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Probabilistic Programming Probabilistic Guarded Command Language

Overview

@ Probabilistic Guarded Command Language
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Dijkstra’s guarded command language: Syntax

> skip empty statement
> diverge divergence
» x :=E assignment
» progl ; prog2 sequential composition
» if (G) progl else prog2 choice
» progl [] prog2 non-deterministic choice
» while (G) prog iteration
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Elementary pGCL ingredients

» Program variables x € Vars whose values are fractional numbers
> Arithmetic expressions E over the program variables zxad,

» Boolean expressions G (guarding a choice or loop) over the program
variables w <
g

» A distribution expression p : ¥ = Dist(Q) = (o) = Dt ( Q)

» A probability expression p: X - [0,1] n Q

1\ —_— o~
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Probabilistic Programming Probabilistic Guarded Command Language

Probabilistic GCL: Syntax

Mclver

» skip empty statement
> diverge divergence
» x := E \ assignment
> x :r= mu P=z random assignment (x : = pu)
» progl ; prg p= Té—x sequential composition
» if (G) pyogl else prog2 choice
» progt [p] prog2 *=2 *=4 probabilistic choice
» while (G) prog p= % o= % iteration
Conditioning in the form of observe-statements omitted for now.
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, i
Let’s start simple

x :=0 [05] X = 1’ // -?\\% a ‘VQ\\' con
y :=-1[0.5] y :=0 /N Rwp e Lo conn

This program admits four runs and yields the outcome:

Pix=0,y=0] = P{x=0,y=-1] = P{x=1,y=0] = Pix=1,y=-1] = Y/
—N~— —— N

e —
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A loopy program

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {
i++;
(c := false [p] c := true) 7 v °'\5‘°"°d‘
} —_— — cov
—

The loopy program models a geometric distribution with parameter p.

Pli=N] = (1-p)""-p for N>0
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Probabilistic Programming Probabilistic Guarded Command Language

On termination

bool ¢ := true;

int i := 0;
while (c) {

i++;

(c := false [p] c := true)
3 —

This program does not always terminate. It almost surely terminates.

= ione o —Rﬂ“\ﬂ@h(‘«a mr\’S =0
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Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly

EURD INTERNATIDNAL FILMS s

mmmm.m
e A el
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Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly

EURD IHTEHNMI[]HAL fIlMS racstm
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Duelling cowboys ¢ oo™
. Y. &
wgﬁﬂg}ﬁ’°

/ N ¢
I S
L'

int cowboyDuel(float a, ) {
int t := A [0.5] t := B;

24

bool ¢ := true; K___ kuon
while (c) {
if (¢t = A) {
(c := false [a] t := B);
} else {
(c := false [b] t := A);
}
}

return t; // SecuNor
}
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Random assignments Xt = wal [4..204]

The random assignmeny x : = p )works as follows: Yy=2
1. evaluate distribution expression p in the current program state s wn§ C‘\..I-J

2. sample from the resulting probability distribution u(s) yielding value v with
probability u(s)(v)

3. assign the value v to the variable x.

b
un;¥[«..23](;)(3) =73

Slyd=2
For denoting distribution expressions, we use the bra—ket notation.

denotes the distribution p with p(a) = 1/2, u(b) = 1/3, and u(c) = 1/6. The support
set of u equals {a, b, c}

|
Examples on the black board.
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X = —\i[x,\—sﬁ Sy (x=
eo‘uNe\e.E
A= R C%,:( Kz %K-A
4 = \ =)
ol L X351+ (x>
‘K\—\'w \X\+/\
~—_———————
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Probabilistic Programming Operational semantics

Overview

@ Operational semantics
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Why formal semantics matters

» Unambiguous meaning to all programs

» Basis for proving correctness
» of programs

of program transformations

of program equivalence

of static analysis

of compilers

vV v vy
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Probabilistic Programming Operational semantics

The inventors of semantics

Christopher Strachey 43%3 Dana Scott
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Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on an abstract
machine.
» Useful for modelling the execution behaviour of a program.
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Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on an abstract
machine.
» Useful for modelling the execution behaviour of a program.

» Axiomatic semantics: (developed by Floyd and Hoare)
» Provides correctness assertions for each program construct.
» Useful for verifying that a program’s computed results are correct with

i?"z P 1pst)

respect to the specification.

