Probabilistic Programming

Probabilistic Programming

Lecture #4: Probabilistic GCL

Joost-Pieter Katoen

: Software Modeling

‘ Bl and Verification Chair

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/31

Probabilistic Programming Probabilistic Guarded Command Language

Overview

@ Probabilistic Guarded Command Language

Joost-Pieter Katoen ilistic Programming

Dijkstra’s guarded command language: Syntax

> skip empty statement
> diverge divergence
» x :=E assignment
» progl ; prog2 sequential composition
» if (G) progl else prog2 choice
» progl [] prog2 non-deterministic choice
» while (G) prog iteration

Joost-Pieter Katoen Probabilistic Programming

Elementary pGCL ingredients

» Program variables x € Vars whose values are fractional numbers
> Arithmetic expressions E over the program variables zxad,

» Boolean expressions G (guarding a choice or loop) over the program
variables w <
g

» A distribution expression p : ¥ = Dist(Q) = (o) = Dt (Q)

» A probability expression p: X - [0,1] n Q

1\ —_— o~

L
*

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic Guarded Command Language

Probabilistic GCL: Syntax

Mclver

» skip empty statement
> diverge divergence
» x := E \ assignment
> x :r= mu P=z random assignment (x : = pu)
» progl ; prg p= Té—x sequential composition
» if (G) pyogl else prog2 choice
» progt [p] prog2 *=2 *=4 probabilistic choice
» while (G) prog p= % o= % iteration
Conditioning in the form of observe-statements omitted for now.
Joost-Pieter Katoen Probabilistic Programming 5/31

, i
Let’s start simple

x :=0 [05] X = 1’ // -?\\% a ‘VQ\\' con
y :=-1[0.5] y :=0 /N Rwp e Lo conn

This program admits four runs and yields the outcome:

Pix=0,y=0] = P{x=0,y=-1] = P{x=1,y=0] = Pix=1,y=-1] = Y/
—N~— —— N

e —

Joost-Pieter Katoen Probabilistic Programming

A loopy program

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {
i++;
(c := false [p] c := true) 7 v °'\5‘°"°d‘
} —_— — cov
—

The loopy program models a geometric distribution with parameter p.

Pli=N] = (1-p)""-p for N>0

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Probabilistic Guarded Command Language

On termination

bool ¢ := true;

int i := 0;
while (c) {

i++;

(c := false [p] c := true)
3 —

This program does not always terminate. It almost surely terminates.

= ione o —Rﬂ“\ﬂ@h(‘«a mr\’S =0

Joost-Pieter Katoen

Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly

EURD INTERNATIDNAL FILMS s

mmmm.m
e A el

Joost-Pieter Katoen Probabilistic Programming 9/31

Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly

EURD IHTEHNMI[]HAL fIlMS racstm

cmmmm.m

s

Joost-Pieter Katoen Probabilistic Programming

Duelling cowboys ¢ oo™
. Y. &
wgﬁﬂg}ﬁ’°

/ N ¢
I S
L'

int cowboyDuel(float a,) {
int t := A [0.5] t := B;

24

bool ¢ := true; K___ kuon
while (c) {
if (¢t = A) {
(c := false [a] t := B);
} else {
(c := false [b] t := A);
}
}

return t; // SecuNor
}

Joost-Pieter Katoen Probabilistic Programming

Random assignments Xt = wal [4..204]

The random assignmeny x : = p)works as follows: Yy=2
1. evaluate distribution expression p in the current program state s wn§ C‘\..I-J

2. sample from the resulting probability distribution u(s) yielding value v with
probability u(s)(v)

3. assign the value v to the variable x.

b
un;¥[«..23](;)(3) =73

Slyd=2
For denoting distribution expressions, we use the bra—ket notation.

denotes the distribution p with p(a) = 1/2, u(b) = 1/3, and u(c) = 1/6. The support
set of u equals {a, b, c}

|
Examples on the black board.

