
Probabilistic Programming

Probabilistic Programming
Lecture #10: Conditioning

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/41

Probabilistic Programming

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 2/41

Probabilistic Programming Motivation

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 3/41

Probabilistic Programming Motivation

Bayes’ rule

Joost-Pieter Katoen Probabilistic Programming 4/41

Probabilistic Programming Motivation

Bayes’ rule explained

Joost-Pieter Katoen Probabilistic Programming 5/41

Probabilistic Programming Motivation

Conditioning = learning

Joost-Pieter Katoen Probabilistic Programming 6/41

Probabilistic Programming Motivation

Conditioning in webPPL

Joost-Pieter Katoen Probabilistic Programming 7/41

Probabilistic Programming Observe statements

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 8/41

Probabilistic Programming Observe statements

Conditional probabilistic GCL: cpGCL Syntax

▶ skip empty statement
▶ diverge divergence
▶ x := E assignment
▶ x :r= mu random assignment (x ∶ ≈µ)
▶ observe (G) conditioning
▶ prog1 ; prog2 sequential composition
▶ if (G) prog1 else prog2 choice
▶ prog1 [p] prog2 probabilistic choice
▶ while (G) prog iteration

Conditioning will be the key ingredient to be considered in this lecture.

Joost-Pieter Katoen Probabilistic Programming 9/41

Probabilistic Programming Observe statements

Let’s start simple

x := 0 [0.5] x := 1;
y := -1 [0.5] y := 0;
observe (x+y = 0)

This program blocks two runs as they violate x+y = 0. Outcome:

Pr[x =0, y =0] = Pr[x =1, y =−1] = 1/2

Observations thus normalize the probability of the “feasible” program runs

Joost-Pieter Katoen Probabilistic Programming 10/41

Probabilistic Programming Observe statements

A loopy program
For 0 < p < 1 an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i++;
(c := false [p] c := true)

}
observe (odd(i))

The feasible program runs have a probability ∑N≥0 (1−p)2N ⋅p =
1

2 − p

This program models the distribution:
Pr[i = 2N+1] = (1−p)2N ⋅ p ⋅ (2−p) for N ≥ 0

Pr[i = 2N] = 0

Joost-Pieter Katoen Probabilistic Programming 11/41

Probabilistic Programming Observe statements

A mathematician’s perspective

A geometric distribution with p = 1/2, conditioned on “x is odd”:

Pr(x = N ∣ x is odd) = {
3

2N+1 if N is odd
0 otherwise.

A geometric distribution with p = 1/3, conditioned on “x is odd”:

Pr(x = N ∣ x is odd) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

2N ⋅5
3N+2 if N is odd
0 otherwise.

Joost-Pieter Katoen Probabilistic Programming 12/41

Probabilistic Programming Observe statements

Which program pairs are equivalent?

{ x := 0 [0.5] x := 1 };
observe(x = 1)

{ x := 0; observe(x = 1) }
[0.5]
{ x := 1; observe(x = 1) }

x := 1 [0.5] diverge x := 1 [0.5] observe(false)

int x := 1;
while (x = 1) {

x := 1
}

int x := 1;
while (x = 1) {

x := 1 [0.5] x := 0;
observe (x = 1)

}

Joost-Pieter Katoen Probabilistic Programming 13/41

Probabilistic Programming Operational semantics

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 14/41

Probabilistic Programming Operational semantics

Structural operational semantics: ingredients

▶ Variable valuation s ∶ Vars → Q maps each program variable onto a
value (here: rational numbers)

▶ Expression valuation, let [[E]] denote the valuation of expression E

▶ Configuration (aka: state) ⟨P, s⟩ denotes that
▶ program P is about to be executed (aka: program counter)
▶ and the current variable valuation equals s.

▶ Transition rules for the execution of commands: ⟨P, s⟩⟶ ⟨P ′, s ′⟩
transition rules are written as

premise
conclusion

where the premise is omitted if it is vacuously true.

Joost-Pieter Katoen Probabilistic Programming 15/41

Probabilistic Programming Operational semantics

Recall: Markov chains

A Markov chain (MC) is a triple (Σ,σI ,P) with:
▶ Σ being a countable set of states
▶ σI ∈ Σ the initial state, and
▶ P ∶ Σ → Dist(Σ) the transition probability function

where Dist(Σ) is a discrete probability measure on Σ.

Joost-Pieter Katoen Probabilistic Programming 16/41

Probabilistic Programming Operational semantics

Operational semantics of conditional pGCL
Aim: Model the behaviour of a program P by the MC [[P]].

