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Probability distribution

Aiscreke

Probability distribution

Aprobability distribution on countable set X is a function
p:X —>[0,1] € R such that ) ., p(x) = 1.

The set {x | u(x) > 0} is the support set of probability distribution .

Let Dist(X) denote the set of all probability measures on X.
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Probabilistic Programming Markov Chains
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Probabilistic Programming Markov Chains

Markov chains  P(v,¢) = O
Y

I
z
P(s,.) € Dt (Z) =Plee’) o S

A Markov chain (MC) D is a triple (X, o/, P) with:

» Y being a countable set of states

» o, € ¥ the initial state, and

» P: Y - Dist(X) the transition probability function
where Dist(¥) is a (discrete) probability measure on X.

A state o € X for which P(o, o) = 1 is called absorbing.
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—
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Transition probability matrix

For MC D with finite state space X, function P is called the transition
probability matrix of D. P(o,-) <Dtk ()
Properties:

1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its
elements are in [0, 1], and each row sum equals one.

2. P has an eigenvalue of one, and all its eigenvalues are at most one.

3. For all ne N, P" is a stochastic matrix.
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Paths

Path m = 0oy ... is a path through MC D whenever P(o;, iy1) > 0 for all
natural /.

Let Paths(D) denotes the set of paths in D that start in its initial state 0.
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Probabilistic Programming Markov Chains
kransient T =4 fFeenncenk =

Ls.6)

Example

N
M= A23

GL () = i sz)\a R Q\zz)—‘- W , (113)+ L Qs':.)a‘&
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Cylinder sets

Cylinder set

The cylinder set of finite path @ = 0go1...0, in MC D is defined by:
Cyl(#) = {m € Paths(D) | # is a prefix of  }

The cylinder set spanned by finite path @ consists of all infinite paths that
have prefix 7.
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Probabilistic Programming Markov Chains

Probability measure on sets of infinite paths
P(c wc,) = P (q) + (a-®()

Probability measure

Pr is the unique probability distribution defined on cylinder sets by:

PI’(Cy/(O'()...O'n)) = H P(O',',O'H_l)

0<i<n

A
for n >0 and P(og) = 1 iff og = 0. & -\,3:;5

©
éisb&;v\k
By standard results in pe6bability theory, Pris a distribution on all sets that are
countable unions and/or complements of cylinder sets.
T, T, ..., Yiw,v): ¥(v,5). ,,,,'?(r,\_\,T,Q

057
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Reachability

Reachability

Let MC D with countable state space ¥ and G S ¥ the set of goal states.
The event eventually reaching G is defined by:

OG = {m € Paths(D) | JieN.7[i]e G}
where n[i]=0; form=0g07....

The event &G is measurable, i.e., the probability P{<OG) is well defined.
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

» Consider the event &4

{init}
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Reachability probabilities: Knuth’s die

» Consider the event &4

» We have:

0.5 ' .:) ] PH<4) = 2 P(sy...sp)

So-.-S,€(X\4*)4 #4 T

T 4

{init}
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

» Consider the event &4
» We have:
0.5 ' .:) ] Pr(&4) = 2 P(sy...s,)
So-.-S,€(X\4*)4

» This yields:
P(5052554) + P(50525652554) +..0..

{init}
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Reachability probabilities: Knuth’s die

» Consider the event &4

» We have:
0.5 ' .:) ] Pr(&4) = 2 P(sy...s,)
So-.-S,€(X\4*)4

» This yields:
P(5052554) + P(50525652554) +..0..

{init}

» Or: XP(5052(5652)k554)
k=0
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Reachability probabilities: Knuth’s die

» Consider the event &4
» We have:

0.5 ' .:) ] PH<4) = 2 P(sy...sp)

So-.-S,€(X\4*)4

» This yields:

{init} p(5052554) + P(50525652554) S

» Or: XP(5052(5652)k554)

k=0
1 o1«
» Or: §kz=0(z)
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Reachability probabilities: Knuth’s die

» Consider the event &4
» We have:

0.5 ' .:) ] PH<4) = 2 P(sy...sp)

So-.-S,€(X\4*)4

» This yields:

{init} p(5052554) + P(50525652554) S

» Or: XP(5052(5652)k554)

k=0
1 1«
VOrzg-Z(Z)
k=0
> Geometric series: Y.+ = 14 _ 1
eometric series: 8 1_% = 8 3 = 6
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

