Probabilistic Programming

Probabilistic Programming

Lecture #16-+#17: Expected Runtime Analysis

Joost-Pieter Katoen

: Software Modeling

‘ Bl and Verification Chair

RWTH Lecture Series on Probabilistic Programming 2018

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Motivation

Overview

© Motivation

Overview

© Motivation

@ An unsound approach

© The expected runtime transformer

@ Properties

© Proof rules for runtimes of loops

@ Proving positive almost-sure termination

@ Case studies

Joost-Pieter Katoen Probabilistic Programming 2/50
Probabilistic Programming Motivation

The runtime of a probabilistic program

The runtime of a probabilistic program depends
on the input and

on the internal randomness of the program.

Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Motivation

The runtime of a probabilistic program is random

int i := 0;
repeat {i++; (c := false [0.5] c

until (c)

:= true)}

Program Runtime

Program Output
o’ Distribution

Probability
Probability

1 2 3 4 5 Output 3 5 7 9 11 Run-Time

The expected runtime is 1+ 3-1/2 + 6-1/a + ... (3n+1)-1/2" = 5.

Probabilistic Programming

Probabilistic Programming Motivation

Expected runtimes

Expected run-time of program P on input s:

“P terminates after

o0
i-Pr| . . "
Zl | steps on Input s

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Motivation

Efficiency of randomised algorithms

Quicksort: Randomised Quicksort:

rQs(a) =

Qs(a) =
|A] <= 1 { return A; }

if |Al <= 1 { return A; } if

i := ceil(|Al/2); ;)
’ := Unif[1...[|Al];

A< i={ain Al a <ALl A< -]{1;11 i[n A : z|1]< A[il};

B=fainldla>Alilk > ={ain A | a> Alil};

return QS(A<) ++ A[i] ++ QS(A>) return rQS(A<) ++ A[i] ++ rQS(A>)

Worst case complexity: Worst case complexity:

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Motivation

Coupon collector’s problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

by
P. ERDOS and A. RENYI -
0 \
20
ﬁ{)

400

ast S
a\\B ‘“\a)
couw®® N“wwﬂozéﬂ“@ﬁ

o0 L 2

Probabilistic Programming

Joost-Pieter Katoen
S
nz

Probabilistic Programming Motivation Probabilistic Programming Motivation

Coupon collector’s problem Closest-pair problem

cp := [0,...,0]; // no coupons yet) . '
i :=1; // coupon to be collected next Lt t . .
x := 0: // number of coupons collected e . .
while (x < N) { . to.
while (cp[i] !'= 0) { .t ..
i := uniform(1..N) // nezt coupon .
3

cplil :=1; // coupon i obtained
x++; // one coupon less to go

}

Closest-pair problem: find two distinct points u, v € R? among N points in the
plane that minimise the Euclidean distance among all pairs of these points.

The expected runtime of this program is in (- log N). A naive deterministic approach takes O(N°). More efficient version in O(N-log N).

Rabin’s randomised algorithm has an expected runtime in O(N).

Joost-Pieter Katoen

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Motivation Probabilistic Programming Motivation

Randomised primality test Some primality tests

Problem: is N prime or not? > Fermat primality Fest: . N-1 . .
Select a € Z relative prime to N. If a mod N # 1, then N is composite.
» Rabin-Miller test:
Select 0 < a< N. Let 2°-d = N—1 where d is odd. If a° # 1 (mod N) and

Basic structure of a randomised primality test:

1. Randomly pick a number a, say

2"-d . .
2. Do the primality test: Check some equality involving a and N a~ " #-1(mod N) for all 0 < r < s—1, then N is composite.
3. If equality fails, N is composite (with witness a) > Solovay and Strassen test:
. N-1/> . .
4. Otherwise repeat the process. For N odd, pick a< N. If a Fooo , then N is composite.

If after K > 0 iterations, N is not found to be composite, then N is

Adleman and Huang (1992) provided a randomised primality test that terminates
probably prime.