Joost-Pieter Katoen Probabilistic Programming

X = —\i[x,\—sﬁ Sy (x=
eo‘uNe\e.E
A= R C%,:(Kz %K-A
4 = \ =)
ol L X351+ (x>
‘K\—\'w \X\+/\
~—_———————
KK =2
sS(x)=2

Probabilistic Programming Operational semantics

Overview

@ Operational semantics

Joost-Pieter Katoen istic Programming

Why formal semantics matters

» Unambiguous meaning to all programs

» Basis for proving correctness
» of programs

of program transformations

of program equivalence

of static analysis

of compilers

vV v vy

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics

The inventors of semantics

Christopher Strachey 43%3 Dana Scott

Joost-Pieter Katoen Probabilistic Programming 14/31

Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on an abstract
machine.
» Useful for modelling the execution behaviour of a program.

Joost-Pieter Katoen tic Programming

Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on an abstract
machine.
» Useful for modelling the execution behaviour of a program.

» Axiomatic semantics: (developed by Floyd and Hoare)
» Provides correctness assertions for each program construct.
» Useful for verifying that a program’s computed results are correct with

i?"z P 1pst)

respect to the specification.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on an abstract
machine.
» Useful for modelling the execution behaviour of a program.

» Axiomatic semantics: (developed by Floyd and Hoare)
» Provides correctness assertions for each program construct.
» Useful for verifying that a program’s computed results are correct with
respect to the specification.

» Denotational semantics: (developed by Strachey and Scott)
» Provides a mapping of language constructs onto mathematical objects.
» Useful for obtaining an abstract insight into the working of a program.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on a

machine.
» Usefuf Tor modelling the execution behaviour of a program.

» Axiomatic semantics: (developed by Floyd and Hoare)
» Provides correctness assertions for each program construct.
» Useful for verifying that a program’s computed results are correct with
respect to the specification.

» Denotational semantics: (developed by Strachey and Scott)
» Provides a mapping of language constructs onto mathematical objects.
» Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.
———

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics

Approaches to semantics

» Operational semantics: (developed by Plotkin)
» The meaning of a program in terms of how it executes on an abstract
machine.
» Useful for modelling the execution behaviour of a program.

» Axiomatic semantics: (developed by Floyd and Hoare)
» Provides correctness assertions for each program construct.
» Useful for verifying that a program’s computed results are correct with
respect to the specification.

» Denotational semantics: (developed by Strachey and Scott)
» Provides a mapping of language constructs onto mathematical objects.
» Useful for obtaining an abstract insight into the working of a program.

Today: operational semantics of pGCL in terms of Markov chains.

Later: denotational semantics of pGCL in terms of weakest preconditions.
—

Joost-Pieter Katoen Probabilistic Programming

Structural operational semantics: ingredients

» Variable valuation s : Vars - Q maps each program variable onto a

value (here: rational numbers) s(x) = %.
.5(:)).- A

P%‘fe ~

1
Here, we will not go into the details of this (simple) part.
Joost-Pieter Katoen Probabilistic Programming 16/31

Probabilistic Programming

Operational semantics

Structural operational semantics: ingredients

» Variable valuation s : Vars - Q maps each program variable onto a
value (here: rational numbers)

» Expression valuation®, |@note the valuation of expression E

P
= = bR
s« 3 E=-2x 43

S(D)—'- 1]TEI{(S) _ 2'(%)1* \

"Here, we will not go into the details of this (simple) part.
Joost-Pieter Katoen

Probabilistic Programming 16/31

Structural operational semantics: ingredients

» Variable valuation s : Vars - Q maps each program variable onto a
value (here: rational numbers)

» Expression valuation®, let [[£] denote the valuation of expression E

MC
» Configuration (aka: state) (P, s) denotes that

» program P is about to be executed (aka: program counter)
» and the current variable valuation equals s.

1
Here, we will not go into the details of this (simple) part.
Joost-Pieter Katoen Probabilistic Programming 16/31

Structural operational semantics: ingredients

» Variable valuation s : Vars - Q maps each program variable onto a
value (here: rational numbers)

» Expression valuation®, let [[£] denote the valuation of expression E

» Configuration (aka: state) (P, s) denotes that

» program P is about to be executed (aka: program counter)
» and the current variable valuation equals s.