>

>

{init}

>

Consider the event &4

We have:
’D'(<>4) = P(SO . Sn)
So-..5,€(X\4*)4
This yields:
P(5052554) + P(50525652554) +..0..
< k
Or: 2 P(s052(5652)" 554)
k=0
1 w1
Or: g X(Z)
k=0
Geometric series: +— 1+ = L4 _ 1
eometric series: o 1783 " 6

4
For finite state spaces, reachability probabilities can be obtained algorithmically.
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Reachability probabilities

Problem statement
Let D be an MC with finite state space ¥, c € ¥, and G € L.
Aim: determine Pric E OG) = Pr (OG)
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Reachability probabilities

Problem statement

Let D be an MC with finite state space ¥, c € ¥, and G S ¥.
Aim: determine Pric E OG) = Pr,(OG) = P{~w € Paths(D,) | m € ©G}
where D, is the MC D with initial state o.
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Probabilistic Programming Markov Chains

Characterisation of reachability probabilities
Let variable x, = P E ©&G) for any state o be defined by:

» if o ¢ Pre*(G), then x, = 0
sherderd greph anslysis
» if 0 €/G, then x, =1

Pre” (6) = ’io-e 28 P (o POG)"DS

Sm‘a\\ Qha\a NS
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Probabilistic Programming Markov Chains

Characterisation of reachability probabilities
Let variable x, = P E ©&G) for any state o be defined by:

» if o ¢ Pre*(G), then x, = 0
» if 0 € G, then x, =1

» otherwise:
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Probabilistic Programming Markov Chains

Characterisation of reachability probabilities
Let variable x, = P E ©&G) for any state o be defined by:

» if o ¢ Pre*(G), then x, = 0
» if 0 € G, then x, =1

Te n*(6)\G

» otherwise:

% = ) Plon)x + ) Pl.)
TEX\G ~EG
. . , —
reach GviaT€eX\ G reach G in one step

Pre*(G) is the set of states in ¥ from which G is reachable, i.e.,
{cex|Plc ECG)>0}.
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

{init}
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Reachability probabilities: Knuth-Yao’s die

» Consider the event &4
» The previous characterisation yields:

X1=X=x3=x5=Xs=0and x; =1

{init}
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

» The previous characterisation yields:

X1=X=x3=x5=Xs=0and x; =1
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

» Consider the event &4
» The previous characterisation yields:

X1=X=x3=x5=Xs=0and x; =1

X5, = Xsy = X5, =0 P )
. e %,5
Xs, = 5Xs + 5%,

F(So,s\)
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Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

» The previous characterisation yields:

.D] X1=X=x3=x5=Xs=0and x; =1

{init} : = _1 1
) ' ... 1 Xso = §X51 + §X52

G 1 1
. . ] X5, = 5Xs5 T 5Xs

P \g)-_—o
0.5 S ] (SL) T<=Ss

Z ?(&,t) - X¢ <

'C:sl’
Tes\6
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

» The previous characterisation yields:

0.5 _ _ _ _ _
. .D] x1—x2—x3—X5—x6—0an

X5, = Xsy = X5, =0
{init} 1 1

Xsy = §X51 + §X52
1 1

Xs, = §X55 + Exss
1 1 \ )

X Z3X5+ 5% = 5 s+ 3
—

> ?(sy)t)_g_ S Ty, \')
ce Z\G yeG

—_—
= '\’(Ss-,Q ):£
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Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

» The previous characterisation yields:

93 .D] X1=X=x3=x5=Xs=0and x; =1
X5, = Xsy = X5, =0
{init} X, = %Xsl + %st
Xs, = %xs5 + %X55
Xg, = %xg, + %x4

1 1
Xsg = Exsz + EXG
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Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

» The previous characterisation yields:

93 .D] X1=X=x3=x5=Xs=0and x; =1
X5, = Xsy = X5, =0
{init} X, = %Xsl + %st
Xs, = %xs5 + %X55
Xg, = %xg, + %x4

1 1
Xg, = Exsz + EXG

» Gaussian elimination yields:

=1 -1 -1 -1
Xs; = 51 Xsy = 3. Xs —6,and Xsy = 5
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Linear equation system

» Let X, = Pre"(G)\ G, the states that can reach G by > 0 steps
R

on 0,1 coses
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Linear equation system

» Let X, = Pre"(G)\ G, the states that can reach G by > 0 steps

» A = (P(o,7)) the transition probabilities in X,

o, TEY,’
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Linear equation system