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on an abstract
machine.
» Useful for modelling the execution behaviour of a program.

» Axiomatic semantics: (developed by Floyd and Hoare)
» Provides correctness assertions for each program construct.
» Useful for verifying that a program’s computed results are correct with
respect to the specification.

» Denotational semantics: (developed by Strachey and Scott)
» Provides a mapping of language constructs onto mathematical objects.
» Useful for obtaining an abstract insight into the working of a program.
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Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on a

machine.
» Usefuf Tor modelling the execution behaviour of a program.

» Axiomatic semantics: (developed by Floyd and Hoare)
» Provides correctness assertions for each program construct.
» Useful for verifying that a program’s computed results are correct with
respect to the specification.

» Denotational semantics: (developed by Strachey and Scott)
» Provides a mapping of language constructs onto mathematical objects.
» Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.
———
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Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on an abstract
machine.
» Useful for modelling the execution behaviour of a program.

» Axiomatic semantics: (developed by Floyd and Hoare)
» Provides correctness assertions for each program construct.
» Useful for verifying that a program’s computed results are correct with
respect to the specification.

» Denotational semantics: (developed by Strachey and Scott)
» Provides a mapping of language constructs onto mathematical objects.
» Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Later: denotational semantics of pGCL in terms of weakest preconditions.
—
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Structural operational semantics: ingredients

» Variable valuation s : Vars - Q maps each program variable onto a

value (here: rational numbers) s(x) = %.
.5(:)).- A

P%‘fe ~

1 . . . . .
Here, we will not go into the details of this (simple) part.
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Probabilistic Programming

Operational semantics

Structural operational semantics: ingredients

» Variable valuation s : Vars - Q maps each program variable onto a
value (here: rational numbers)

» Expression valuation®, |@note the valuation of expression E

P
= = bR
s« 3 E=-2x 43

S(D)—'- 1 ]TEI{(S) _ 2'(%)1* \

"Here, we will not go into the details of this (simple) part.
Joost-Pieter Katoen
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Structural operational semantics: ingredients

» Variable valuation s : Vars - Q maps each program variable onto a
value (here: rational numbers)

» Expression valuation®, let [[ £ ] denote the valuation of expression E

MC
» Configuration (aka: state) (P, s) denotes that

» program P is about to be executed (aka: program counter)
» and the current variable valuation equals s.

1 . . . . .
Here, we will not go into the details of this (simple) part.
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Structural operational semantics: ingredients

» Variable valuation s : Vars - Q maps each program variable onto a
value (here: rational numbers)

» Expression valuation®, let [[ £ ] denote the valuation of expression E

» Configuration (aka: state) (P, s) denotes that

» program P is about to be executed (aka: program counter)
» and the current variable valuation equals s.

» Transition rules for the execution of commands: (P, s) — (P, s)
premise

transition rules are written as ——
conclusion

where the premise is omitted if it is vacuously true.

"Here, we will not go into the details of this (simple) part.
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Recall: Markov chains

A Markov chain (MC) is a triple (X, o, P) with:

» > being a countable set of states

» o, € X the initial state, and

» P:X - Dist{XY) the transition probability function
where Dist(X) is a discrete probability measure on X.
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Probabilistic Programming Operational semantics

Operational semantics

Aim: Model the behaviour of a pGCL prograrr@y the MC [ P1].

Approach:
» Take states of the form

» (Q, s) with program Q or |, and variable valuation s : Vars > Q
» (sink) models program termination (successful or violated observation)

<\, s !
Q

<P sy ,\,‘/\r\r\zvvv\b<~L,S5 s (s

a'\\lﬁj“;j Lehow surs
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Operational semantics

Aim: Model the behaviour of a pGCL program P by the MC [ P ]

Approach:
» Take states of the form

» (Q, s) with program Q or |, and variable valuation s : Vars > Q
» (sink) models program termination (successful or violated observation)

» Take initial state o; = (P, s) where s fulfils the initial conditions
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Operational semantics

Aim: Model the behaviour of a pGCL program P by the MC [ P ]

Approach:
» Take states of the form

» (Q, s) with program Q or |, and variable valuation s : Vars > Q
» (sink) models program termination (successful or violated observation)

» Take initial state o; = (P, s) where s fulfils the initial conditions

» Transition relatio@is the smallest relation satisfying the SOS rules
on the next slides

