
Probabilistic Programming

Probabilistic Programming

Lecture #4: Probabilistic GCL

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/31

Probabilistic Programming Probabilistic Guarded Command Language

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics

3 Recursion

Joost-Pieter Katoen Probabilistic Programming 2/31

Probabilistic Programming Probabilistic Guarded Command Language

Dijkstra’s guarded command language: Syntax

Z skip empty statement
Z diverge divergence
Z x := E assignment
Z prog1 ; prog2 sequential composition
Z if (G) prog1 else prog2 choice
Z prog1 [] prog2 non-deterministic choice
Z while (G) prog iteration

Joost-Pieter Katoen Probabilistic Programming 3/31

Probabilistic Programming Probabilistic Guarded Command Language

Elementary pGCL ingredients

Z Program variables x " Vars whose values are fractional numbers

Z Arithmetic expressions E over the program variables

Z Boolean expressions G (guarding a choice or loop) over the program
variables

Z A distribution expression µ ⇥ � � Dist(Q)
Z A probability expression p ⇥ � � [0, 1] = Q

Joost-Pieter Katoen Probabilistic Programming 4/31

2X fly

x -
y

u Co) =
Dist C Q)

I

p
- -

x

Probabilistic Programming Probabilistic Guarded Command Language

Probabilistic GCL: Syntax

Kozen McIver Morgan

Z skip empty statement
Z diverge divergence
Z x := E assignment
Z x :r= mu random assignment (x ⇥ ⌅µ)
Z prog1 ; prog2 sequential composition
Z if (G) prog1 else prog2 choice
Z prog1 [p] prog2 probabilistic choice

Z while (G) prog iteration

Conditioning in the form of observe-statements omitted for now.

Joost-Pieter Katoen Probabilistic Programming 5/31

/
P - I

p -
I
otx

4=2 X Eh

p= I p= I
5

-
-

Probabilistic Programming Probabilistic Guarded Command Language

Let’s start simple

x := 0 [0.5] x := 1;
y := -1 [0.5] y := 0

This program admits four runs and yields the outcome:

Pr[x =0, y =0] = Pr[x =0, y =�1] = Pr[x =1, y =0] = Pr[x =1, y =�1] = 1/4

Joost-Pieter Katoen Probabilistic Programming 6/31

D flip a fair coin

A flip a fair cosh

- - - -

Probabilistic Programming Probabilistic Guarded Command Language

A loopy program

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

The loopy program models a geometric distribution with parameter p.

Pr[i = N] = (1�p)N�1 � p for N > 0

Joost-Pieter Katoen Probabilistic Programming 7/31

I flip a biased

- - coin

→

Probabilistic Programming Probabilistic Guarded Command Language

On termination

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program does not always terminate. It almost surely terminates.

Joost-Pieter Katoen Probabilistic Programming 8/31

=
Pr { one non - terminating run } = O

Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly

Joost-Pieter Katoen Probabilistic Programming 9/31

Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly

Joost-Pieter Katoen Probabilistic Programming 9/31

Probabilistic Programming Probabilistic Guarded Command Language

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

Joost-Pieter Katoen Probabilistic Programming 10/31

B

f
hitting prob .

of cowboy
A

Ll

I
←

←

← turn

{
a survivor

Probabilistic Programming Probabilistic Guarded Command Language

Random assignments

The random assignment x ⇥ ⌅µ works as follows:

1. evaluate distribution expression µ in the current program state s
2. sample from the resulting probability distribution µ(s) yielding value v with

probability µ(s)(v)
3. assign the value v to the variable x .

For denoting distribution expressions, we use the bra–ket notation.

1
2 � [aã + 1

3 � [bã + 1
6 � [cã

denotes the distribution µ with µ(a) = 1/2, µ(b) = 1/3, and µ(c) = 1/6. The support
set of µ equals { a, b, c }
Examples on the black board.

Joost-Pieter Katoen Probabilistic Programming 11/31

X : = unit Et . . 2*54

① ye 2

unit G . . D

unit Er . . zy) (s) (s) =
I

t

g
safe .

'
°

- - -

X in I E xti) t '
z Ex - t)

equivalent

Xi -- xt ' Et] Xi - x - s

-

× : = 1¥
,

Ixtn) t III. Ex - i >

-
X = 2

scx) -- 2 I → x .

