
Probabilistic Programming

Probabilistic Programming
Lecture #13: Hardness of Almost-Sure Termination

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/33

Probabilistic Programming

Overview

1 Motivation

2 Nuances of termination

3 Hardness of almost-sure termination

4 Hardness of positive almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 2/33

Probabilistic Programming Motivation

Overview

1 Motivation

2 Nuances of termination

3 Hardness of almost-sure termination

4 Hardness of positive almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 3/33

Probabilistic Programming Motivation

What we all know about termination

The halting problem
— does a program P terminate on a given input state s? —

is semi-decidable.

The universal halting problem
— does a program P terminate on all input states? —

is undecidable.

Alan Mathison Turing
On computable numbers,

with an application to the Entscheidungsproblem
1937

Joost-Pieter Katoen Probabilistic Programming 4/33

Probabilistic Programming Motivation

Complexity jump for termination

Joost-Pieter Katoen Probabilistic Programming 5/33

Probabilistic Programming Motivation

What if programs roll dice?

Joost-Pieter Katoen Probabilistic Programming 6/33

Probabilistic Programming Motivation

A radical change

▶ A program either terminates or not (on a given input)

▶ Terminating programs have a finite run time

▶ Terminating in finite time is a compositional property

All these facts do not hold for probabilistic programs!

Joost-Pieter Katoen Probabilistic Programming 7/33

Probabilistic Programming Nuances of termination

Overview

1 Motivation

2 Nuances of termination

3 Hardness of almost-sure termination

4 Hardness of positive almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 8/33

Probabilistic Programming Nuances of termination

Certain termination

i := 100; while (i > 0) { i-- }

This program certainly terminates.

Joost-Pieter Katoen Probabilistic Programming 9/33

Probabilistic Programming Nuances of termination

Almost-sure termination

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program does not always terminate. It almost surely terminates.

Joost-Pieter Katoen Probabilistic Programming 10/33

Probabilistic Programming Nuances of termination

Almost-sure termination

Do the following programs almost surely terminate?

P := (skip [0.5] call P)

P := (skip [0.5] call P; call P)

P := (skip [0.5] call P; call P; call P)

Joost-Pieter Katoen Probabilistic Programming 11/33

Probabilistic Programming Nuances of termination

Positive almost-sure termination

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program almost surely terminates. In finite expected time.
Despite its possibility of divergence.

Joost-Pieter Katoen Probabilistic Programming 12/33

Probabilistic Programming Nuances of termination

Null almost-sure termination

Consider the one-dimensional (symmetric) random walk:

int x := 10; while (x > 0) { x-- [1/2] x++ }

This program almost surely terminates
but requires an infinite expected time to do so.

Joost-Pieter Katoen Probabilistic Programming 13/33

Probabilistic Programming Nuances of termination

Compositionality

Consider the two probabilistic programs:

int x := 1;
bool c := true;
while (c) {

c := false [0.5] c := true;
x := 2*x

}

Finite expected termination time

while (x > 0) {
x--

}

Finite termination time

Running the right after the left program
yields an infinite expected termination time

Joost-Pieter Katoen Probabilistic Programming 14/33

Probabilistic Programming Nuances of termination

Nuances of termination Olivier Bournez Florent Garnier

. certain termination

. termination with probability one
⟹ almost-sure termination

. in an expected finite number of steps
⟹ “positive” almost-sure termination

. in an expected infinite number of steps
⟹ “null” almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 15/33

Probabilistic Programming Hardness of almost-sure termination

Overview

1 Motivation

2 Nuances of termination

3 Hardness of almost-sure termination

4 Hardness of positive almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 16/33

Probabilistic Programming Hardness of almost-sure termination

Computable approximations of such distributions

1. The (sub-)distribution [[P]]=k
s of pGCL program P over final states on

input s after exactly k computation steps is defined by:

[[P]]=k
s (t) = ∑

σ∈Σ
q with Σ = {σ = ⟨↓, t, k, θ, q⟩ ∣ ⟨P, s, 0, ε, 1⟩ →∗

σ }

2. The k-the approximation of the weakest pre-expectation wp(P, f) is
defined by:

wp(P, f)=k (s) = ∑
t∈ΣP

[[P]]=k
s (t) ⋅ f (t)

3. The computable weakest pre-expectations are defined by:

wp(P, f)(s) =

∞

∑
k=0

wp(P, f)=k (s)

Joost-Pieter Katoen Probabilistic Programming 17/33

Probabilistic Programming Hardness of almost-sure termination

Almost-sure termination

Similar to the halting H and the universal halting problem UH,
we define the decision problems AST and UAST

The decision problems AST and UAST
Let P be a pGCL program, s ∈ S a variable valuation. Then:

(P, s) ∈ AST iff wp(P, 1)(s) = 1
P ∈ UAST iff ∀s ∈ S. (P, s) ∈ AST

Examples
The geometric distribution program ∈ UAST , one-dimensional symmetric random
walk ∈ UAST , one-dimensional asymmetric random walk /∈ UAST , but for input
0 is in AST .

Joost-Pieter Katoen Probabilistic Programming 18/33

Probabilistic Programming Hardness of almost-sure termination

Hardness of almost-sure termination

The decision problems AST and UAST
Let P be a pGCL program, s ∈ S a variable valuation. Then:

(P, s) ∈ AST iff wp(P, 1)(s) = 1
P ∈ UAST iff ∀s ∈ S. (P, s) ∈ AST

Hardness of almost-sure termination
AST and UAST are both Π2-complete.

Proof.
For AST on the black board. UAST : straightforward from the definition
of UAST and the fact that AST is Π2-complete.