» Where transition probabilities equal to one are omitted
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Transition rules (1)

1
(skip, s) 4 (1,s) (diverge, s) — (diverge, s)
N ——
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Transition rules (1)

(skip, s) = (!, s) (diverge, s) — (diverge, s)

{1, s) A (sink) (sink) 1 (sink)
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Transition rules (1)

(skip, s) = (!, s) (diverge, s) — (diverge, s)
({1, s) = (sink) (sink) — (sink)

(x:=E, s) > (L s[x=s([ ED])

T g\)c\uc‘&( E \w €
(
AR
%
o sign Meak welne Y X
v & o x=¢2
S tx ‘= \/] (2) =
— s(@) 3 x4=
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Transition rules (1)

(skip, s) = (!, s) (diverge, s) — (diverge, s)
({1, s) = (sink) (sink) — (sink)

(x:=E, s) > (L s[x=s([ED])

@v)=a>0

(x:xp, s) D, s[x = v])

5(3)21
K LR pn K= oad [4--233
—_—
S
N=3 x= 4
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Transition rules (1)

(skip, s) = (!, s) (diverge, s) — (diverge, s)
({1, s) = (sink) (sink) — (sink)

(x:=E, s) > (L s[x=s([ED])

(PLP] @, s) = pwith u((P,s)) = p and p((Q, s)) = 1-p

\’

e Dk ( 2)
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Probabilistic Programming Operational semantics

Transition rules (2) (= 5D — [, &
/ c ﬁxs'c (i)
% with v{(P'; @ ,5) = u((P'5) Where
\

(P,s) i9 (?/, s’) (P,s) — s')

(7@, = (7; 857 (P59,) = (138,5)
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Probabilistic Programming Operational semantics

Transition rules (2)

with v((P"; @', s)) = u((P', s)) where 1; Q= Q

(P.s)-pu
(P;Q,s)»v
sEG sEG
(if (G){P} else {Q},s) = (Q,s)

(if (G){P} else {Q},s) = (P, s)

\/—\/\_
G>= X'>?.3

G0 =3
S ¥G
(W) = 7
S =2 s =Q SG) > 2 sy
) ?E_ > 2-1

Probabilistic Programming
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Transition rules (2)

P, s) - ot o
%with v((P'; Q' s")) = u((P',s")) where |;Q=Q
sEG sFG

(if (G){P} else {Q},s) = (P, s) (if (G){P} else {Q},s) = (Q,s)

sEG sEG
{while(G){P}, s) = {P; while (G){P}, s) (while(G){P},s) = (L, s)
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Probabilistic Programm Operational semantics

Example

ieter Katoen
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Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;

bool ¢ := true;
while (c) {
if (¢t =4A) {
(c := false [a] t := B);
} else {
(c := false [b] t := A);
}
}
return t;
+

Probabilistic Programming
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Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {

2 int t := A [0.5] t := B;
* bool c := true;
L, while (c) {
s if (& =
b @[aJtFB);
} else
(c := false [b] t := A);
}
}
return t;
}

Probabilistic Programming
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Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;

bool ¢ := true;
while (c) {
if (¢t =4A) {
(c := false [a] t := B);
} else {
(c := false [b] t := A);
}
}
return t;

3

This (parametric) MC is finite.

Probabilistic Programming
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Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;

bool ¢ := true; Wwe ©=0
while (c) {
if (¢t =4A) {
(c := false [a] t := B); (>
} else {
(c := false [b] t := A); (3=
}
}
return t;
}

This (parametric) MC is finite. Once we count the number of shots before one of the

cowboys dies, the MC becomes countably infinite.

Probabilistic Programming
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Playing with geometric distributions
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Playing with geometric distributions

» X is a random variable, geometrically distributed with parameter p
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Playing with geometric distributions

|
» X is a random variable, geometrically distributed with parameter p

» Y is a random variable, geometrically distributed with parameter g
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Playing with geometric distributions
|
» X is a random variable, geometrically distributed with parameter p

» Y is a random variable, geometrically distributed with parameter g

Q: generate a sample x, say, according to the random variable X - Y
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Playing with geometric distributions
.
» X is a random variable, geometrically distributed with parameter p