- =xt7

3- → xi=x - s

Probabilistic Programming Operational semantics

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics

3 Recursion

Joost-Pieter Katoen Probabilistic Programming 12/31

Probabilistic Programming Operational semantics

Why formal semantics matters

Z Unambiguous meaning to all programs

Z Basis for proving correctness
Z of programs
Z of program transformations
Z of program equivalence
Z of static analysis
Z of compilers
Z

Joost-Pieter Katoen Probabilistic Programming 13/31

Probabilistic Programming Operational semantics

The inventors of semantics

Tony Hoare Robert W. Floyd Gordon Plotkin

Christopher Strachey Dana Scott
Joost-Pieter Katoen Probabilistic Programming 14/31

ng 8N

rgb ?

ng 6g

Probabilistic Programming Operational semantics

Approaches to semantics

Z Operational semantics: (developed by Plotkin)
Z The meaning of a program in terms of how it executes on an abstract

machine.
Z Useful for modelling the execution behaviour of a program.

Z Axiomatic semantics: (developed by Floyd and Hoare)
Z Provides correctness assertions for each program construct.
Z Useful for verifying that a program’s computed results are correct with

respect to the specification.

Z Denotational semantics: (developed by Strachey and Scott)
Z Provides a mapping of language constructs onto mathematical objects.
Z Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Later: denotational semantics of pGCL in terms of weakest preconditions.

Joost-Pieter Katoen Probabilistic Programming 15/31

Probabilistic Programming Operational semantics

Approaches to semantics

Z Operational semantics: (developed by Plotkin)
Z The meaning of a program in terms of how it executes on an abstract

machine.
Z Useful for modelling the execution behaviour of a program.

Z Axiomatic semantics: (developed by Floyd and Hoare)
Z Provides correctness assertions for each program construct.
Z Useful for verifying that a program’s computed results are correct with

respect to the specification.

Z Denotational semantics: (developed by Strachey and Scott)
Z Provides a mapping of language constructs onto mathematical objects.
Z Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Later: denotational semantics of pGCL in terms of weakest preconditions.

Joost-Pieter Katoen Probabilistic Programming 15/31

{ pre } p L post)

Probabilistic Programming Operational semantics

Approaches to semantics

Z Operational semantics: (developed by Plotkin)
Z The meaning of a program in terms of how it executes on an abstract

machine.
Z Useful for modelling the execution behaviour of a program.

Z Axiomatic semantics: (developed by Floyd and Hoare)
Z Provides correctness assertions for each program construct.
Z Useful for verifying that a program’s computed results are correct with

respect to the specification.

Z Denotational semantics: (developed by Strachey and Scott)
Z Provides a mapping of language constructs onto mathematical objects.
Z Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Later: denotational semantics of pGCL in terms of weakest preconditions.

Joost-Pieter Katoen Probabilistic Programming 15/31

Probabilistic Programming Operational semantics

Approaches to semantics

Z Operational semantics: (developed by Plotkin)
Z The meaning of a program in terms of how it executes on an abstract

machine.
Z Useful for modelling the execution behaviour of a program.

Z Axiomatic semantics: (developed by Floyd and Hoare)
Z Provides correctness assertions for each program construct.
Z Useful for verifying that a program’s computed results are correct with

respect to the specification.

Z Denotational semantics: (developed by Strachey and Scott)
Z Provides a mapping of language constructs onto mathematical objects.
Z Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Later: denotational semantics of pGCL in terms of weakest preconditions.

Joost-Pieter Katoen Probabilistic Programming 15/31

0
0

- -

Probabilistic Programming Operational semantics

Approaches to semantics

Z Operational semantics: (developed by Plotkin)
Z The meaning of a program in terms of how it executes on an abstract

machine.
Z Useful for modelling the execution behaviour of a program.

Z Axiomatic semantics: (developed by Floyd and Hoare)
Z Provides correctness assertions for each program construct.
Z Useful for verifying that a program’s computed results are correct with

respect to the specification.

Z Denotational semantics: (developed by Strachey and Scott)
Z Provides a mapping of language constructs onto mathematical objects.
Z Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Later: denotational semantics of pGCL in terms of weakest preconditions.

