Probabilistic Programming Lecture #13: Hardness of Almost-Sure Termination Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Probabilistic Programming

1 Motivation

2 Nuances of termination

3 Hardness of almost-sure termination

4 Hardness of positive almost-sure termination

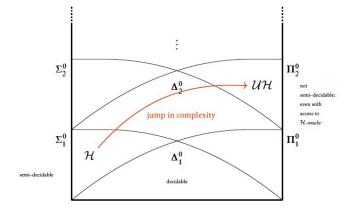
 Joost-Pieter Katoen
 Probabilistic Programming
 1/33

 Probabilistic Programming
 Motivation

 Overview
 Image: Second Secon

Joost-Pieter Katoen Probabilistic Programming 2, Probabilistic Programming Motivation

What we all know about termination


The halting problem — does a program *P* terminate on a given input state *s*? is semi-decidable.

The universal halting problem — does a program *P* terminate on all input states? is undecidable.

Alan Mathison Turing On computable numbers, with an application to the Entscheidungsproblem 1937

Complexity jump for termination

Joost-Pieter Katoen	Probabilistic Programming	5/33
Probabilistic Programming	Motivation	
A radical change		

- A program either terminates or not (on a given input)
- ▶ Terminating programs have a finite run time
- Terminating in finite time is a compositional property
 - All these facts do not hold for probabilistic programs!

What if programs roll dice?

Motivation

Joost-Pieter Katoen	Probabilistic Programming	6/33
Probabilistic Programming	Nuances of termination	
Overview		
1 Motivation		
2 Nuances of termination		
3 Hardness of almost-sure termination		
Hardness of positive almost-sure t	ermination	

Nuances of termination

i := 100; while (i > 0) { i-- }

This program certainly terminates.

Certain termination

robabilistic Programming

Almost-sure termination

For 0 an arbitrary probability:

```
bool c := true;
int i := 0;
while (c) {
    i++;
    (c := false [p] c := true)
}
```

This program does not always terminate. It almost surely terminates.

Joost-Pieter Katoen	Probabilistic Programming	9/33
Probabilistic Programming	Nuances of termination	
Almost-sure termination		
Amost-sure termination		

Do the following programs almost surely terminate?

P := (skip [0.5] call P)

P := (skip [0.5] call P; call P)

P := (skip [0.5] call P; call P; call P)

 Joost-Pieter Katoen
 Probabilistic Programming
 10/33

 Probabilistic Programming
 Nuances of termination

Positive almost-sure termination

For 0 an arbitrary probability:

```
bool c := true;
int i := 0;
while (c) {
    i++;
    (c := false [p] c := true)
}
```

This program almost surely terminates. In finite expected time. Despite its possibility of divergence.

Joost-Pieter Katoen

Null almost-sure termination

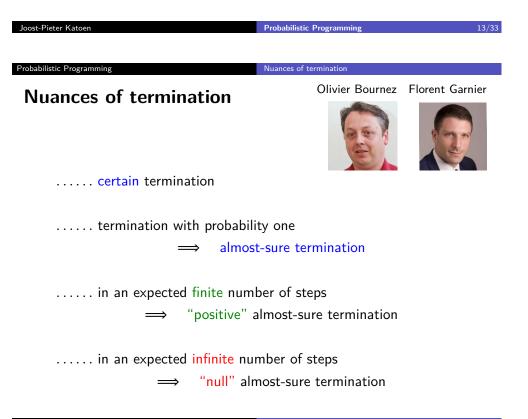
Compositionality

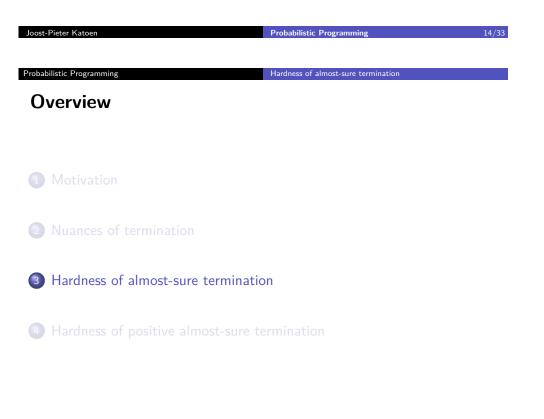
Consider the two probabilistic programs:

Consider the one-dimensional (symmetric) random walk:

Nuances of termination

int x := 10; while (x > 0) { x-- [1/2] x++ }


This program almost surely terminates but requires an infinite expected time to do so.


while (x > 0) {
 x-}

Finite expected termination time

Finite termination time

Running the right after the left program yields an infinite expected termination time

Hardness of almost-sure termination

Computable approximations of such distributions

1. The (sub-)distribution $\llbracket P \rrbracket_s^{=k}$ of pGCL program P over final states on input s after exactly k computation steps is defined by:

$$\llbracket P \rrbracket_{s}^{=k}(t) = \sum_{\sigma \in \Sigma} q \text{ with } \Sigma = \{ \sigma = \langle \downarrow, t, k, \theta, q \rangle \mid \langle P, s, 0, \varepsilon, 1 \rangle \rightarrow^{*} \sigma \}$$

 The k-the approximation of the weakest pre-expectation wp(P, f) is defined by:

$$wp(P, f)^{=k}(s) = \sum_{t \in \Sigma_P} [P]_s^{=k}(t) \cdot f(t)$$

3. The computable weakest pre-expectations are defined by:

$$wp(P, f)(s) = \sum_{k=0}^{\infty} wp(P, f)^{=k}(s)$$

Joost-Pieter Katoen

obabilistic Programmir

Hardness of almost-sure termination

Probabilistic Programm

Hardness of almost-sure termination

The decision problems AST and UAST

Let *P* be a pGCL program, $s \in \mathbb{S}$ a variable valuation. Then:

 $(P, s) \in AST$ iff wp(P, 1)(s) = 1 $P \in UAST$ iff $\forall s \in \mathbb{S}. (P, s) \in AST$

Hardness of almost-sure termination

AST and UAST are both Π_2 -complete.

Proof.

For AST on the black board. UAST: straightforward from the definition of UAST and the fact that AST is Π_2 -complete.

Almost-sure termination

Similar to the halting H and the universal halting problem UH, we define the decision problems AST and UAST

The decision problems $\ensuremath{\mathsf{AST}}$ and $\ensuremath{\mathsf{UAST}}$

Let *P* be a pGCL program, $s \in S$ a variable valuation. Then:

 $(P, s) \in AST \quad \text{iff} \quad wp(P, \mathbf{1})(s) = \mathbf{1}$ $P \in UAST \quad \text{iff} \quad \forall s \in \mathbb{S}. (P, s) \in AST$

Examples

The geometric distribution program $\in UAST$, one-dimensional symmetric random walk $\in UAST$, one-dimensional asymmetric random walk $\notin UAST$, but for input 0 is in *AST*.

```
loost-Pieter Katoen
```

Probabilistic Programming

18/33

Probabilistic Programming

Hardness of almost-sure termination

Interpreting this hardness result

Deciding almost-sure termination of a probabilistic program for a single input

is as hard as

deciding termination of an ordinary program for all inputs

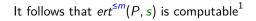
is as hard as

deciding almost-sure termination of a probabilistic program for all inputs.

robabilistic Programming	Hardness of positive almost-sure termination
1 Motivation	
2 Nuances of termination	
3 Hardness of almost-sure te	ermination
4 Hardness of positive almost almost end of the second	st-sure termination

Probabilistic Programming

Hardness of positive almost-sure termination


Computable approximations of expected run-times

The expected run-time of a program in k steps

The expected run-time of pGCL program P running on input state s for at most m steps is defined by:

$$ert^{\leq m}(P,s) = \sum_{k=1}^{m} \left(1 - \sum_{\langle \downarrow, \dots, q \rangle \in \mathbb{C}^{\leq k}} q\right)$$

where $\mathbb{C}^{<k}$ is the set of final configurations that can be reached in less than k steps by running P on input state s.

Moreover, we have:
$$ert(P, s) = \sup_{m \in \mathbb{N}} ert^{\leq m}(P, s)$$

Probabilistic Programming

¹due to the Kleene Normal Form Theorem.

Joost-Pieter Katoen

The expected run-time of a program

The expected run-time of a program

The expected run-time of pGCL program P on input state s is defined by:

$$ert(P,s) = \sum_{k=1}^{\infty} \left(1 - \sum_{\langle \downarrow, \dots, q \rangle \in \mathbb{C}^{$$

where $\mathbb{C}^{<k}$ is the set of final configurations that can be reached in less than k steps by running P on input state s:

$$\mathbb{C}^{$$

Probabilistic Programmi

Hardness of positive almost-sure termination

Positive almost-sure termination

The decision problems PAST and UPAST

Let *P* be a pGCL program, $s \in S$ a variable valuation. Then:

 $(P, s) \in PAST$ iff $ert(P, s) < \infty$ $P \in UPAST$ iff $\forall s \in \mathbb{S}. (P, s) \in PAST$

It follows that $PAST \subsetneq AST$ and $UPAST \subsetneq UAST$.

