
Probabilistic Programming

Probabilistic Programming
Lecture #16+#17: Expected Runtime Analysis

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/50

Probabilistic Programming

Overview

1 Motivation

2 An unsound approach

3 The expected runtime transformer

4 Properties

5 Proof rules for runtimes of loops

6 Proving positive almost-sure termination

7 Case studies

Joost-Pieter Katoen Probabilistic Programming 2/50

Probabilistic Programming Motivation

Overview

1 Motivation

2 An unsound approach

3 The expected runtime transformer

4 Properties

5 Proof rules for runtimes of loops

6 Proving positive almost-sure termination

7 Case studies

Joost-Pieter Katoen Probabilistic Programming 3/50

Probabilistic Programming Motivation

The runtime of a probabilistic program

The runtime of a probabilistic program depends
on the input and

on the internal randomness of the program.

Joost-Pieter Katoen Probabilistic Programming 4/50



Probabilistic Programming Motivation

The runtime of a probabilistic program is random
int i := 0;
repeat {i++; (c := false [0.5] c := true)}
until (c)

The expected runtime is 1 + 3⋅1/2 + 6⋅1/4 + . . . (3n+1)⋅1/2n
= 5.
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Probabilistic Programming Motivation

Expected runtimes

Expected run-time of program P on input s:
∞

∑
i=1

i ⋅ Pr ( “P terminates after
i steps on input s” )
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Probabilistic Programming Motivation

Efficiency of randomised algorithms
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Probabilistic Programming Motivation

Coupon collector’s problem
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Probabilistic Programming Motivation

Coupon collector’s problem

cp := [0,...,0]; // no coupons yet
i := 1; // coupon to be collected next
x := 0: // number of coupons collected
while (x < N) {

while (cp[i] != 0) {
i := uniform(1..N) // next coupon

}
cp[i] := 1; // coupon i obtained
x++; // one coupon less to go

}

The expected runtime of this program is in Θ(N ⋅ logN).
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Probabilistic Programming Motivation

Closest-pair problem

Closest-pair problem: find two distinct points u, v ∈ R2 among N points in the
plane that minimise the Euclidean distance among all pairs of these points.

A naive deterministic approach takes O(N2). More efficient version in O(N ⋅ logN).

Rabin’s randomised algorithm has an expected runtime in O(N).
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Probabilistic Programming Motivation

Randomised primality test

Problem: is N prime or not?

Basic structure of a randomised primality test:
1. Randomly pick a number a, say
2. Do the primality test: Check some equality involving a and N
3. If equality fails, N is composite (with witness a)
4. Otherwise repeat the process.

If after K > 0 iterations, N is not found to be composite, then N is
probably prime.
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Probabilistic Programming Motivation

Some primality tests

▶ Fermat primality test:
Select a ∈ Z relative prime to N. If aN−1 mod N ≠ 1, then N is composite.

▶ Rabin-Miller test:
Select 0 < a < N. Let 2s ⋅ d = N−1 where d is odd. If ad

≠ 1 (mod N) and
a2r ⋅d

≠ −1 (mod N) for all 0 ≤ r ≤ s−1, then N is composite.
▶ Solovay and Strassen test:

For N odd, pick a < N. If aN−1/2
≠ . . . . . ., then N is composite.

Adleman and Huang (1992) provided a randomised primality test that terminates
with expected polynomial runtime and certainly provides the correct answer.1

1Decision problems with this characteristic constitute the complexity class ZPP
(zero-error probabilistic polynomial time).

Joost-Pieter Katoen Probabilistic Programming 12/50



Probabilistic Programming Motivation

The aim of this lecture

A wp-calculus to reason about runtimes at the source code level.
No “descend” into the underlying probabilistic model.