Joost-Pieter Katoen Probabilistic Programming 15/31

- -

Probabilistic Programming Operational semantics

Structural operational semantics: ingredients

Z Variable valuation s ⇥ Vars � Q maps each program variable onto a
value (here: rational numbers)

Z Expression valuation1, let [[E]] denote the valuation of expression E

Z Configuration (aka: state) ÖP, sã denotes that
Z program P is about to be executed (aka: program counter)
Z and the current variable valuation equals s.

Z Transition rules for the execution of commands: ÖP, sã ∫ ÖP ¨, s ¨ã
transition rules are written as

premise
conclusion

where the premise is omitted if it is vacuously true.

1Here, we will not go into the details of this (simple) part.
Joost-Pieter Katoen Probabilistic Programming 16/31

s C x) = I
s Cy) = n

p GCL
- MC

program

Probabilistic Programming Operational semantics

Structural operational semantics: ingredients

Z Variable valuation s ⇥ Vars � Q maps each program variable onto a
value (here: rational numbers)

Z Expression valuation1, let [[E]] denote the valuation of expression E

Z Configuration (aka: state) ÖP, sã denotes that
Z program P is about to be executed (aka: program counter)
Z and the current variable valuation equals s.

Z Transition rules for the execution of commands: ÖP, sã ∫ ÖP ¨, s ¨ã
transition rules are written as

premise
conclusion

where the premise is omitted if it is vacuously true.

1Here, we will not go into the details of this (simple) part.
Joost-Pieter Katoen Probabilistic Programming 16/31

0
scx) - Zz E=zx2ty
Sly) - I

FED (s) = 2. (E)
"

+1

Probabilistic Programming Operational semantics

Structural operational semantics: ingredients

Z Variable valuation s ⇥ Vars � Q maps each program variable onto a
value (here: rational numbers)

Z Expression valuation1, let [[E]] denote the valuation of expression E

Z Configuration (aka: state) ÖP, sã denotes that
Z program P is about to be executed (aka: program counter)
Z and the current variable valuation equals s.

Z Transition rules for the execution of commands: ÖP, sã ∫ ÖP ¨, s ¨ã
transition rules are written as

premise
conclusion

where the premise is omitted if it is vacuously true.

1Here, we will not go into the details of this (simple) part.
Joost-Pieter Katoen Probabilistic Programming 16/31

MC

Probabilistic Programming Operational semantics

Structural operational semantics: ingredients

Z Variable valuation s ⇥ Vars � Q maps each program variable onto a
value (here: rational numbers)

Z Expression valuation1, let [[E]] denote the valuation of expression E

Z Configuration (aka: state) ÖP, sã denotes that
Z program P is about to be executed (aka: program counter)
Z and the current variable valuation equals s.

Z Transition rules for the execution of commands: ÖP, sã ∫ ÖP ¨, s ¨ã
transition rules are written as

premise
conclusion

where the premise is omitted if it is vacuously true.

1Here, we will not go into the details of this (simple) part.
Joost-Pieter Katoen Probabilistic Programming 16/31

Probabilistic Programming Operational semantics

Recall: Markov chains

A Markov chain (MC) is a triple (�, ‡I , P) with:
Z � being a countable set of states
Z ‡I " � the initial state, and
Z P ⇥ � � Dist(�) the transition probability function

where Dist(�) is a discrete probability measure on �.

Joost-Pieter Katoen Probabilistic Programming 17/31

- -

Probabilistic Programming Operational semantics

Operational semantics

Aim: Model the behaviour of a pGCL program P by the MC [[P]].
Approach:

Z Take states of the form
Z ÖQ, sã with program Q or ⇤, and variable valuation s ⇥ Vars � Q
Z Ösinkã models program termination (successful or violated observation)

Z Take initial state ‡I = ÖP, sã where s fulfils the initial conditions
Z Transition relation � is the smallest relation satisfying the SOS rules

on the next slides
Z Where transition probabilities equal to one are omitted

Joost-Pieter Katoen Probabilistic Programming 18/31

O
-

< t
,

s > a

•
(P

,
s) mum > I

,

s 7^-3 C sink >

thymus diverging behaviours

Probabilistic Programming Operational semantics

Operational semantics

Aim: Model the behaviour of a pGCL program P by the MC [[P]].
Approach:

Z Take states of the form
Z ÖQ, sã with program Q or ⇤, and variable valuation s ⇥ Vars � Q
Z Ösinkã models program termination (successful or violated observation)