» Let X, = Pre"(G)\ G, the states that can reach G by > 0 steps
» A = (P(o,7))

» b = (b,)

»rex, the transition probabilities in X,

Ty the probs to reach G in 1 step, i£.
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Linear equation system

» Let X, = Pre"(G)\ G, the states that can reach G by > 0 steps
» A = (P(o,7))

» b = (b,)

orex, the transition probabilities in X

the probs to reach G in 1 step, i.e., b, = Z P(c,7)
vEG

The vector x = (X,),ex, With x, = Pr{c E &G) is the unique solution of the
linear equation system:

g€EY !
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Linear equation system

» Let X, = Pre"(G)\ G, the states that can reach G by > 0 steps
» A = (P(o,7))

» b = (b,)

orex, the transition probabilities in X

the probs to reach G in 1 step, i.e., b, = Z P(c,7)
vEG

The vector x = (X,),ex, With x, = Pr{c E &G) is the unique solution of the
linear equation system:

g€EY !

x = Ax + b or, equivalently (I-A)x = b

where | is the identity matrix of cardinality |X||X-|.
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Reachability probabilities: Knuth-Yao’s die
T

» Consider the event &4
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Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

.D] > Y7 ={50, 5,55 %}

{init}
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

> Y, ={5, % 5. 5%}
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Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

.D] > Y7 ={50, 5,55 %}

{init} 1 - % 0 0 Xs 0\ Se
o 1 -3 -2 x, | | 0 |s:
0 1 0 x | |3 |se
0 -3 0 1 Xsq 0 /sg
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Reachability probabilities: Knuth-Yao’s die

» Consider the event &4

.D] > Y7 ={50, 5,55 %}

il 1 -2 0 0 X5 0
ni 1 1
0 1 -3 -3 st _ (1)
0 0 1 0 X55 3
0 -2 o0 1 Xsg 0
> Gaussian elimination yields:
1 1 1 1
X55=5,x52=§,x56=g,and Xsy =
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Computing reachability probabilities

Polynomial complexity

Reachability probabilities in finite MCs can be computed in polynomial
time.
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Probabilistic Programming State classification

Overview

© State classification
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Probabilistic Programming State classification

First visit probabilities ©

Ao

First visit probabilities

For states o, 7 € X, let

Pr{first visit to T after exactly n steps from o} ~ ©
— P(sk)

(This differs from the probability to move from 7 to o in n steps.)

We have: by —_ Libe
P'(o,7) = ) yf wsk b T
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Probabilistic Programming State classification

Return probabilities
g =T o

Return probabilities

For state o € X, let skeps
f;n) = Pr{first return to o after exactly n(
We have:

f;") = f(i,"g = Pr{first visit to o after n steps from c}.

The return probability to state o equals: Plo F Go) = £, = Y o) f;n).
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Probabilistic Programming State classification

Transient and recurrent tes

o
(v

The return probability to o equals: P{o E Go) = £, =

=?(=‘\

Transient and recurrent states

State o is called recurrent if f, = 1, i.e., with probability one (aka: almost
surely) the MC returns to o.

State o is called transient otherwise, i.e., if £, < 1. With a positive
probability, the MC does not return to a transient state.

Example on the black board.
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Probabilistic Programming State classification

Null and positive recurrence
Let o be a recurrent state, i.e., Plo F Qo) =f, = 1.

Mean recurrence time

The mean recurrence time of recurrent state o equals

o
m, = n
n=1

. f(")

ag
This is the expected number of steps between two successive visits to o.

Null and positive recurrent states

State o is called positive recurrent whenever m, < 00. Otherwise, state o
is called null recurrent; then m, = oo.

Example on the black board.
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Null and positive recurrence in finite MC

1. Every state in a finite MC is either positive recurrent or transient.
2. At least one state in a finite MC is positive recurrent.

3. A finite MC has no null recurrent states.

L; nul recucrence S Q\b ot .\\M‘o&'\-em(e
'?0( '\\«“\\\\uh MCs.
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Foster’s theorem

A countable Markov chain is “non-dissipative”
if almost every infinite path eventually enters
— and remains in — positive recurrent states.
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Foster’s theorem

A countable Markov chain is “non-dissipative”
if almost every infinite path eventually enters
— and remains in — positive recurrent states.

Foster’s theorem

A sufficient condition for being non-dissipative is:

S j-Plij) s i forall states i
j=0
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Probabilistic Programming State classification

Foster’s theorem -

A countable Markov chain is }‘non-dissipative”
if almost every infinite path”eventually enters
— and remains in — positive recurrent states.