Joost-Pieter Katoen

Probabilistic Programmi

Hardness of positive almost-sure termination

Positive almost-sure termination

Hardness of positive almost-sure termination

- 1. *PAST* is Σ_2 -complete.
- 2. UPAST is Π_3 -complete.

Proof.

Joost-Pieter Katoen

robabilistic Programming

Let's start simple

- 1. $PAST \in \Sigma_2$: on black board; Σ_2 -hardness: sketch on next slides.
- 2. See the lecture notes (on the web page).

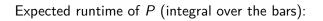
Proof idea: hardness of positive as-termination

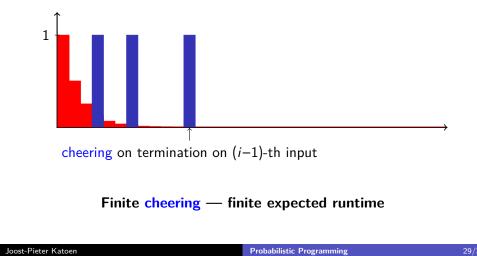
Reduction from the complement of the universal halting problem

For an ordinary program Q, provide a probabilistic program P (depending on Q) and an input *s*, such that

P terminates in a finite expected number of steps on sif and only if Q does not terminate on some input

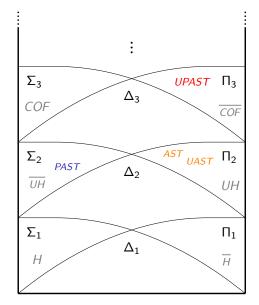
Probabilistic Programming 25/33	Joost-Pieter Katoen Probabilistic Programming 26/
Hardness of positive almost-sure termination	Probabilistic Programming Hardness of positive almost-sure termination
simple	Reducing an ordinary program to a probabilistic one
<pre>bool c := true; int nrflips := 0; while (c) {</pre>	Assume an enumeration of all inputs for Q is given
<pre>while (c) { nrflips++; (c := false [0.5] c := true); }</pre>	<pre>bool c := true; int nrflips := 0; int i := 0; while (c) {</pre>
Expected runtime (integral over the bars):	<pre>// simulate Q for one (further) step on its i-th input if (Q terminates on its i-th input) { cheer; // take 2^{nrflips} effectless steps i++;</pre>
	<pre>// reset simulation of program Q } nrflips++; (c := false [0.5] c := true);</pre>
►	$}$ <i>P</i> looses interest in further simulating <i>Q</i> by a coin flip to decide for termination.

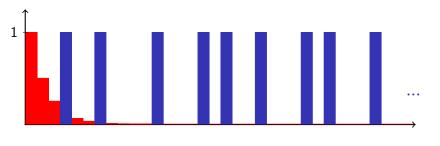

The nrflips-th iteration takes place with probability $1/2^{nrflips}$.


1

Hardness of positive almost-sure termination

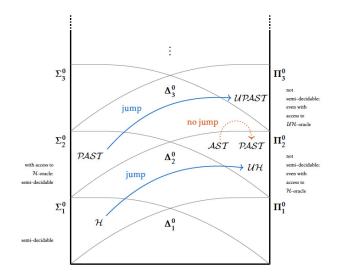
Q does not always halt


Let i be the first input for which Q does not terminate.


Probabilistic Programming

Hardness of almost sure termination

Q terminates on all inputs


Expected runtime of *P* (integral over the bars):

Infinite cheering — infinite expected runtime

Joost-Pieter Katoen	Probabilistic Programming	30/33
Probabilistic Programming	Hardness of positive almost-sure termination	

Complexity landscape

Hardness of positive almost-sure terminatior

Hardness of positive almost-sure termination

Interpretation of these results

There is a complexity gap between termination on one or all inputs

but not

between almost-sure termination on one or all inputs

but again

between positive almost-sure termination on one or all inputs

Joost-Pieter Katoen

Probabilistic Programming

33/3