. 1
with expected polynomial runtime and certainly provides the correct answer.

"Decision problems with this characteristic constitute the complexity class ZPP

(zero-error probabilistic polynomial time).

Joost-Pieter Katoen Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming

The aim of this lecture Proving positive almost-sure termination

» What? AST+termination in finite expected time

. » Generalise. How?
A wp-calculus to reason about runtimes at the source code level.

» Provide an weakest-precondition calculus
No “descend” into the underlying probabilistic model. > for expected runtimes

The calculus should be compositional.
» Why?
» Reason about the efficiency of randomised algorithms

» Reason about simulation efficiency of Bayesian networks
» |Is compositional and reasons at the program’'s code

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Hurdles in runtime analysis Overview

1. Programs may admit diverging runs while still having a finite

expected runtime © An unsound approach

while (x > 0) { x—- [1/2] skip }
admits a diverging run but has expected runtime O(x).
2. Having a finite expected time is not compositional w.r.t. sequencing
3. Expected runtimes are extremely sensitive to variations in probabilities
while (x > 0) { x—- [1/2+p] x++ } // 0 <= p <= 1/2

» For p=0, the expected runtime is infinite.
» For arbitrary small p > 0, the expected runtime is 1/2-p-x, linear in x.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming An unsound approach Probabilistic Programming An unsound approach

Re-use weakest preconditions?

Consider the program P:

Idea: equip the program with a counter rc

and use standard wp-reasoning to determine its expected value.
x :=1;

while (x > 0) { x := 0 [1/2] skip }

Determine wp(P, rc) for program P.

Equipping P with a runtime counter yields P,.:

x :=1; rc := 0;
while (x > 0) { rc++; (x := 0 [1/2] skip) }
Dexter Kozen
A probabilistic PDL It follows ®(/) < [for I =rc+[x>0]-2.

1983
In total, we thus obtain wp(P,., rc) = 2.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Joost-Pieter Katoen
Probabilistic Programming An unsound approach Probabilistic Programming The expected runtime transformer

An example

Consider the program Q:

X :=1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }

© The expected runtime transformer

Equipping @ with a runtime counter yields Q,:

x :=1; rc := 0;
while (x > 0) {
rc++;
(x := 0 [1/2] while(true) { rc++ ; skip})
+
As wp(inner loop, f) = 0 for every f, it follows ®o_ < ®p_.

Thus, g (/) < ®p (/) < I for | =rc+[x>0]-2.

This contradicts the fact that the true expected runtime of Q is co.
Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming

Joost-Pieter Katoen

The basic idea Runtimes

e rd)1pGCL = (7) where

A expectation f :S - Ry U {00}
» ert(P, t)(s) is the expected runtime of P on input state s

if t captures the runtime of the computation following P. Let E be the set of all expectations and let E be defined for f, g € E by:

» ert(P, 0)(s) is the expected runtime of P on input state s. PRz Temdoiy ¥ S SaE) feralls R

tP(et(P](0) P en[P(0) Py 0

— ~_ A runtime t:S - RygU {00 }.
Let T denote the set of all runtimes and let < be defined for t, u € T by:
t[Py: P,] (0 time needed time needed _ _
ert[Pr; P21 (0) after executing Py after executing P t<u ifandonlyif t(s)=<u(s) foralls€eS.

A runtime transformer is defined in a similar way as an expectation transformer

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

The runtime model Expected runtime transformer for pGCL
e —
We assume the following runtimes: > 14t
. . . . » ski
» Executing a skip-statement takes a single time unit S ~ w9
. > diverge
» Executing an (ordinary or random) assignment takes a single time unit > 1+ t[x:=E]
. . . . > =E -
» Evaluating a guard takes a single time unit *
2 haring @ B Sree T b x e > 14s. [(wvetlslx = vD) e
» Flipping a coin in a probabilistic choice takes a single time unit Q
i L. . > P1 ; P2 > P P
» Sequential composition does not take time ert(Py, ert(P, t))
> if (@OP1else P2 9 1[G ert(Py, t) +[-G]- ert(Py, t)
_ _ » P1 [p] P2 > 1+p-ert(Py,t)+(1-p) - ert(P,, t)
The ert-calculus can be easily adapted to other runtime models. > while(G)P
waile > IfpX. (1+[G]-ert(P,X)+[=G]-t)