This can be defined using Plotkin’s SOS-style semantics

Joost-Pieter Katoen Probabilistic Programming 17/41

Probabilistic Programming Operational semantics

Operational semantics

Aim: Model the behaviour of a conditional pGCL program P by MC [[P]].
Approach:

▶ Take states of the form
▶ ⟨Q, s⟩ with program Q or ↓, and variable valuation s ∶ Vars → Q
▶ ⟨↯⟩ models the violation of an observation, and
▶ ⟨sink⟩ models successful program termination

▶ Take initial state σI = ⟨P, s⟩ where s fulfils the initial conditions
▶ Transition relation → is the smallest relation satisfying the SOS rules

on the next slides
▶ Where transition probabilities equal to one are omitted

Joost-Pieter Katoen Probabilistic Programming 18/41

Probabilistic Programming Operational semantics

Transition rules for cpGCL (1)

⟨skip, s⟩ → ⟨↓, s⟩ ⟨diverge, s⟩ → ⟨diverge, s⟩

s ⊧ G
⟨observe(G), s⟩ → ⟨↓, s⟩

s /⊧ G
⟨observe(G), s⟩ → ⟨↯⟩

⟨↓, s⟩ → ⟨sink⟩ ⟨↯⟩ → ⟨sink⟩ ⟨sink⟩ → ⟨sink⟩

⟨x ∶= E , s⟩ → ⟨↓, s[x ∶= s([[E]])]⟩

µ(s)(v) = a > 0
⟨x ∶ ≈µ, s⟩ a−−→ ⟨↓, s[x ∶= v]⟩

⟨P[p] Q, s⟩ → µ with µ(⟨P, s⟩) = p and µ(⟨Q, s⟩) = 1−p

Joost-Pieter Katoen Probabilistic Programming 19/41

Probabilistic Programming Operational semantics

Transition rules for cpGCL (2)

⟨P, s⟩ → ⟨↯⟩
⟨P; Q, s⟩ → ⟨↯⟩

⟨P, s⟩ → µ

⟨P; Q, s⟩ → ν
with ν(⟨P ′; Q ′, s ′⟩) = µ(⟨P ′, s ′⟩) where ↓; Q = Q

s ⊧ G
⟨if (G){P} else {Q}, s⟩ → ⟨P, s⟩

s /⊧ G
⟨if (G){P} else {Q}, s⟩ → ⟨Q, s⟩

s ⊧ G
⟨while(G){P}, s⟩ → ⟨P;while (G){P}, s⟩

s /⊧ G
⟨while(G){P}, s⟩ → ⟨↓, s⟩

Joost-Pieter Katoen Probabilistic Programming 20/41

Probabilistic Programming Operational semantics

Examples

Joost-Pieter Katoen Probabilistic Programming 21/41

Probabilistic Programming Operational semantics

The conditional distribution of a program

The conditional distribution [[P]]σ ∣¬↯ over terminal states of cpGCL
program P when starting in state s is defined by:

[[P]]σ ∣¬↯ (τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if τ = ↯ and [[P]]σ(↯) < 1
[[P]]σ(τ)

1 − [[P]]σ(↯)
if τ ≠ ↯ and [[P]]σ(↯) < 1

undefined if [[P]]σ(↯) = 1

Joost-Pieter Katoen Probabilistic Programming 22/41

Probabilistic Programming Operational semantics

The piranha problem [Tijms, 2004]

Joost-Pieter Katoen Probabilistic Programming 23/41

Probabilistic Programming Operational semantics

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

Joost-Pieter Katoen Probabilistic Programming 24/41

Probabilistic Programming Operational semantics

The full operational semantics

Joost-Pieter Katoen Probabilistic Programming 25/41

Probabilistic Programming Conditional expected rewards

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 26/41

Probabilistic Programming Conditional expected rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards
A reward MC is a pair (D, r) with D an MC with state space Σ and
r ∶ Σ → R a function assigning a real reward to each state.
The reward r (σ) stands for the reward earned on leaving state σ.

Cumulative reward for reachability
Let π = σ0 . . . σn be a finite path in (D, r) and G ⊆ Σ a set of target states
with π ∈ ◇G . The cumulative reward along π until reaching G is:

rG (π) = r (σ0) + . . . + r (σk−1) where σi /∈ G for all i < k and σk ∈ G .

If π /∈ ◇G , then rG (π) = 0.

Joost-Pieter Katoen Probabilistic Programming 27/41

Probabilistic Programming Conditional expected rewards

Expected reward reachability

Expected reward for reachability
The expected reward until reaching G ⊆ Σ from σ ∈ Σ is:

ER(σ,◇G) = ∑
π⊧◇G

Pr(π̂) ⋅ rG (π̂)

where π̂ = σ0 . . . σk is the shortest prefix of π such that σk ∈ G and σ0 = σ.

Conditional expected reward
Let ER(σ,◇G ∣ ¬◇F) be the conditional expected reward until reaching G
under the condition that no states in F ⊆ Σ are visited.

