs

▶ Wp-reasoning can do inference and determines sampling times

▶ . . . . . . in a fully automated manner.

Written exam: February 25, 2019 (10–12:00) and March 27, 2019 (10–12:00)
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