
Probabilistic Programming

Probabilistic Programming
Lecture #12: Hardness of Weakest Precondition Reasoning

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/30

Probabilistic Programming

Overview

1 Motivation

2 The arithmetical hierarchy

3 Approximating pre-expectations

Joost-Pieter Katoen Probabilistic Programming 2/30

Probabilistic Programming Motivation

Overview

1 Motivation

2 The arithmetical hierarchy

3 Approximating pre-expectations

Joost-Pieter Katoen Probabilistic Programming 3/30

Probabilistic Programming Motivation

What we all know about termination

The halting problem
— does a program P terminate on a given input state s? —

is semi-decidable.

The universal halting problem
— does a program P terminate on all input states? —

is undecidable.

Alan Mathison Turing
On computable numbers,

with an application to the Entscheidungsproblem
1937

Joost-Pieter Katoen Probabilistic Programming 4/30

Probabilistic Programming Motivation

Aim

Known fact: termination of ordinary programs is undecidable.

Our aim is to classify “how undecidable”
(positive) almost-sure termination is.

(This is the topioc of the next lecture.)

This lecture: how undecidable is it to compute weakest pre-expectations?
Lower bounds, upper bounds, exactly, or whether they are finite or not.

Joost-Pieter Katoen Probabilistic Programming 5/30

Probabilistic Programming The arithmetical hierarchy

Overview

1 Motivation

2 The arithmetical hierarchy

3 Approximating pre-expectations

Joost-Pieter Katoen Probabilistic Programming 6/30

Probabilistic Programming The arithmetical hierarchy

The extended Chomsky hierarchy

Joost-Pieter Katoen Probabilistic Programming 7/30

Probabilistic Programming The arithmetical hierarchy

Undecidable versus decidable problems

How can we categorise the undecidable problems?

Joost-Pieter Katoen Probabilistic Programming 8/30

Probabilistic Programming The arithmetical hierarchy

Kleene and Mostovski

Stephen Kleene (1909–1994)
Andrzej Mostovski (1913–1975)

Joost-Pieter Katoen Probabilistic Programming 9/30

Probabilistic Programming The arithmetical hierarchy

Decision problems as formulas (1)

Idea: classify sets – ought to model decision problems – based on the complexity
of characterising formulas in first-order Peano arithmetic.
Let H be the halting problem. The set H is defined for program P and input
state s by:

(P, s) ∈ H iff ∃k ∈ N.∃s ′ ∈ S.P terminates on input s in k steps in state s ′

or equivalently:

(P, s) ∈ H iff ∃k ∈ N, s ′ ∈ S.ÍÒÒÒÑÒÒÏ
one quantifier

P terminates on input s in k steps in state s ′

H ∈ Σ1 as H can be defined by an existentially quantified formula of one level.
The level indicates the number of required quantifier alternations.
This is not the number of quantifiers as multiple quantifiers of the same type are
contracted into one quantifier.

Joost-Pieter Katoen Probabilistic Programming 10/30

Probabilistic Programming The arithmetical hierarchy

Decision problems as formulas (2)

Let UH be the universal halting problem. The set UH is defined for program P by:

P ∈ UH iff ∀s ∈ S.(P, s) ∈ H.

That is:

P ∈ UH iff ∀s ∈ S.(∃k ∈ N, s ′ ∈ S.P terminates on input s in k steps in state s ′)

UH ∈ Π2 as UH can be defined by a universally quantified formula of two
alternations.

Joost-Pieter Katoen Probabilistic Programming 11/30

Probabilistic Programming The arithmetical hierarchy

The arithmetical (Kleene-Mostovski) hierarchy
▶ Class Σn is defined as:

Σn = {A ∣ A = { x ∣ ∃y1∀y2∃y3 . . .∀/∃yn ∶ (x , y1, . . . , yn) ∈ R }}

where R is a decidable relation.
Example: the halting problem H is in Σ1. It is semi-decidable.

▶ Class Πn is defined as:

Πn = {A ∣ A = { x ∣ ∀y1∃y2∀y3 . . .∀/∃yn ∶ (x , y1, . . . , yn) ∈ R }}

where R is a decidable relation.
Example: the universal halting problem UH is in Π2.

▶ Let ∆n = Σn ∩ Πn. ∆1 is the class of decidable problems.

The arithmetical hierarchy is used to classify the degree of undecidability.

