
Probabilistic Programming

Probabilistic Programming

Lecture #4: Probabilistic GCL

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/31



Probabilistic Programming Probabilistic Guarded Command Language

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics

3 Recursion

Joost-Pieter Katoen Probabilistic Programming 2/31



Probabilistic Programming Probabilistic Guarded Command Language

Dijkstra’s guarded command language: Syntax

Z skip empty statement
Z diverge divergence
Z x := E assignment
Z prog1 ; prog2 sequential composition
Z if (G) prog1 else prog2 choice
Z prog1 [] prog2 non-deterministic choice
Z while (G) prog iteration
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Probabilistic Programming Probabilistic Guarded Command Language

Elementary pGCL ingredients

Z Program variables x " Vars whose values are fractional numbers

Z Arithmetic expressions E over the program variables

Z Boolean expressions G (guarding a choice or loop) over the program
variables

Z A distribution expression µ ⇥ � � Dist(Q)
Z A probability expression p ⇥ � � [0, 1] = Q
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Probabilistic Programming Probabilistic Guarded Command Language

Probabilistic GCL: Syntax

Kozen McIver Morgan

Z skip empty statement
Z diverge divergence
Z x := E assignment
Z x :r= mu random assignment (x ⇥ ⌅µ)
Z prog1 ; prog2 sequential composition
Z if (G) prog1 else prog2 choice
Z prog1 [p] prog2 probabilistic choice

Z while (G) prog iteration

Conditioning in the form of observe-statements omitted for now.
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Probabilistic Programming Probabilistic Guarded Command Language

Let’s start simple

x := 0 [0.5] x := 1;
y := -1 [0.5] y := 0

This program admits four runs and yields the outcome:

Pr[x =0, y =0] = Pr[x =0, y =�1] = Pr[x =1, y =0] = Pr[x =1, y =�1] = 1/4
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Probabilistic Programming Probabilistic Guarded Command Language

A loopy program

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

The loopy program models a geometric distribution with parameter p.

Pr[i = N] = (1�p)N�1 � p for N > 0
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Probabilistic Programming Probabilistic Guarded Command Language

On termination

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program does not always terminate. It almost surely terminates.
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Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly
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Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly
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Probabilistic Programming Probabilistic Guarded Command Language

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}
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Probabilistic Programming Probabilistic Guarded Command Language

Random assignments

The random assignment x ⇥ ⌅µ works as follows:

1. evaluate distribution expression µ in the current program state s
2. sample from the resulting probability distribution µ(s) yielding value v with

probability µ(s)(v )
3. assign the value v to the variable x .

For denoting distribution expressions, we use the bra–ket notation.

1
2 � [aã + 1

3 � [bã + 1
6 � [cã

denotes the distribution µ with µ(a) = 1/2, µ(b) = 1/3, and µ(c) = 1/6. The support
set of µ equals { a, b, c }
Examples on the black board.
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Probabilistic Programming Operational semantics

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics

3 Recursion

Joost-Pieter Katoen Probabilistic Programming 12/31



Probabilistic Programming Operational semantics

Why formal semantics matters

Z Unambiguous meaning to all programs

Z Basis for proving correctness
Z of programs
Z of program transformations
Z of program equivalence
Z of static analysis
Z of compilers
Z . . . . . .
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Probabilistic Programming Operational semantics

The inventors of semantics

Tony Hoare Robert W. Floyd Gordon Plotkin

Christopher Strachey Dana Scott
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Probabilistic Programming Operational semantics

Approaches to semantics

Z Operational semantics: (developed by Plotkin)
Z The meaning of a program in terms of how it executes on an abstract

machine.
Z Useful for modelling the execution behaviour of a program.

Z Axiomatic semantics: (developed by Floyd and Hoare)
Z Provides correctness assertions for each program construct.
Z Useful for verifying that a program’s computed results are correct with

respect to the specification.

Z Denotational semantics: (developed by Strachey and Scott)
Z Provides a mapping of language constructs onto mathematical objects.
Z Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Later: denotational semantics of pGCL in terms of weakest preconditions.
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Probabilistic Programming Operational semantics

Structural operational semantics: ingredients

Z Variable valuation s ⇥ Vars � Q maps each program variable onto a
value (here: rational numbers)

Z Expression valuation1, let [[E ]] denote the valuation of expression E

Z Configuration (aka: state) ÖP, sã denotes that
Z program P is about to be executed (aka: program counter)
Z and the current variable valuation equals s.

Z Transition rules for the execution of commands: ÖP, sã ∫ ÖP ¨, s ¨ã
transition rules are written as

premise
conclusion

where the premise is omitted if it is vacuously true.

1Here, we will not go into the details of this (simple) part.
Joost-Pieter Katoen Probabilistic Programming 16/31
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Probabilistic Programming Operational semantics

Recall: Markov chains

A Markov chain (MC) is a triple (�, ‡I , P) with:
Z � being a countable set of states
Z ‡I " � the initial state, and
Z P ⇥ � � Dist(�) the transition probability function

where Dist(�) is a discrete probability measure on �.
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Probabilistic Programming Operational semantics

Operational semantics

Aim: Model the behaviour of a pGCL program P by the MC [[P ]].
Approach:

Z Take states of the form
Z ÖQ, sã with program Q or ⇤, and variable valuation s ⇥ Vars � Q
Z Ösinkã models program termination (successful or violated observation)