Foster’s theorem

A sufficient condition for being non-dissipative is:

S j-Plij) s i forall states i

720
F. Gordon Foster
= EEEE Frederic Gordon Foster
e . )
e Markoff chains with an enumerable number of states
e and a class of cascade processes
e
Doctoral David George Kendall 1 9 5 1

advisor
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Periodicity and ergodicity

Periodic state

A state o is called periodic if

;n) >0 implies n=k-d where period d > 1.

—_— —_

A state is aperiodic otherwise.

A state is ergodic if it is positive recurrent and aperiodic.
An MC is ergodic if all its states are ergodic.

xample on the black board.
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Connected states are of the same “type”

ab

Let 0 and 7 be mutually reachbefe from each other. Then:

o is transient  iff 7 is transient
o is null-recurrent  iff 7 is null-recurrent
o is positive recurrent iff 7 is positive recurrent

o has period d  iff  taef has period d
T
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Probabilistic Programming State classification

Irreducibility W nok rreduclle

Irreducible

A MC is irreducible if it is strongly connected, i.e., all states are mutually
reachable.

Markov’s theorem

A finite, irreducible MC D is (1) positive recurrent, and (2) ergodic
provided D is aperiodic. In the latter case, we have

P* = |imP"= where v:(i... i)

n—>00

where k = |Z|.
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Probabilistic Programming State classification

Stationary distribution

Stationary distribution

A probability vector x satisfying x =

x-P is called a stationary distribution
of MC D.

Y % Plr,0) iff x,-(1- =) x-

TEX

+
outflow of o i

inflow of o

An irreducible, positive recurrent MC has a unique stationary distribution
satisfying x, = mi for every state o.

Joost-Pieter Katoen
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Limiting distribution

Ergodic stochastic matrix

Stochastic matrix P is called ergodic if:

P* = lim P" exists and has identical rows

n—->00

Limiting distribution

If P is ergodic, then each row of P equals the limiting distribution.

Limiting = stationary distribution

For ergodic (aka: aperiodic and positive recurrent) MCs, the stationary
and limiting distribution are equal.
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Probabilistic Programming Rewards

Overview

9 Rewards




Rewards




Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r) with D an MC with state space X and
r: ¥ - R a function assigning a real reward to each state.

The reward r(co) stands for the reward earned on leaving state o.

Joost-Pieter Katoen
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Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r) with D an MC with state space X and
r: X = R a function assigning a real reward to each state.

The reward r(co) stands for the reward earned on leaving state o.

Cumulative reward for reachability

Let m = 0g...0, be a finite path in (D, r) and G € X a set of target states
with m € &G. The cumulative reward along 7 until reaching G is:

re(m) = r(og) + ... + r(ok_1) where o; ¢ G for all i < k and o € G.

Joost-Pieter Katoen
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Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r) with D an MC with state space X and
r: X = R a function assigning a real reward to each state.

The reward r(co) stands for the reward earned on leaving state o.

Cumulative reward for reachability

Let m = 0g...0, be a finite path in (D, r) and G € X a set of target states
with m € &G. The cumulative reward along 7 until reaching G is:

re(m) = r(og) + ... + r(ok_1) where o; ¢ G for all i < k and o € G.

If 7 ¢ &G, then rg(w) = 0.

Joost-Pieter Katoen
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Probabilistic Programming Rewards

Expected reward reachability

Expected reward for reachability

The expected reward until reaching G € ¥ from o € ¥ is:

ER(0,0G) = ) PA7)-re(7)

TEOG
Where@= 0g - . .0k is the shortest prefix of 7 such that o, € G and
A

PG )-

"'6 (T?I)
+

Pr (—/‘\TL)‘

8 (‘\’T\l)

Probabilistic Programming
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Probabilistic Programming Rewards

Expected reward reachability

Expected reward for reachability

The expected reward until reaching G € ¥ from o € ¥ is:

ER(0,0G) = ) PA7)-re(7)
TEOG

where T = 0q ... 0y is the shortest prefix of 7 such that o, € G and og = 0.

Conditional expected reward

Let ER(o, O G | =<OF) be the conditional expected reward until reaching G
under the condition that no states in F € X are visited.

Joost-Pieter Katoen
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Expected rewards in finite Markov chains

Polynomial complexity

Expected rewards in finite MCs can be computed in polynomial time.
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