Z Take initial state ‡I = ÖP, sã where s fulfils the initial conditions

Z Transition relation � is the smallest relation satisfying the SOS rules
on the next slides

Z Where transition probabilities equal to one are omitted

Joost-Pieter Katoen Probabilistic Programming 18/31

Probabilistic Programming Operational semantics

Operational semantics

Aim: Model the behaviour of a pGCL program P by the MC [[P]].
Approach:

Z Take states of the form
Z ÖQ, sã with program Q or ⇤, and variable valuation s ⇥ Vars � Q
Z Ösinkã models program termination (successful or violated observation)

Z Take initial state ‡I = ÖP, sã where s fulfils the initial conditions
Z Transition relation � is the smallest relation satisfying the SOS rules

on the next slides
Z Where transition probabilities equal to one are omitted

Joost-Pieter Katoen Probabilistic Programming 18/31

①

Probabilistic Programming Operational semantics

Transition rules (1)

Öskip, sã � Ö⇤, sã Ödiverge, sã � Ödiverge, sã

Ö⇤, sã � Ösinkã Ösinkã � Ösinkã
Öx ⇥= E , sã � Ö⇤, s[x ⇥= s([[E]])]ã

µ(s)(v) = a > 0Öx ⇥ ⌅µ, sã a��� Ö⇤, s[x ⇥= v]ã
ÖP[p]Q, sã � µ with µ(ÖP, sã) = p and µ(ÖQ, sã) = 1�p

Joost-Pieter Katoen Probabilistic Programming 19/31

a a

-

Probabilistic Programming Operational semantics

Transition rules (1)

Öskip, sã � Ö⇤, sã Ödiverge, sã � Ödiverge, sã
Ö⇤, sã � Ösinkã Ösinkã � Ösinkã

Öx ⇥= E , sã � Ö⇤, s[x ⇥= s([[E]])]ã
µ(s)(v) = a > 0Öx ⇥ ⌅µ, sã a��� Ö⇤, s[x ⇥= v]ã

ÖP[p]Q, sã � µ with µ(ÖP, sã) = p and µ(ÖQ, sã) = 1�p

Joost-Pieter Katoen Probabilistic Programming 19/31

1 I

Probabilistic Programming Operational semantics

Transition rules (1)

Öskip, sã � Ö⇤, sã Ödiverge, sã � Ödiverge, sã
Ö⇤, sã � Ösinkã Ösinkã � Ösinkã
Öx ⇥= E , sã � Ö⇤, s[x ⇥= s([[E]])]ã

µ(s)(v) = a > 0Öx ⇥ ⌅µ, sã a��� Ö⇤, s[x ⇥= v]ã
ÖP[p]Q, sã � µ with µ(ÖP, sã) = p and µ(ÖQ, sã) = 1�p

Joost-Pieter Katoen Probabilistic Programming 19/31

P Falu ale E in s

2×2 t y
-

I = {
u ifEat

 value so ×

s (z) if x I 2-

Probabilistic Programming Operational semantics

Transition rules (1)

Öskip, sã � Ö⇤, sã Ödiverge, sã � Ödiverge, sã
Ö⇤, sã � Ösinkã Ösinkã � Ösinkã
Öx ⇥= E , sã � Ö⇤, s[x ⇥= s([[E]])]ã

µ(s)(v) = a > 0Öx ⇥ ⌅µ, sã a��� Ö⇤, s[x ⇥= v]ã

ÖP[p]Q, sã � µ with µ(ÖP, sã) = p and µ(ÖQ, sã) = 1�p

Joost-Pieter Katoen Probabilistic Programming 19/31

O
O

f Sly) = 2

X inn X : = unit Er . . ay]
-

V =3 a = Ig

Probabilistic Programming Operational semantics

Transition rules (1)

Öskip, sã � Ö⇤, sã Ödiverge, sã � Ödiverge, sã
Ö⇤, sã � Ösinkã Ösinkã � Ösinkã
Öx ⇥= E , sã � Ö⇤, s[x ⇥= s([[E]])]ã

µ(s)(v) = a > 0Öx ⇥ ⌅µ, sã a��� Ö⇤, s[x ⇥= v]ã
ÖP[p]Q, sã � µ with µ(ÖP, sã) = p and µ(ÖQ, sã) = 1�p