Ifp is the least fixed point operator wrt. the ordering < on runtimes

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Examples Overview

@ Properties

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Elementary properties (Positive) almost-sure termination
» Continuity: ert(P, t) is continuous on (T, <)

» Monotonicity: t <t implies ert(P, t) < ert(P, t') For every pGCL program P and input state s:

ert(P,0)(s) < oo implies wp(P,1)(s) = 1
» Constant propagation: ert(P,k +t) =k + ert(P, t) positive a.s-termination on s almost-sure termination on s

. Moreover:

» Preservation of oo: ert(P, 00) = oo

ert(P,0) < oo implies wp(P,1) = 1

—_— —_
» Connection to wp: ert(P, t) = ert(P, 0) + wp(P, t) universal positive a.s-termination universal almost-sure termination
> Affinity: ert(P,a-t+1t) = ert(P,0)+r-ert(P, t)+ert(P, t)

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

A Markov chain perspective on runtimes Example

» Consider ert(P, t) for pCGL program P
» Consider the Markov chain [[P] of program P

» Attach rewards to each Markov chain state in [P J|:

» State (!, s) gets reward t(s)

State (skip, s) gets reward one

State (diverge, s) gets reward oo

State (x := E, s) gets reward one

State (x := u, s) gets reward one

State (if G...,s) gets reward one

State (P[p]Q, s) gets reward one

State (while(G)P'...,s) gets reward one
All other states get reward zero

P N

vV V.V Vv v v Yy

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Correspondence between ert() and Markov chains Backward compatibility

Compatibility theorem

For every pGCL program P and input s: Deterministic programs

ert(P.0)(s) = ER[[P]](s,<>sink) For any GFIL program P, ert(PZO) equaI.s the number of executed
computational steps” of P until P terminates.

In words: the ert(P, 0) for input s equals the expected reward to reach final state

sink in MC [[P]| where reward function r in [[P]| is defined as defined on the

previous slide.

This equals the number of skip statements, guard evaluations and assignments.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proof rules for runtimes of loops Probabilistic Programming Proof rules for runtimes of loops

Reasoning about loops requires — like for wp — invariants.

© Proof rules for runtimes of loops

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Runtime invariants Example

Runtime invariants

Let ®, be the wp-characteristic function of P' = while(G){P} with respect
to post-runtime t € T and let / € T. Then:

1. /s a runtime-superinvariant of P' w.r.t. t iff ®,(/) < /.

2. l'is a runtime-subinvariant of P' w.r.t. t iff I < ®(/).

|
If / is a runtime-superinvariant of while(G){P} with respect to t € T, then:

ert(while(G){P} t) < I

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

A wrong proof rule for lower bonds A counterexample

while (true) { skip [1/2] x++ }

» Characteristic functional F(X)=1+1/2(1+1 + X[x/x+1])
» Least fixed pointis 4 as F(4) =2+ 1/2-4=4

Probabilistic programs do not satisfy: ,
» 4+ 2 is a fixed point of F too:

if | = ®,(/) then | = ert(while(G)P,t).
F(4+2i) = 2+%(4+2i+1) =4+2
These “metering” functions / do work for ordinary programs

Froh I, IJCAR i i i
[Frohn et al., IJCAR 2016] > Thus: 4+2" < F(4+2)but4+2" £ 4 = IfpF

v

In fact, 4 + 2" is a fixed point of F for any c:

F(4+2i+c) _ 2_'_%(4_'_2Hc+1) _ 4+2,-+C

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Runtime w-invariants Lower bounds

Runtime w-invariants Runtime lower bounds

Let n€N, t € T and &, the ert-characteristic function of while(G){P}. If /, is a runtime w-subinvariant of while(G){P} with respect to t, then:
The monotonically increasing3 sequence (/)pen is @ runtime-w-subinvariant supl, < ert{while(G)P, t)
of the loop w.r.t. runtime t iff n

lo £ ®(0) and [/, < D.(/,) forall n.

o Example
In a similar way, runtime w-superinvariants can be defined, but we will not

use them here. Consider the same program as for proving an upper bound on the expected
runtime.