The calculus should be compositional.
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Probabilistic Programming Motivation

Proving positive almost-sure termination

▶ What? AST+termination in finite expected time

▶ Generalise. How?
▶ Provide an weakest-precondition calculus
▶ . . . . . . for expected runtimes

▶ Why?
▶ Reason about the efficiency of randomised algorithms
▶ Reason about simulation efficiency of Bayesian networks
▶ Is compositional and reasons at the program’s code
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Probabilistic Programming Motivation

Hurdles in runtime analysis

1. Programs may admit diverging runs while still having a finite
expected runtime

while (x > 0) { x-- [1/2] skip }

admits a diverging run but has expected runtime O(x ).
2. Having a finite expected time is not compositional w.r.t. sequencing
3. Expected runtimes are extremely sensitive to variations in probabilities

while (x > 0) { x-- [1/2+p] x++ } // 0 <= p <= 1/2

▶ For p=0, the expected runtime is infinite.
▶ For arbitrary small p > 0, the expected runtime is 1/2⋅p⋅x , linear in x .
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Probabilistic Programming An unsound approach

Re-use weakest preconditions?

Idea: equip the program with a counter rc
and use standard wp-reasoning to determine its expected value.

Determine wp(P, rc) for program P.

Dexter Kozen
A probabilistic PDL

1983
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Probabilistic Programming An unsound approach

An example

Consider the program P:

x := 1;
while (x > 0) { x := 0 [1/2] skip }

Equipping P with a runtime counter yields Prc :

x := 1; rc := 0;
while (x > 0) { rc++; (x := 0 [1/2] skip) }

It follows Φ(I) ≤ I for I = rc + [x > 0] ⋅ 2.
In total, we thus obtain wp(Prc , rc) = 2.
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Probabilistic Programming An unsound approach

An example
Consider the program Q:

x := 1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }

Equipping Q with a runtime counter yields Qrc :
x := 1; rc := 0;
while (x > 0) {

rc++;
(x := 0 [1/2] while(true) { rc++ ; skip})

}

As wp(inner loop, f ) = 0 for every f , it follows ΦQrc ≤ ΦPrc .
Thus, ΦQrc (I) ≤ ΦPrc (I) ≤ I for I = rc + [x > 0] ⋅ 2.

This contradicts the fact that the true expected runtime of Q is ∞.

Joost-Pieter Katoen Probabilistic Programming 19/50
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Probabilistic Programming The expected runtime transformer

The basic idea
Let ert() ∶ pGCL → (T → T) where:

▶ ert(P, t)(s) is the expected runtime of P on input state s
if t captures the runtime of the computation following P.

▶ ert(P, 0)(s) is the expected runtime of P on input state s.
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Probabilistic Programming The expected runtime transformer

Runtimes
Expectations
A expectation f ∶ S → R≥0 ∪ {∞ }.
Let E be the set of all expectations and let ⊑ be defined for f , g ∈ E by:

f ⊑ g if and only if f (s) ≤ g (s) for all s ∈ S.

Runtimes
A runtime t ∶ S → R≥0 ∪ {∞ }.
Let T denote the set of all runtimes and let ≤ be defined for t, u ∈ T by:

t ≤ u if and only if t(s) ≤ u(s) for all s ∈ S.

A runtime transformer is defined in a similar way as an expectation transformer
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Probabilistic Programming The expected runtime transformer

The runtime model

We assume the following runtimes:
▶ Executing a skip-statement takes a single time unit
▶ Executing an (ordinary or random) assignment takes a single time unit
▶ Evaluating a guard takes a single time unit
▶ Flipping a coin in a probabilistic choice takes a single time unit
▶ Sequential composition does not take time

The ert-calculus can be easily adapted to other runtime models.
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Probabilistic Programming The expected runtime transformer

Expected runtime transformer for pGCL

Syntax

▶ skip

▶ diverge

▶ x := E

▶ x :r= mu

▶ P1 ; P2

▶ if (G) P1 else P2

▶ P1 [p] P2

▶ while(G)P

Expected runtime ert(P, t)

▶ 1+t
▶ ∞

▶ 1 + t[x ∶= E ]
▶ 1 + λs.∫

Q
(λv .t(s[x ∶= v ])) dµs

▶ ert(P1, ert(P2, t))
▶ 1 + [G] ⋅ ert(P1, t) + [¬G] ⋅ ert(P2, t)
▶ 1 + p ⋅ ert(P1, t) + (1−p) ⋅ ert(P2, t)
▶ lfpX . (1 + [G] ⋅ ert(P,X ) + [¬G] ⋅ t)

lfp is the least fixed point operator wrt. the ordering ⪯ on runtimes
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Probabilistic Programming The expected runtime transformer