Joost-Pieter Katoen Probabilistic Programming 19/31

to

C- Dist CE)

Probabilistic Programming Operational semantics

Transition rules (2)

ÖP, sã � µÖP; Q, sã � ‹
with ‹(ÖP ¨; Q ¨, s ¨ã) = µ(ÖP ¨, s ¨ã) where ⇤; Q = Q

s Ï GÖif (G){P} else {Q}, sã � ÖP, sã s /Ï GÖif (G){P} else {Q}, sã � ÖQ, sã
s Ï GÖwhile(G){P}, sã � ÖP; while (G){P}, sã s /Ï GÖwhile(G){P}, sã � Ö⇤, sã

Joost-Pieter Katoen Probabilistic Programming 20/31

(X :=E
,

s) → A
,

s
'

✓
E Dist CE) ✓

-
-

- -

i
 - -

O

I

(P
,

s) -4C P
'

,
s

') (P
, D → Chs ')

- -

(P ;Q ,
s) (P

'

;Q ,
s

') (P ;Q,s) → (I;nQ,s7
=Q

Probabilistic Programming Operational semantics

Transition rules (2)

ÖP, sã � µÖP; Q, sã � ‹
with ‹(ÖP ¨; Q ¨, s ¨ã) = µ(ÖP ¨, s ¨ã) where ⇤; Q = Q

s Ï GÖif (G){P} else {Q}, sã � ÖP, sã s /Ï GÖif (G){P} else {Q}, sã � ÖQ, sã

s Ï GÖwhile(G){P}, sã � ÖP; while (G){P}, sã s /Ï GÖwhile(G){P}, sã � Ö⇤, sã

Joost-Pieter Katoen Probabilistic Programming 20/31

-

SCD = } Gee X 72g
S KG

Sly) =3
s G six) > 2 Sb)

⇒ § > 2- I

s # G

Probabilistic Programming Operational semantics

Transition rules (2)

ÖP, sã � µÖP; Q, sã � ‹
with ‹(ÖP ¨; Q ¨, s ¨ã) = µ(ÖP ¨, s ¨ã) where ⇤; Q = Q

s Ï GÖif (G){P} else {Q}, sã � ÖP, sã s /Ï GÖif (G){P} else {Q}, sã � ÖQ, sã
s Ï GÖwhile(G){P}, sã � ÖP; while (G){P}, sã s /Ï GÖwhile(G){P}, sã � Ö⇤, sã

Joost-Pieter Katoen Probabilistic Programming 20/31

Probabilistic Programming Operational semantics

Example

Joost-Pieter Katoen Probabilistic Programming 21/31

Xiao C I) x : - n ; yin unit Er . . no]
- -

P Q

(P
,

s > s x : - o
,

s)
-

SP ; Q
,

s) s x .to ; Q
,

s)

= S
'

(x :-O
,

s > Is at
,

FEET
>

-Sxieoso > Is Ct ; Q
,

s Tx : -03)
-

= Q

unif En . . no] (s
') (6) = It 7 O

-

(y in unif a . . no] ,
so > ¥-3 S I

,
s

'

Ey .

. =D)
-

S
' Cx) = O

Sky) - b

to

+
SP ; Q

,
s > Zz

← →

SXi=o;Q
,

s) (x 7510 ,
's)

it :
.

.

(d ; Q ,
s Ex : -03)

. .

,

ditto

-

wx C t
,

@Ex :-D) Ey -

- no])

hit
(sink)

On

what changes if

x : -0 C }3x ; yin wife .
.

x]

P :

:-X: -0 ; Cien ; while (c) { Xie a - x ;

Cin ft) - Ot

⇒ . i)
x :

 # tr

SP ,
s)

t
(. Cien ;

,
S Ex :-D)

t

swhileCd-.is

I s

::÷÷÷:
← ¥

(while
. . .

,
x⇒

,
⇐ o) C while

,

^ f s
×

?
.

&
,

Xen
,

c- o) → C sink) !

Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

This (parametric) MC is finite. Once we count the number of shots before one of the
cowboys dies, the MC becomes countably infinite.

Joost-Pieter Katoen Probabilistic Programming 22/31

Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

11 A 0

4 A 0

6 A 1

a

!
2 • •H--+13 B •

3 A * I 8

V
.>--'-r-L....I

B I

1- b

4 A 1 8 B I

5A l \ 581

\
6 A l 4 B I

1 - a

6 /\

b

8 B 1

4 B 0

I I B 0

This (parametric) MC is finite. Once we count the number of shots before one of the
cowboys dies, the MC becomes countably infinite.