Z Take initial state ‡I = ÖP, sã where s fulfils the initial conditions
Z Transition relation � is the smallest relation satisfying the SOS rules

on the next slides
Z Where transition probabilities equal to one are omitted
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Probabilistic Programming Operational semantics

Transition rules (1)

Öskip, sã � Ö⇤, sã Ödiverge, sã � Ödiverge, sã

Ö⇤, sã � Ösinkã Ösinkã � Ösinkã
Öx ⇥= E , sã � Ö⇤, s[x ⇥= s([[E ]])]ã

µ(s)(v ) = a > 0Öx ⇥ ⌅µ, sã a��� Ö⇤, s[x ⇥= v ]ã
ÖP[ p]Q, sã � µ with µ(ÖP, sã) = p and µ(ÖQ, sã) = 1�p
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Probabilistic Programming Operational semantics
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Probabilistic Programming Operational semantics
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Probabilistic Programming Operational semantics

Transition rules (2)

ÖP, sã � µÖP; Q, sã � ‹
with ‹(ÖP ¨; Q ¨, s ¨ã) = µ(ÖP ¨, s ¨ã) where ⇤; Q = Q

s Ï GÖif (G){P} else {Q}, sã � ÖP, sã s /Ï GÖif (G){P} else {Q}, sã � ÖQ, sã
s Ï GÖwhile(G){P}, sã � ÖP; while (G){P}, sã s /Ï GÖwhile(G){P}, sã � Ö⇤, sã
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Probabilistic Programming Operational semantics
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Probabilistic Programming Operational semantics
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Probabilistic Programming Operational semantics

Example
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Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

This (parametric) MC is finite. Once we count the number of shots before one of the
cowboys dies, the MC becomes countably infinite.
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Probabilistic Programming Operational semantics
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Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p
Z Y is a random variable, geometrically distributed with parameter q

Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31



Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p

Z Y is a random variable, geometrically distributed with parameter q
Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31



Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p
Z Y is a random variable, geometrically distributed with parameter q

Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31



Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p
Z Y is a random variable, geometrically distributed with parameter q

Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31



Probabilistic Programming Operational semantics

Playing with geometric distributions

Z X is a random variable, geometrically distributed with parameter p
Z Y is a random variable, geometrically distributed with parameter q

Q: generate a sample x , say, according to the random variable X � Y

int XminY1(float p, q){ // 0 <= p, q <= 1
int x := 0;
bool flip := false;
while (not flip) { // take a sample of X to increase x

(x +:= 1 [p] flip := true);
}
flip := false;
while (not flip) { // take a sample of Y to decrease x

(x -:= 1 [q] flip := true);
}
return x; // a sample of X-Y

}

Joost-Pieter Katoen Probabilistic Programming 23/31



Probabilistic Programming Operational semantics

An alternative program

int XminY2(float p, q){
int x := 0;
bool flip := false;
(flip := false [0.5] flip := true); // flip a fair coin
if (not flip) {

while (not flip) { // sample X to increase x
(x +:= 1 [p] flip := true);

}
} else {

flip := false; // reset flip
while (not flip) { // sample Y to decrease x

x -:= 1;
(skip [q] flip := true);

}
}

return x; // a sample of X-Y
}
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Probabilistic Programming Operational semantics

Program equivalence: X � Y

int XminY1(float p, q){
int x, c := 0, 1;
while (c) {

(x +:= 1 [p] c := 0);
}
c := 1;
while (c) {

(x -:= 1 [q] c := 0);
}
return x;

}

int XminY2(float p, q){
int x := 0;
(c := 0 [0.5] c := 1);
if (c) {

while (c) {
(x +:= 1 [p] c := 0);

}
} else {

c := 1;
while (c) {

x -:= 1;
(skip [q] c := 0);

}
}

return x;
}

The probability that x = k for some k " Z coincides for both programs if and only if
q = 1

2�p .
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Probabilistic Programming Operational semantics

The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

In fact, this is a sub-distribution (probability mass at most one), as with a certain
probability P may diverge.

Let P be a pGCL program and s an input state. Then the distribution over final
states obtained by running P starting in s is given by Pr(s Ï É Ö⇤, �ã).
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Probabilistic Programming Operational semantics

Reachability probabilities

If the MC [[P ]] of pGCL program P has finitely many states, reachability
probabilities can be obtained in an automated manner. This applies to the

cowboy example for given probabilities a and b.

The same holds for expected rewards, e.g., the expected number of steps until
termination of a finite-state program P.
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Probabilistic Programming Recursion

Overview

1 Probabilistic Guarded Command Language

2 Operational semantics

3 Recursion
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Probabilistic Programming Recursion

Probabilistic GCL with recursion: Syntax

Z skip empty statement
Z diverge divergence
Z x := E assignment
Z x :r= mu random assignment (x ⇥ ⌅µ)
Z prog1 ; prog2 sequential composition
Z if (G) prog1 else prog2 choice
Z prog1 [p] prog2 probabilistic choice
Z while (G) prog iteration
Z P = prog process definition

Z call P process invocation

Recursion does not increase the expressive power, but is often convenient.
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Probabilistic Programming Recursion

Pushdown Markov chains

Pushdown Markov chain

A pushdown Markov chain D is a tuple (�, ‡I , �, “0, �) where:
Z � is a countable set of (control) states
Z ‡I " � is the initial (control) state
Z � is a finite stack alphabet
Z “0 " � is the bottom-of-the-stack symbol
Z � ⇥ � ✓ � � Dist(�) ✓ (� \ { “0 }ò is the probability transition relation
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Probabilistic Programming Recursion

Recursion: pushdown Markov chains
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