Joost-Pieter Katoen Probabilistic Programming 19/33

Probabilistic Programming Hardness of almost-sure termination

Interpreting this hardness result

Deciding almost-sure termination of a probabilistic program
for a single input
is as hard as

deciding termination of an ordinary program for all inputs
is as hard as

deciding almost-sure termination of a probabilistic program
for all inputs.

Joost-Pieter Katoen Probabilistic Programming 20/33

Probabilistic Programming Hardness of positive almost-sure termination

Overview

1 Motivation

2 Nuances of termination

3 Hardness of almost-sure termination

4 Hardness of positive almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 21/33

Probabilistic Programming Hardness of positive almost-sure termination

The expected run-time of a program

The expected run-time of a program
The expected run-time of pGCL program P on input state s is defined by:

ert(P, s) =

∞

∑
k=1

(1 − ∑
⟨↓,...,q⟩∈C<k

q)

where C<k is the set of final configurations that can be reached in less
than k steps by running P on input state s:

C<k
= {σ = ⟨↓, t, n, θ, q⟩ ∣ ⟨P, s, 0, ε, 1⟩ →∗

σ and n < k }

Joost-Pieter Katoen Probabilistic Programming 22/33

Probabilistic Programming Hardness of positive almost-sure termination

Computable approximations of expected run-times
The expected run-time of a program in k steps
The expected run-time of pGCL program P running on input state s for at
most m steps is defined by:

ert≤m(P, s) =

m
∑
k=1

(1 − ∑
⟨↓,...,q⟩∈C<k

q)

where C<k is the set of final configurations that can be reached in less
than k steps by running P on input state s.

It follows that ert≤m(P, s) is computable1

Moreover, we have: ert(P, s) = supm∈N ert≤m(P, s)
1due to the Kleene Normal Form Theorem.

Joost-Pieter Katoen Probabilistic Programming 23/33

Probabilistic Programming Hardness of positive almost-sure termination

Positive almost-sure termination

The decision problems PAST and UPAST
Let P be a pGCL program, s ∈ S a variable valuation. Then:

(P, s) ∈ PAST iff ert(P, s) <∞
P ∈ UPAST iff ∀s ∈ S. (P, s) ∈ PAST

It follows that PAST ⊊ AST and UPAST ⊊ UAST .

Joost-Pieter Katoen Probabilistic Programming 24/33

Probabilistic Programming Hardness of positive almost-sure termination

Positive almost-sure termination

Hardness of positive almost-sure termination

1. PAST is Σ2-complete.
2. UPAST is Π3-complete.

Proof.

1. PAST ∈ Σ2: on black board; Σ2-hardness: sketch on next slides.
2. See the lecture notes (on the web page).

Joost-Pieter Katoen Probabilistic Programming 25/33

Probabilistic Programming Hardness of positive almost-sure termination

Proof idea: hardness of positive as-termination

Reduction from the complement of the universal halting problem
For an ordinary program Q, provide a probabilistic program P (depending on Q)
and an input s, such that
P terminates in a finite expected number of steps on s
if and only if
Q does not terminate on some input

Joost-Pieter Katoen Probabilistic Programming 26/33

Probabilistic Programming Hardness of positive almost-sure termination

Let’s start simple
bool c := true;
int nrflips := 0;
while (c) {

nrflips++;
(c := false [0.5] c := true);

}

Expected runtime (integral over the bars):

1

The nrflips-th iteration takes place with probability 1/2nrflips.

Joost-Pieter Katoen Probabilistic Programming 27/33

Probabilistic Programming Hardness of positive almost-sure termination

Reducing an ordinary program to a probabilistic one

Assume an enumeration of all inputs for Q is given

bool c := true;
int nrflips := 0;
int i := 0;
while (c) {

// simulate Q for one (further) step on its i-th input
if (Q terminates on its i-th input) {

cheer; // take 2nrflips effectless steps
i++;
// reset simulation of program Q

}
nrflips++;
(c := false [0.5] c := true);

}

P looses interest in further simulating Q by a coin flip to decide for termination.

Joost-Pieter Katoen Probabilistic Programming 28/33

Probabilistic Programming Hardness of positive almost-sure termination

Q does not always halt
Let i be the first input for which Q does not terminate.

Expected runtime of P (integral over the bars):

1

cheering on termination on (i−1)-th input

Finite cheering — finite expected runtime

Joost-Pieter Katoen Probabilistic Programming 29/33

Probabilistic Programming Hardness of positive almost-sure termination

Q terminates on all inputs

Expected runtime of P (integral over the bars):

⋯

1

Infinite cheering — infinite expected runtime

Joost-Pieter Katoen Probabilistic Programming 30/33

Probabilistic Programming Hardness of positive almost-sure termination

Hardness of almost sure termination

Σ1 Π1
∆1

Σ2 Π2
∆2

Σ3 Π3
∆3

⋮

H H

UH UH

COF COF

PAST
AST

UAST

UPAST

Joost-Pieter Katoen Probabilistic Programming 31/33

Probabilistic Programming Hardness of positive almost-sure termination

Complexity landscape

Joost-Pieter Katoen Probabilistic Programming 32/33

Probabilistic Programming Hardness of positive almost-sure termination

Interpretation of these results

There is a complexity gap
between termination on one or all inputs

but not
between almost-sure termination on one or all inputs

but again
between positive almost-sure termination on one or all inputs

Joost-Pieter Katoen Probabilistic Programming 33/33

	Motivation
	Nuances of termination
	Hardness of almost-sure termination
	Hardness of positive almost-sure termination