Joost-Pieter Katoen Probabilistic Programming 22/31

±
ft

2 § z
← c

: O.OI O O

%
O
O

.

Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

11 A 0

4 A 0

6 A 1

a

!
2 • •H--+13 B •

3 A * I 8

V
.>--'-r-L....I

B I

1- b

4 A 1 8 B I

5A l \ 581

\
6 A l 4 B I

1 - a

6 /\

b

8 B 1

4 B 0

I I B 0

This (parametric) MC is finite.

Once we count the number of shots before one of the
cowboys dies, the MC becomes countably infinite.

Joost-Pieter Katoen Probabilistic Programming 22/31

Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

11 A 0

4 A 0

6 A 1

a

!
2 • •H--+13 B •

3 A * I 8

V
.>--'-r-L....I

B I

1- b

4 A 1 8 B I

5A l \ 581

\
6 A l 4 B I

1 - a

6 /\

b

8 B 1

4 B 0

I I B 0

This (parametric) MC is finite. Once we count the number of shots before one of the
cowboys dies, the MC becomes countably infinite.

Joost-Pieter Katoen Probabilistic Programming 22/31

int EE O

itt

it

Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p
Z Y is a random variable, geometrically distributed with parameter q

Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31

Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p

Z Y is a random variable, geometrically distributed with parameter q
Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31

Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p
Z Y is a random variable, geometrically distributed with parameter q

Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31

Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p
Z Y is a random variable, geometrically distributed with parameter q

Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31

Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p
Z Y is a random variable, geometrically distributed with parameter q

Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31

Probabilistic Programming Operational semantics

An alternative program

int XminY2(float p, q){
int x := 0;
bool flip := false;
(flip := false [0.5] flip := true); // flip a fair coin
if (not flip) {

while (not flip) { // sample X to increase x
(x +:= 1 [p] flip := true);

}
} else {

flip := false; // reset flip
while (not flip) { // sample Y to decrease x

x -:= 1;
(skip [q] flip := true);

}
}

return x; // a sample of X-Y
}

Joost-Pieter Katoen Probabilistic Programming 24/31

Probabilistic Programming Operational semantics

Program equivalence: X � Y

int XminY1(float p, q){
int x, c := 0, 1;
while (c) {

(x +:= 1 [p] c := 0);
}
c := 1;
while (c) {

(x -:= 1 [q] c := 0);
}
return x;

}

int XminY2(float p, q){
int x := 0;
(c := 0 [0.5] c := 1);
if (c) {

while (c) {
(x +:= 1 [p] c := 0);

}
} else {

c := 1;
while (c) {

x -:= 1;
(skip [q] c := 0);

}
}

return x;
}

The probability that x = k for some k " Z coincides for both programs if and only if
q = 1

2�p .

Joost-Pieter Katoen Probabilistic Programming 25/31

Probabilistic Programming Operational semantics

Program equivalence: X � Y

int XminY1(float p, q){
int x, c := 0, 1;
while (c) {

(x +:= 1 [p] c := 0);
}
c := 1;
while (c) {

(x -:= 1 [q] c := 0);
}
return x;

}

int XminY2(float p, q){
int x := 0;
(c := 0 [0.5] c := 1);
if (c) {

while (c) {
(x +:= 1 [p] c := 0);

}
} else {

c := 1;
while (c) {

x -:= 1;
(skip [q] c := 0);

}
}

return x;
}

The probability that x = k for some k " Z coincides for both programs if and only if
q = 1

2�p .

Joost-Pieter Katoen Probabilistic Programming 25/31

Probabilistic Programming Operational semantics

Program equivalence: X � Y

int XminY1(float p, q){
int x, c := 0, 1;
while (c) {

(x +:= 1 [p] c := 0);
}
c := 1;
while (c) {

(x -:= 1 [q] c := 0);
}
return x;

}

int XminY2(float p, q){
int x := 0;
(c := 0 [0.5] c := 1);
if (c) {

while (c) {
(x +:= 1 [p] c := 0);

}
} else {

c := 1;
while (c) {

x -:= 1;
(skip [q] c := 0);

}
}

return x;
}

The probability that x = k for some k " Z coincides for both programs if and only if
q = 1

2�p .