» Transition rules for the execution of commands: (P, s) — (P, s)
premise

transition rules are written as ——
conclusion

where the premise is omitted if it is vacuously true.

"Here, we will not go into the details of this (simple) part.

Joost-Pieter Katoen Probabilistic Programming 16/31

Recall: Markov chains

A Markov chain (MC) is a triple (X, o, P) with:

» > being a countable set of states

» o, € X the initial state, and

» P:X - Dist{XY) the transition probability function
where Dist(X) is a discrete probability measure on X.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics

Operational semantics

Aim: Model the behaviour of a pGCL prograrr@y the MC [P1].

Approach:
» Take states of the form

» (Q, s) with program Q or |, and variable valuation s : Vars > Q
» (sink) models program termination (successful or violated observation)

<\, s !
Q

<P sy ,\,‘/\r\r\zvvv\b<~L,S5 s (s

a'\\lﬁj“;j Lehow surs

Joost-Pieter Katoen Probabilistic Programming

Operational semantics

Aim: Model the behaviour of a pGCL program P by the MC [P]

Approach:
» Take states of the form

» (Q, s) with program Q or |, and variable valuation s : Vars > Q
» (sink) models program termination (successful or violated observation)

» Take initial state o; = (P, s) where s fulfils the initial conditions

Joost-Pieter Katoen Probabilistic Programming

Operational semantics

Aim: Model the behaviour of a pGCL program P by the MC [P]

Approach:
» Take states of the form

» (Q, s) with program Q or |, and variable valuation s : Vars > Q
» (sink) models program termination (successful or violated observation)

» Take initial state o; = (P, s) where s fulfils the initial conditions

» Transition relatio@is the smallest relation satisfying the SOS rules
on the next slides

» Where transition probabilities equal to one are omitted

Joost-Pieter Katoen Probabilistic Programming

Transition rules (1)

1
(skip, s) 4 (1,s) (diverge, s) — (diverge, s)
N ——

Joost-Pieter Katoen Probabilistic Programming

Transition rules (1)

(skip, s) = (!, s) (diverge, s) — (diverge, s)

{1, s) A (sink) (sink) 1 (sink)

Joost-Pieter Katoen Probabilistic Programming

Transition rules (1)

(skip, s) = (!, s) (diverge, s) — (diverge, s)
({1, s) = (sink) (sink) — (sink)

(x:=E, s) > (L s[x=s([ED])

T g\)c\uc‘&(E \w €
(
AR
%
o sign Meak welne Y X
v & o x=¢2
S tx ‘= \/] (2) =
— s(@) 3 x4=

Joost-Pieter Katoen Probabilistic Programming

Transition rules (1)

(skip, s) = (!, s) (diverge, s) — (diverge, s)
({1, s) = (sink) (sink) — (sink)

(x:=E, s) > (L s[x=s([ED])

@v)=a>0

(x:xp, s) D, s[x = v])

5(3)21
K LR pn K= oad [4--233
—_—
S
N=3 x= 4

Joost-Pieter Katoen Probabilistic Programming

Transition rules (1)

(skip, s) = (!, s) (diverge, s) — (diverge, s)
({1, s) = (sink) (sink) — (sink)

(x:=E, s) > (L s[x=s([ED])

(PLP] @, s) = pwith u((P,s)) = p and p((Q, s)) = 1-p

\’

e Dk (2)

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics

Transition rules (2) (= 5D — [, &
/ c ﬁxs'c (i)
% with v{(P'; @ ,5) = u((P'5) Where
\

(P,s) i9 (?/, s’) (P,s) — s')

(7@, = (7; 857 (P59,) = (138,5)

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics

Transition rules (2)

with v((P"; @', s)) = u((P', s)) where 1; Q= Q

(P.s)-pu
(P;Q,s)»v
sEG sEG
(if (G){P} else {Q},s) = (Q,s)

(if (G){P} else {Q},s) = (P, s)

\/—\/_
G>= X'>?.3

G0 =3
S ¥G
(W) = 7
S =2 s =Q SG) > 2 sy
) ?E_ > 2-1

Probabilistic Programming

Joost-Pieter Katoen

Transition rules (2)