*But not necessarily strictly increasing.

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proving positive almost-sure termination

PAST is not compositional

Proving positive almost-sure termination

Probabilistic Programming

Overview

Consider the two probabilistic programs:

int x := 1;

bool ¢ := true;

while (c) { while (x > 0) {
c := false [0.5] c := true; xX--
X = 2%x ¥

}

Finite termination time

Finite expected termination time

@ Proving positive almost-sure termination
Running the right after the left program

yields an infinite expected termination time

Joost-Pieter Katoen Probabilistic Programming Joost-Pieter Katoen Probabilistic Programming

Proving positive almost-sure termination

Probabilistic Programming

Proving that PAST is not compositional (2)

Proving positive almost-sure termination

Probabilistic Programming

Proving that PAST is not compositional (1)

while (c) { {c := false [0.5] ¢ := true}; x := 2%x};

while (x > 0) { x := x-1 }

while (x > 0) { x := x-1}

It is easy to check that a lower w-invariant is: Template for a lower w-invariant of composed program:
J, =1 4+ [0<x<n]2x + [x=n](2n-1) I, =1+ [c#1]-(1+[x>0]2x) + [c=1]-(a,+ b, -[x > 0]-2x)

on iteration on termination

on termination on iteration

The constraints on being a lower w-invariant yield:

Thus we obtain that:

ay <2 and ayy < 72+1/2:a, and by <0 and b, <145,

Jmul+m<x<dwx+hznﬂmwn)=]A{x>ﬂ2x

is a lower bound on the runtime of the above program.
This admits the solution a, =7 —5/2" and b, = n. Then: lim,_ e I,

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming

Proving positive almost-sure termination

Proving PAST

The ert-transformer enables to prove
that a program is positively almost-surely terminating
in a compositional manner,

although PAST itself is not a compositional property.

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Case studies

Overview

@ Case studies

Joost-Pieter Katoen

Coupon collector’s problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY
by
P. ERDOS and A. RENYI

Y
%0
20
150
A0

)

(o5t

2% ¢ O
o°
oo™ 3220

Joost-Pieter Katoen
o

Probabilistic Programming
Probabilistic Programming

Case studies

Coupon collector’s problem

cp := [0,...,0]; i
while (x < N) {
while (cplil

1; x := 0; // no coupons yet

1=0) {
i := uniform(1..N) // nexzt coupon
}
cplil := 1; // coupon i obtained
xt++; // ome coupon less to go
}

Using the ert-calculus one can prove that:
ert(cpcl,0) = 4+ [N >0]2N-(2+ Hy_1) € O(N-logN)

As Harmonic number Hy_; € ©(log N).
By systematic program verification. Machine checkable.
Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Case studies

Random walk

Using the ert-calculus one can prove that its expected runtime is co.

By systematic formal verification. Machine checkable.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Case studies

Randomised binary search

proc BinSearch {
mid := Unif(left, right); // pick mid uniformly
if (left < right) {
if (A[mid] < val) {
left := min(mid+1, right);
call BinSearch
} else {
if (A[mid] > wval) {
right := max(mid-1, left);
call BinSearch
} else { skip }
} else { skip }
}

Using the ert-calculus one can prove that its expected runtime is ©(log N).

By systematic formal verification. Machine checkable.

Joost-Pieter Katoen Probabilistic Programming

	Motivation
	An unsound approach
	The expected runtime transformer
	Properties
	Proof rules for runtimes of loops
	Proving positive almost-sure termination
	Case studies