» Y is a random variable, geometrically distributed with parameter g

Q: generate a sample x, say, according to the random variable X - Y

int XminY1(float p, qQ){ // 0 <=p, ¢ <=1

int x := 0;

bool flip := false;

while (not flip) { // take a sample of X to increase z
(x +:= 1 [p] flip := true);

}

flip := false;

while (not flip) { // take a sample of Y to decrease z
(x -:=1 [q] flip := true);

}

return x; // a sample of X-Y
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An alternative program

int XminY2(float p, q){
int x := 0;
bool flip := false;
(flip := false [0.5] flip := true); // flip a fair coin
if (not flip) {
while (not flip) { // sample X to increase z
(x +:= 1 [p] flip := true);
}
} else {
flip := false; // reset flip
while (not flip) { // sample Y to decrease z
X —:=1;
(skip [q] flip := true);

b
return x; // a sample of X-Y
X

Joost-Pieter Katoen Probabilistic Programming



Program equivalence: X - Y
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Program equivalence: X - Y

int XminY1(float p, q){
int x, ¢ := 0, 1;
while (c) {

(x +:= 1 [p] c := 0);
}
c :=1;
while (c) {
(x -:=1 [q] ¢ :=0);
}
return x;
}
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Probabilistic Programming Operational semantics

Program equivalence: X - Y
int XminY2(float p, q){

int x := 0;
int XminY1(float p, g){ i; EZ)O{[O'SJ T
121_:1}:,( C) :{= 0, 1; while (c) {
while (c (x +:=1 [p]l c := 0);
(x +:= 1 [p] c := 0); }
} L } else {
cC = 1, c :=1:
while (c) { ile (
(x -:=1 [q] ¢c :=0); Wh}il_e.ici.{
} : ’ =) -
return x; } (skip lal c := 03
} }
return Xx;
}
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Probabilistic Programming Operational semantics

Program equivalence: X - Y
int XminY2(float p, q){

int x := 0;
int XminY1(float p, g){ i; EZ)O{[O'SJ T
121_:1}:,( C) :{= 0, 1; while (c) {
while (c (x +:=1 [p]l c := 0);
(x +:= 1 [p] c := 0); }
} L } else {
c :=1; c :=1:
while (c) { ile (
(x -:=1 [q] ¢c :=0); Wh}zl_e.ici.{
} : ’ =) -
return x; } (skip lal c := 03
} }
return Xx;
}

The probability that x = k for some k € Z coincides for both programs if and only if

q=.
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The outcome of a pGCL program
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The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

<l 8
%

S(x) = . V.
‘5(3) =W
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The outcome of a pGCL program

s>

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

In fact, this is a sub-distribution (probability mass at most one), as with a certain
probability P may diverge.

j\At 2 — Tcm]
Z )A(O') =1

gcZ

oec¥
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The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

In fact, this is a sub-distribution (probability mass at most one), as with a certain
probability P may diverge.

Let P be a pGCL program and s an input state. Then the distribution over final
states obtained by running P starting in s is given by Pr{s E & (U, ¢)).
N
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Reachability probabilities

If the MC [[ P ] of pGCL program P has finitely many states, reachability
probabilities can be obtained in an automated manner. This applies to the
cowboy example for given probabilities a and b.

\ \
2 3
The same holds for expected rewards, e.g., the expected number of steps until
termination of a finite-state program P.
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Probabilistic Programming Recursion

Overview

© Recursion




Probabilistic GCL with recursion: Syntax

> skip empty statement
> diverge divergence
» x := E assignment
> x :r= mu random assignment (x : = p)
» progl ; prog2 sequential composition
> if (G) progl else prog2 choice
» progl [p] prog2 probabilistic choice
» while (G) prog iteration

process definition
@ process invocation

Recursion does not increase the expressive power, but is often convenient.
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Pushdown Markov chains

Pushdown Markov chain

A pushdown Markov chain D is a tuple (X, o/, T, 79, A) where:

» Y is a countable set of (control) states

» o) € L is the initial (control) state
» [ is a finite stack alphabet
» 7o €T is the bottom-of-the-stack symbol
» A: X xT - Dist(X)x (T'\ {7} is the probability transition relation
71 )
S’\"c\c S')":Ck
Syl
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Probabilistic Programming Recursion

Recursion: pushdown Markov chains

push(5)

pop(4)

empty i%g éi
4

pop(5)

push({)
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