Joost-Pieter Katoen Probabilistic Programming 28/41

Probabilistic Programming Conditional expected rewards

Conditional expected reward
ER(σ,◇G ∣ ¬◇F) is the expectation of random variable1 rv(◇G ∩ ¬◇F)
with respect to the conditional probability measure:

Pr(◇G ∣ ¬◇F) =
Pr(◇G ∩ ¬◇F)

Pr(¬◇F)

Conditional expected reward
The conditional expected reward to reach G ⊆ Σ while avoiding F ⊆ Σ in
Markov chain D is defined as:

ERD(◇G ∣ ¬◇F) =
ERD(◇G ∩ ¬◇F)

Pr(¬◇F)

1This r.v. assigns to each path π of MC D the reward r (π̂) where π̂ is the shortest
prefix of π such that the last state is in G and no previous state is in F .

Joost-Pieter Katoen Probabilistic Programming 29/41

Probabilistic Programming Conditional expected rewards

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

Conditional expected reward of termination without violating any observe

ER[[P]](σI ,◇⟨sink⟩ ∣ ¬◇⟨↯⟩) = 1⋅1/2 + 0⋅1/4

1 − 1/4
=

1/2

3/4
= 2/3.

Joost-Pieter Katoen Probabilistic Programming 30/41

Probabilistic Programming Conditional expected rewards

A remark on divergence

Consider the two programs:

x := 1 [0.5] diverge x := 1 [0.5] observe(false)

Q: What is the probability that x = 1 on termination?

A: For the left program this is 1/2; for the right one this is 1.

Joost-Pieter Katoen Probabilistic Programming 31/41

Probabilistic Programming Conditional expected rewards

Divergence matters

diverge [0.5] {
x := 0 [0.5] x := 1;
y := 0 [0.5] y := 1;
observe (x = 0 || y = 0)

}

Q: What is the probability that y = 0 on termination?

A: 2
7 . Why?

Warning: This is a silly example. Typically divergence comes from loops.

Joost-Pieter Katoen Probabilistic Programming 32/41

Probabilistic Programming Conditional expected rewards

Observations inside loops

Consider the following two “similar” programs:

int x := 1;
while (x = 1) {

x := 1
}

▶ Certain divergence
▶ Conditional expected reward = 0

int x := 1;
while (x = 1) {

x := 1 [0.5] x := 0;
observe (x = 1)

}

▶ Divergence with probability zero
▶ Conditional expected reward =

undefined

Our semantics does distinguish these programs.

Joost-Pieter Katoen Probabilistic Programming 33/41

Probabilistic Programming Program transformations

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 34/41

Probabilistic Programming Program transformations

Why formal semantics matters

▶ Unambiguous meaning to all programs

▶ Basis for proving correctness
▶ of programs
▶ of program transformations
▶ of program equivalence
▶ of static analysis
▶ of compilers
▶

Joost-Pieter Katoen Probabilistic Programming 35/41

Probabilistic Programming Program transformations

Program transformation to remove conditioning
▶ Idea: restart an infeasible run until all observe-statements are passed

▶ For program variable x use auxiliary variable sx
▶ store initial value of x into sx
▶ on each new loop-iteration restore x to sx

▶ Use auxiliary variable flag to signal observation violation:

flag := true; while(flag) { flag := false; mprog }

▶ Change prog into mprog by:

▶ observe(G) ⟿ flag := !G || flag
▶ abort ⟿ if(!flag) abort
▶ while(G) prog ⟿ while(G && !flag) prog

Joost-Pieter Katoen Probabilistic Programming 36/41

Probabilistic Programming Program transformations

Resulting program

sx1,...,sxn := x1,...,xn; flag := true;
while(flag) {

flag := false;
x1,...,xn := sx1,...,sxn;
modprog

}

In machine learning, this is known as rejection sampling.

Joost-Pieter Katoen Probabilistic Programming 37/41

Probabilistic Programming Program transformations

Removal of conditioning
the transformation in action:

x := 0 [p] x := 1;
y := 0 [p] y := 1;
observe(x != y)

sx, sy := x, y; flag := true;
while(flag) {

x, y := sx, sy; flag := false;
x := 0 [p] x := 1;
y := 0 [p] y := 1;
flag := (x = y)

}

a simple data-flow analysis yields:

repeat {
x := 0 [p] x := 1;
y := 0 [p] y := 1

} until(x != y)

Joost-Pieter Katoen Probabilistic Programming 38/41

Probabilistic Programming Program transformations

A dual program transformation

repeat
a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a2 + 2*a1 + a0 + 1

until (1 <= i <= 6)

a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a2 + 2*a1 + a0 + 1
observe (1 <= i <= 6)

Loop-by-observe replacement if there is “no data flow” between loop iterations

Joost-Pieter Katoen Probabilistic Programming 39/41

Probabilistic Programming Program transformations

A third program transformation: Hoisting

Joost-Pieter Katoen Probabilistic Programming 40/41

Probabilistic Programming Program transformations

Correctness of these transformations

This can be done by comparing conditional expected rewards in the Markov
chains of the program before and after the program transformation.

Next lecture: prove the correctness using conditional weakest pre-expectations.

Joost-Pieter Katoen Probabilistic Programming 41/41

	Motivation
	Observe statements
	Operational semantics
	Conditional expected rewards
	Program transformations