P, s) - ot o
%with v((P'; Q' s")) = u((P',s")) where |;Q=Q
sEG sFG

(if (G){P} else {Q},s) = (P, s) (if (G){P} else {Q},s) = (Q,s)

sEG sEG
{while(G){P}, s) = {P; while (G){P}, s) (while(G){P},s) = (L, s)

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programm Operational semantics

Example

ieter Katoen

X' =0 [_‘33 Y\ =1 ") b:fc k)\('\\t'? [’\~-’\b]
W\J
¥ <

A

(P,s> — {x:=p,sD
Q)SF> '—93 <’<7:DSQ)S(>

—S’

(x:=0, 37) —5< d, s =D

(xzos > —5 <459) s Tx:=63)

=Qq
WY ['\..’\D:S(s’) (©) = :\3; > O
=T | _L
<D\'-—-\un\g (~-- 16] S'> <&, S [5_‘()]>
5§/ =0

S Ts\)) =5

J
\ <P')’Q)S> }

A 2
/ \
Cx:zo @ s Ci=13 @, %)
]
(459, s =)D L

\ A

— —

10 \o

\7: <\\/QE><'-51 Tv «aj)

< S\\f\\cw

)

Ld\no.\(Q,\ﬂovxje_ﬁ \8‘

L= [%37(72’\ 3 \>f2 &.m\s;C’\.,X?

Pe
Q:a(—\zﬁ'O +-
T3> a4 §

7S =K
T s

Can; Shae=ed D

/

<,><::.'\—XQ>Q7\\,; K =0 Q;/\>
N I P (Q>,,\.

L
v

I

v)

N

1

@)
\/
|
A
3
o

Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;

bool ¢ := true;
while (c) {
if (¢t =4A) {
(c := false [a] t := B);
} else {
(c := false [b] t := A);
}
}
return t;
+

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {

2 int t := A [0.5] t := B;
* bool c := true;
L, while (c) {
s if (& =
b @[aJtFB);
} else
(c := false [b] t := A);
}
}
return t;
}

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;

bool ¢ := true;
while (c) {
if (¢t =4A) {
(c := false [a] t := B);
} else {
(c := false [b] t := A);
}
}
return t;

3

This (parametric) MC is finite.

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Operational semantics

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;

bool ¢ := true; Wwe ©=0
while (c) {
if (¢t =4A) {
(c := false [a] t := B); (>
} else {
(c := false [b] t := A); (3=
}
}
return t;
}

This (parametric) MC is finite. Once we count the number of shots before one of the

cowboys dies, the MC becomes countably infinite.

Probabilistic Programming

Joost-Pieter Katoen

Playing with geometric distributions

Joost-Pieter Katoen

Playing with geometric distributions

» X is a random variable, geometrically distributed with parameter p

Joost-Pieter Katoen Probabilistic Programming

Playing with geometric distributions

|
» X is a random variable, geometrically distributed with parameter p

» Y is a random variable, geometrically distributed with parameter g

Joost-Pieter Katoen Probabilistic Programming

Playing with geometric distributions
|
» X is a random variable, geometrically distributed with parameter p

» Y is a random variable, geometrically distributed with parameter g

Q: generate a sample x, say, according to the random variable X - Y

Joost-Pieter Katoen Probabilistic Programming

Playing with geometric distributions
.
» X is a random variable, geometrically distributed with parameter p

» Y is a random variable, geometrically distributed with parameter g

Q: generate a sample x, say, according to the random variable X - Y

int XminY1(float p, qQ){ // 0 <=p, ¢ <=1

int x := 0;

bool flip := false;

while (not flip) { // take a sample of X to increase z
(x +:= 1 [p] flip := true);

}

flip := false;

while (not flip) { // take a sample of Y to decrease z
(x -:=1 [q] flip := true);