Examples
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Probabilistic Programming Properties

Elementary properties

▶ Continuity: ert(P, t) is continuous on (T,≤)

▶ Monotonicity: t ≤ t ′ implies ert(P, t) ≤ ert(P, t ′)

▶ Constant propagation: ert(P, k + t) = k + ert(P, t)

▶ Preservation of ∞: ert(P,∞) =∞

▶ Connection to wp: ert(P, t) = ert(P, 0) + wp(P, t)

▶ Affinity: ert(P, a ⋅ t + t ′) = ert(P, 0) + r ⋅ ert(P, t) + ert(P, t ′)
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Probabilistic Programming Properties

(Positive) almost-sure termination

For every pGCL program P and input state s:

ert(P, 0)(s) < ∞
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

positive a.s-termination on s

implies wp(P, 1)(s) = 1
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

almost-sure termination on s

Moreover:

ert(P, 0) ≤ ∞
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

universal positive a.s-termination

implies wp(P, 1) = 1
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

universal almost-sure termination
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Probabilistic Programming Properties

A Markov chain perspective on runtimes

▶ Consider ert(P, t) for pCGL program P

▶ Consider the Markov chain [[ P ]] of program P

▶ Attach rewards to each Markov chain state in [[ P ]]:
▶ State ⟨↓, s⟩ gets reward t(s)
▶ State ⟨skip, s⟩ gets reward one
▶ State ⟨diverge, s⟩ gets reward ∞
▶ State ⟨x ∶= E , s⟩ gets reward one
▶ State ⟨x ∶≈ µ, s⟩ gets reward one
▶ State ⟨if G . . . , s⟩ gets reward one
▶ State ⟨P[p]Q, s⟩ gets reward one
▶ State ⟨while(G)P ′

. . . , s⟩ gets reward one
▶ All other states get reward zero

Joost-Pieter Katoen Probabilistic Programming 29/50

Probabilistic Programming Properties

Example
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Probabilistic Programming Properties

Correspondence between ert() and Markov chains

Compatibility theorem
For every pGCL program P and input s:

ert(P, 0)(s) = ER [[ P ]]( s,◇sink )

In words: the ert(P, 0) for input s equals the expected reward to reach final state
sink in MC [[ P ]] where reward function r in [[ P ]] is defined as defined on the
previous slide.
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Probabilistic Programming Properties

Backward compatibility

Deterministic programs
For any GCL program P, ert(P, 0) equals the number of executed
computational steps2 of P until P terminates.

2This equals the number of skip statements, guard evaluations and assignments.
Joost-Pieter Katoen Probabilistic Programming 32/50



Probabilistic Programming Proof rules for runtimes of loops
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Probabilistic Programming Proof rules for runtimes of loops

Loops

Reasoning about loops requires — like for wp — invariants.
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Probabilistic Programming Proof rules for runtimes of loops

Runtime invariants

Runtime invariants
Let Φt be the wp-characteristic function of P ′

= while(G){P} with respect
to post-runtime t ∈ T and let I ∈ T. Then:
1. I is a runtime-superinvariant of P ′ w.r.t. t iff Φt (I) ≤ I.
2. I is a runtime-subinvariant of P ′ w.r.t. t iff I ≤ Φt (I).

If I is a runtime-superinvariant of while(G){P} with respect to t ∈ T, then:

ert(while(G){P}, t) ≤ I
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Probabilistic Programming Proof rules for runtimes of loops

Example
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Probabilistic Programming Proof rules for runtimes of loops

A wrong proof rule for lower bonds

Probabilistic programs do not satisfy:
if I ⪯ Φt (I) then I ⪯ ert(while(G) P, t).