Joost-Pieter Katoen Probabilistic Programming 12/30

Probabilistic Programming The arithmetical hierarchy

The bigger picture
The following inclusion diagram holds (all inclusions are strict):

Σ1 Π1
∆1

Σ2 Π2
∆2

Σ3 Π3
∆3

⋮

H H

UH UH

COF COF

decidable problems

Joost-Pieter Katoen Probabilistic Programming 13/30

Probabilistic Programming The arithmetical hierarchy

Elementary properties
▶ Classes Σ0, ∆0, ∆1 and Π0 coincide: decidable problems

▶ Classes Σn,Πn and ∆n are closed under conjunction and
disjunction;∆n is closed under negation

▶ The classes Σn and Πn are complementary

▶ There is a strict inclusion relation between classes in the hierarchy:

Joost-Pieter Katoen Probabilistic Programming 14/30

Probabilistic Programming The arithmetical hierarchy

Reducibility and completeness [Post 1944]

“Problem A is at least as hard as problem B”

▶ A set A is called arithmetical if A ∈ Γn for some Γ ∈ { Σ,Π,∆ } and
n ∈ N

▶ A ⊆ X is reducible to B ⊆ X , denoted A ≤m B, iff for some
computable function f ∶ X → X it holds:

∀x ∈ X . x ∈ A iff f (x) ∈ B

▶ Decision problem A is Γn-hard for Γ ∈ { Σ,Π,∆ } iff every B ∈ Γn can
be reduced to A.

▶ Decision problem A is Γn-complete if A ∈ Γn and A is Γn-hard.
Joost-Pieter Katoen Probabilistic Programming 15/30

Probabilistic Programming The arithmetical hierarchy

Completeness

Examples

1. The halting problem is Σ1-complete.

2. The universal halting problem is Π2-complete.

3. The co-finiteness problem is Σ3-complete.

4. If problem A is Σn-complete, then its complement is Πn-complete.
Analogous for Πn-complete problems.

Davis’ theorem

1. If problem A is Σn-complete, then A ∈ Σn \ Πn

2. If problem A is Πn-complete, then A ∈ Πn \ Σn

Joost-Pieter Katoen Probabilistic Programming 16/30

Probabilistic Programming The arithmetical hierarchy

Completeness

Problem ⩀ is Σn-complete and hence sits properly at level n in the hierarchy.
It cannot be placed within the shaded area.

All indications in the previous picture of the arithmetical hierarchy are complete.
Joost-Pieter Katoen Probabilistic Programming 17/30

Probabilistic Programming The arithmetical hierarchy

Co-finiteness problem

Co-finiteness problem
The co-finiteness problem is defined by:

P ∈ COF iff { s ∈ S ∣ (P, s) ∈ H } is co-finite

It is the problem of deciding whether the set of inputs on which an
ordinary program P terminates is co-finite.

The COF-problem is Σ3 complete.

Joost-Pieter Katoen Probabilistic Programming 18/30

Probabilistic Programming Approximating pre-expectations

Overview

1 Motivation

2 The arithmetical hierarchy

3 Approximating pre-expectations

Joost-Pieter Katoen Probabilistic Programming 19/30

Probabilistic Programming Approximating pre-expectations

Hardness results in a nutshell

Checking lower bounds on expected outcomes is as hard as the halting problem.

Checking upper bounds is “more undecidable” than the halting problem.
It is as hard as the complement of the universal halting problem.

Determining exact expected outcomes is as hard as the universal halting problem.

Determining whether an expected outcome is finite is as hard as obtaining upper
bounds.

Joost-Pieter Katoen Probabilistic Programming 20/30

Probabilistic Programming Approximating pre-expectations

Hardness of expected outcomes

Σ0
1 Π0

1
∆0

1

Σ0
2 Π0

2
∆0

2

Σ0
3 Π0

3
∆0

3

⋮

H H

UH UH

COF COF

LEXP

semi–decidable

REXP
FEXP EXP

Joost-Pieter Katoen Probabilistic Programming 21/30

Probabilistic Programming Approximating pre-expectations

Extended program configurations
Program configuration
An extended program configuration σ = ⟨P, s, n, θ, q⟩ with:

▶ P is the program left to be executed or, P = ↓

▶ s ∶ Var → Q is the variable valuation
▶ n ∈ Nats is the number of computation steps the program has

executed so far
▶ θ ∈ { L,R }∗ the history of all probabilistic choices made so far
▶ probability q ∈ Q ∩ [0, 1], the probability of reaching configuration σ

if probabilistic choices are resolved according to θ
The initial configuration of program P on input s is ⟨P, s, 0, ε, 1⟩ where ε
denotes the empty history.