}

return x; // a sample of X-Y

Joost-Pieter Katoen Probabilistic Programming

An alternative program

int XminY2(float p, q){
int x := 0;
bool flip := false;
(flip := false [0.5] flip := true); // flip a fair coin
if (not flip) {
while (not flip) { // sample X to increase z
(x +:= 1 [p] flip := true);
}
} else {
flip := false; // reset flip
while (not flip) { // sample Y to decrease z
X —:=1;
(skip [q] flip := true);

b
return x; // a sample of X-Y
X

Joost-Pieter Katoen Probabilistic Programming

Program equivalence: X - Y

Joost-Pieter Katoen

Program equivalence: X - Y

int XminY1(float p, q){
int x, ¢ := 0, 1;
while (c) {

(x +:= 1 [p] c := 0);
}
c :=1;
while (c) {
(x -:=1 [q] ¢ :=0);
}
return x;
}

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics

Program equivalence: X - Y
int XminY2(float p, q){

int x := 0;
int XminY1(float p, g){ i; EZ)O{[O'SJ T
121_:1}:,(C) :{= 0, 1; while (c) {
while (c (x +:=1 [p]l c := 0);
(x +:= 1 [p] c := 0); }
} L } else {
cC = 1, c :=1:
while (c) { ile (
(x -:=1 [q] ¢c :=0); Wh}il_e.ici.{
} : ’ =) -
return x; } (skip lal c := 03
} }
return Xx;
}

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Operational semantics

Program equivalence: X - Y
int XminY2(float p, q){

int x := 0;
int XminY1(float p, g){ i; EZ)O{[O'SJ T
121_:1}:,(C) :{= 0, 1; while (c) {
while (c (x +:=1 [p]l c := 0);
(x +:= 1 [p] c := 0); }
} L } else {
c :=1; c :=1:
while (c) { ile (
(x -:=1 [q] ¢c :=0); Wh}zl_e.ici.{
} : ’ =) -
return x; } (skip lal c := 03
} }
return Xx;
}

The probability that x = k for some k € Z coincides for both programs if and only if

q=.

Joost-Pieter Katoen Probabilistic Programming

The outcome of a pGCL program

Joost-Pieter Katoen

The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

<l 8
%

S(x) = . V.
‘5(3) =W

Joost-Pieter Katoen Probabilistic Programming

The outcome of a pGCL program

s>

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

In fact, this is a sub-distribution (probability mass at most one), as with a certain
probability P may diverge.

j\At 2 — Tcm]
Z)A(O') =1

gcZ

oec¥

Joost-Pieter Katoen Probabilistic Programming

The outcome of a pGCL program

Unlike a deterministic program, a pGCL program P has not an output for a given
input. Instead, it yields a unique probability distribution over its final states.

In fact, this is a sub-distribution (probability mass at most one), as with a certain
probability P may diverge.

Let P be a pGCL program and s an input state. Then the distribution over final
states obtained by running P starting in s is given by Pr{s E & (U, ¢)).
N

Joost-Pieter Katoen Probabilistic Programming

Reachability probabilities

If the MC [[P] of pGCL program P has finitely many states, reachability
probabilities can be obtained in an automated manner. This applies to the
cowboy example for given probabilities a and b.

\ \
2 3
The same holds for expected rewards, e.g., the expected number of steps until
termination of a finite-state program P.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Recursion

Overview

© Recursion

Probabilistic GCL with recursion: Syntax

> skip empty statement
> diverge divergence
» x := E assignment
> x :r= mu random assignment (x : = p)
» progl ; prog2 sequential composition
> if (G) progl else prog2 choice
» progl [p] prog2 probabilistic choice
» while (G) prog iteration

process definition
@ process invocation

Recursion does not increase the expressive power, but is often convenient.

Joost-Pieter Katoen Probabilistic Programming

Pushdown Markov chains

Pushdown Markov chain

A pushdown Markov chain D is a tuple (X, o/, T, 79, A) where:

» Y is a countable set of (control) states

» o) € L is the initial (control) state
» [is a finite stack alphabet
» 7o €T is the bottom-of-the-stack symbol
» A: X xT - Dist(X)x (T'\ {7} is the probability transition relation
71)
S’\"c\c S')":Ck
Syl

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Recursion

Recursion: pushdown Markov chains

push(5)

pop(4)

empty i%g éi
4

pop(5)

push({)

Joost-Pieter Katoen Probabilistic Programming