These “metering” functions I do work for ordinary programs

[Frohn et al., IJCAR 2016]
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Probabilistic Programming Proof rules for runtimes of loops

A counterexample
while (true) { skip [1/2] x++ }

▶ Characteristic functional F (X ) = 1 + 1/2 (1 + 1 + X [x/x+1])
▶ Least fixed point is 4 as F (4) = 2 + 1/2⋅4 = 4
▶ 4 + 2i is a fixed point of F too:

F (4 + 2i ) = 2 + 1
2 (4 + 2i+1) = 4 + 2i

▶ Thus: 4 + 2i
⪯ F (4 + 2i ) but 4 + 2i /⪯ 4 = lfp F

▶ In fact, 4 + 2i+c is a fixed point of F for any c:

F (4 + 2i+c ) = 2 + 1
2 (4 + 2i+c+1) = 4 + 2i+c
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Probabilistic Programming Proof rules for runtimes of loops

Runtime ω-invariants

Runtime ω-invariants
Let n ∈ N, t ∈ T and Φt the ert-characteristic function of while(G){P}.
The monotonically increasing3 sequence (I)n∈N is a runtime-ω-subinvariant
of the loop w.r.t. runtime t iff

I0 ≤ Φt (0) and In+1 ≤ Φt (In) for all n.

In a similar way, runtime ω-superinvariants can be defined, but we will not
use them here.

3But not necessarily strictly increasing.
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Probabilistic Programming Proof rules for runtimes of loops

Lower bounds

Runtime lower bounds
If In is a runtime ω-subinvariant of while(G){P} with respect to t, then:

sup
n

In ≤ ert(while(G) P, t)

Example
Consider the same program as for proving an upper bound on the expected
runtime.
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Probabilistic Programming Proving positive almost-sure termination

PAST is not compositional

Consider the two probabilistic programs:

int x := 1;
bool c := true;
while (c) {

c := false [0.5] c := true;
x := 2*x

}

Finite expected termination time

while (x > 0) {
x--

}

Finite termination time

Running the right after the left program
yields an infinite expected termination time
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Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (1)

while (x > 0) { x := x-1 }

It is easy to check that a lower ω-invariant is:

Jn = 1 + [0 < x < n]⋅2x
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
on iteration

+ [x ≥ n]⋅ (2n−1)
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
on termination

Thus we obtain that:

lim
n→∞

(1 + [0 < x < n]⋅2x + [x ≥ n]⋅(2n−1)) = 1 + [x > 0]⋅2x

is a lower bound on the runtime of the above program.
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Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (2)

while (c) { {c := false [0.5] c := true}; x := 2*x};
while (x > 0) { x := x-1 }

Template for a lower ω-invariant of composed program:

In = 1 + [c ≠ 1] ⋅ (1 + [x > 0]⋅2x )
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

on termination
+ [c = 1] ⋅ (an + bn ⋅ [x > 0]⋅2x )

ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
on iteration

The constraints on being a lower ω-invariant yield:

a0 ≤ 2 and an+1 ≤ 7/2 + 1/2⋅an and b0 ≤ 0 and bn+1 ≤ 1 + bn

This admits the solution an = 7 − 5/2n and bn = n. Then: limn→∞ In = ∞.
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Probabilistic Programming Proving positive almost-sure termination

Proving PAST

The ert-transformer enables to prove
that a program is positively almost-surely terminating

in a compositional manner,
although PAST itself is not a compositional property.
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Probabilistic Programming Case studies

Coupon collector’s problem
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Probabilistic Programming Case studies

Coupon collector’s problem

cp := [0,...,0]; i := 1; x := 0; // no coupons yet
while (x < N) {

while (cp[i] != 0) {
i := uniform(1..N) // next coupon

}
cp[i] := 1; // coupon i obtained
x++; // one coupon less to go

}

Using the ert-calculus one can prove that:

ert(cpcl, 0) = 4 + [N > 0]⋅2N ⋅ (2 + HN−1) ∈ Θ(N ⋅ logN)

As Harmonic number HN−1 ∈ Θ(logN).
By systematic program verification. Machine checkable.
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Probabilistic Programming Case studies

Random walk

Using the ert-calculus one can prove that its expected runtime is ∞.

By systematic formal verification. Machine checkable.
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Probabilistic Programming Case studies

Randomised binary search
proc BinSearch {
mid := Unif(left, right); // pick mid uniformly
if (left < right) {

if (A[mid] < val) {
left := min(mid+1, right);
call BinSearch

} else {
if (A[mid] > val) {
right := max(mid-1, left);
call BinSearch

} else { skip }
} else { skip }

}

Using the ert-calculus one can prove that its expected runtime is Θ(logN).
By systematic formal verification. Machine checkable.
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