The inference rules for pGCL are extended accordingly.

Joost-Pieter Katoen Probabilistic Programming 22/30

Probabilistic Programming Approximating pre-expectations

Distribution over final states

Distribution over final states
The distribution [[P]]s of pGCL program P over final states on input s is
defined by:

[[P]]s (t) = ∑
σ∈Σ

q wheree Σ = {σ = ⟨↓, t, n, θ, q⟩ ∣ ⟨P, s, 0, ε, 1⟩ →∗
σ }

From now on, a pGCL program has no random assignments and no observe-statements.

Joost-Pieter Katoen Probabilistic Programming 23/30

Probabilistic Programming Approximating pre-expectations

Computable approximations of such distributions

1. The (sub-)distribution [[P]]=k
s of pGCL program P over final states on

input s after exactly k computation steps is defined by:

[[P]]=k
s (t) = ∑

σ∈Σ
q with Σ = {σ = ⟨↓, t, k, θ, q⟩ ∣ ⟨P, s, 0, ε, 1⟩ →∗

σ }

2. The k-the approximation of the weakest pre-expectation wp(P, f) is
defined by:

wp(P, f)=k (s) = ∑
t∈ΣP

[[P]]=k
s (t) ⋅ f (t)

3. The computable weakest pre-expectations are defined by:

wp(P, f)(s) =

∞

∑
k=0

wp(P, f)=k (s)

Joost-Pieter Katoen Probabilistic Programming 24/30

Probabilistic Programming Approximating pre-expectations

Decision problems on weakest pre-expectations

The decision problems LEXP, REXP and EXP
Let P be a pGCL program, s ∈ S a variable valuation, q ∈ Q≥0 and
f ∶ S → Q≥0 a computable function. Then:

(P, s, f , q) ∈ LEXP iff q < wp(P, f)(s)
(P, s, f , q) ∈ REXP iff q > wp(P, f)(s)
(P, s, f , q) ∈ EXP iff q = wp(P, f)(s)

Joost-Pieter Katoen Probabilistic Programming 25/30

Probabilistic Programming Approximating pre-expectations

Hardness of computing weakest pre-expectations

(P, s, f , q) ∈ LEXP iff q < wp(P, f)(s)
(P, s, f , q) ∈ REXP iff q > wp(P, f)(s)
(P, s, f , q) ∈ EXP iff q = wp(P, f)(s)

1. LEXP is Σ1-complete, i.e., as hard as the halting problem.
2. REXP is Σ2-complete, i.e., strictly harder than LEXP.
3. EXP is Π2-complete, i.e., as hard as the universal halting problem.

Proof.
On the black board.

Joost-Pieter Katoen Probabilistic Programming 26/30

Probabilistic Programming Approximating pre-expectations

Illustration of formula defining LEXP

Joost-Pieter Katoen Probabilistic Programming 27/30

Probabilistic Programming Approximating pre-expectations

Illustration of formula defining REXP

Joost-Pieter Katoen Probabilistic Programming 28/30

Probabilistic Programming Approximating pre-expectations

Finiteness of weakest pre-expectations

The finiteness decision problem FEXP
Let P be a pGCL program, s ∈ S a variable valuation, and f ∶ S → Q≥0 a
computable function. Then:

(P, s, f) ∈ FEXP iff wp(P, f)(s) < ∞.

FEXP is Σ2-complete, i.e., as hard as the REXP-problem.

Joost-Pieter Katoen Probabilistic Programming 29/30

Probabilistic Programming Approximating pre-expectations

Complexity landscape of weakest pre-expectations

Σ0
1 Π0

1
∆0

1

Σ0
2 Π0

2
∆0

2

Σ0
3 Π0

3
∆0

3

⋮

H H

UH UH

COF COF

LEXP

semi–decidable

REXP
FEXP EXP

Joost-Pieter Katoen Probabilistic Programming 30/30

	Motivation
	The arithmetical hierarchy
	Approximating pre-expectations