Joost-Pieter Katoen Probabilistic Programming 25/31

Probabilistic Programming Operational semantics

Program equivalence: X � Y

int XminY1(float p, q){
int x, c := 0, 1;
while (c) {

(x +:= 1 [p] c := 0);
}
c := 1;
while (c) {

(x -:= 1 [q] c := 0);
}
return x;

}

int XminY2(float p, q){
int x := 0;
(c := 0 [0.5] c := 1);
if (c) {

while (c) {
(x +:= 1 [p] c := 0);

}
} else {

c := 1;
while (c) {

x -:= 1;
(skip [q] c := 0);

}
}

return x;
}

The probability that x = k for some k " Z coincides for both programs if and only if
q = 1

2�p .
Joost-Pieter Katoen Probabilistic Programming 25/31

Probabilistic Programming Operational semantics

The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

In fact, this is a sub-distribution (probability mass at most one), as with a certain
probability P may diverge.

Let P be a pGCL program and s an input state. Then the distribution over final
states obtained by running P starting in s is given by Pr(s Ï É Ö⇤, �ã).

Joost-Pieter Katoen Probabilistic Programming 26/31

Probabilistic Programming Operational semantics

The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

In fact, this is a sub-distribution (probability mass at most one), as with a certain
probability P may diverge.

Let P be a pGCL program and s an input state. Then the distribution over final
states obtained by running P starting in s is given by Pr(s Ï É Ö⇤, �ã).

Joost-Pieter Katoen Probabilistic Programming 26/31

- -

Stys>
Stx) = .

Sly) = .

W

Probabilistic Programming Operational semantics

The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

In fact, this is a sub-distribution (probability mass at most one), as with a certain
probability P may diverge.

Let P be a pGCL program and s an input state. Then the distribution over final
states obtained by running P starting in s is given by Pr(s Ï É Ö⇤, �ã).

Joost-Pieter Katoen Probabilistic Programming 26/31

d. s >

fr : I → To , n]

I MCD = s

TE Z

E meds a

re Z

Probabilistic Programming Operational semantics

The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

In fact, this is a sub-distribution (probability mass at most one), as with a certain
probability P may diverge.

Let P be a pGCL program and s an input state. Then the distribution over final
states obtained by running P starting in s is given by Pr(s Ï É Ö⇤, �ã).

Joost-Pieter Katoen Probabilistic Programming 26/31

-

Probabilistic Programming Operational semantics

Reachability probabilities

If the MC [[P]] of pGCL program P has finitely many states, reachability
probabilities can be obtained in an automated manner. This applies to the

cowboy example for given probabilities a and b.

The same holds for expected rewards, e.g., the expected number of steps until
termination of a finite-state program P.

Joost-Pieter Katoen Probabilistic Programming 27/31

± 's

Probabilistic Programming Recursion

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics

3 Recursion

Joost-Pieter Katoen Probabilistic Programming 28/31

Probabilistic Programming Recursion

Probabilistic GCL with recursion: Syntax

Z skip empty statement
Z diverge divergence
Z x := E assignment
Z x :r= mu random assignment (x ⇥ ⌅µ)
Z prog1 ; prog2 sequential composition
Z if (G) prog1 else prog2 choice
Z prog1 [p] prog2 probabilistic choice
Z while (G) prog iteration
Z P = prog process definition

Z call P process invocation

Recursion does not increase the expressive power, but is often convenient.

Joost-Pieter Katoen Probabilistic Programming 29/31

8

Probabilistic Programming Recursion

Pushdown Markov chains

Pushdown Markov chain

A pushdown Markov chain D is a tuple (�, ‡I , �, “0, �) where:
Z � is a countable set of (control) states
Z ‡I " � is the initial (control) state
Z � is a finite stack alphabet
Z “0 " � is the bottom-of-the-stack symbol
Z � ⇥ � ✓ � � Dist(�) ✓ (� \ { “0 }ò is the probability transition relation

Joost-Pieter Katoen Probabilistic Programming 30/31

T t -

stack
stack

symbol

Probabilistic Programming Recursion

Recursion: pushdown Markov chains

Joost-Pieter Katoen Probabilistic Programming 31/31

→← → → O %D
.

Pie -
-

y

prog = call P

