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Probabilistic Programming Markov Chains

Probability distribution

Probability distribution

A probability distribution on countable set X is a function
µ ⇥ X � [0, 1] N R such that 8x"X µ(x ) = 1.

The set { x ∂ µ(x ) > 0 } is the support set of probability distribution µ.

Let Dist(X ) denote the set of all probability measures on X .
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Probabilistic Programming Markov Chains

Markov chains

Markov chain

A Markov chain (MC) D is a triple (�, ‡I , P) with:
Z � being a countable set of states
Z ‡I " � the initial state, and
Z P ⇥ � � Dist(�) the transition probability function

where Dist(�) is a (discrete) probability measure on �.

A state ‡ " � for which P(‡, ‡) = 1 is called absorbing.
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Probabilistic Programming Markov Chains

Transition probability matrix

For MC D with finite state space �, function P is called the transition
probability matrix of D.

Properties:
1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its

elements are in [0, 1], and each row sum equals one.
2. P has an eigenvalue of one, and all its eigenvalues are at most one.
3. For all n " N, P

n is a stochastic matrix.

Joost-Pieter Katoen Probabilistic Programming 7/35

Pcr
,

. ) c- Dist CE )



Use

Ceresin
's

theorem

.
let A = ( aij )

be a matrix in Cl
" × n

.

Then : every

Eigenvalue of A lies in the cycle

Cet ) k= { Zee / Iz - aii ) E ¥ ,
Iain }

=

-

: ri

Ig radius ri

-
-

-
- - aoi

-

Let P be stochastic and to be an

Eigenvalue of P
.

1) A = I b - Pci ;D t Pci ,i ) )

.
E I b - Pcii ) ) t ) Pci ,i ) )

CH E ¥ .

1Pa;D ) tlpci.it - a



Probabilistic Programming Markov Chains

Paths

Paths

Path fi = ‡0 ‡1 . . . is a path through MC D whenever P(‡i , ‡i+1) > 0 for all
natural i .
Let Paths(D) denotes the set of paths in D that start in its initial state ‡I .
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Example
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Probabilistic Programming Markov Chains

Cylinder sets

Cylinder set

The cylinder set of finite path fî = ‡0 ‡1 . . . ‡n in MC D is defined by:

Cyl(fî) = sfi " Paths(D) ∂ fî is a prefix of fi y
The cylinder set spanned by finite path fî consists of all infinite paths that
have prefix fî.
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Probabilistic Programming Markov Chains

Probability measure on sets of infinite paths

Probability measure

Pr is the unique probability distribution defined on cylinder sets by:

Pr�Cyl(‡0 . . . ‡n)⌥ = 5
0&i<n

P(‡i , ‡i+1)
for n > 0 and P(‡0) = 1 i� ‡0 = ‡I .

By standard results in probability theory, Pr is a distribution on all sets that are
countable unions and/or complements of cylinder sets.
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Probabilistic Programming Markov Chains

Reachability

Reachability

Let MC D with countable state space � and G N � the set of goal states.
The event eventually reaching G is defined by:

ÉG = {fi " Paths(D) ∂ Ωi " N. fi[i] " G }
where fi[i] = ‡i+1 for fi = ‡0 ‡1 . . ..

The event ÉG is measurable, i.e., the probability Pr(ÉG) is well defined.
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

Z Consider the event É4

Z We have:

Pr(É4) = 9
s0...sn"(�\4ò)4

P(s0 . . . sn)
Z This yields:

P(s0s2s54) + P(s0s2s6s2s54) + . . . . . .

Z Or:
ô

9
k=0

P(s0s2(s6s2)ks54)
Z Or: 1

8 �
ô

9
k=0

�14 ⌥k
Z Geometric series: 1

8 �
1

1 � 1
4

= 1
8 �

4
3 = 1

6
For finite state spaces, reachability probabilities can be obtained algorithmically.
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Probabilistic Programming Markov Chains

Reachability probabilities

Problem statement

Let D be an MC with finite state space �, ‡ " �, and G N �.
Aim: determine Pr(‡ Ï ÉG) = Pr‡(ÉG)

= Pr{fi " Paths(D‡) ∂ fi " ÉG }
where D‡ is the MC D with initial state ‡.
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Probabilistic Programming Markov Chains

Characterisation of reachability probabilities

Let variable x‡ = Pr(‡ Ï ÉG) for any state ‡ be defined by:

Z if ‡ /" Preò(G), then x‡ = 0

Z if ‡ " G , then x‡ = 1

Z otherwise:

x‡ = 9
·"�\G

P(‡, · ) � x·

Õ““““““““““““““““““““““““““““““““““““““““““““““““““““— ““““““““““““““““““““““““““““““““““““““““““““““““““““œ
reach G via · " � \ G

+ 9
“"G

P(‡, “)
Õ““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““œ

reach G in one step

Preò(G) is the set of states in � from which G is reachable, i.e.,{‡ " � ∂ Pr(‡ Ï ÉG) > 0 }.
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Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4

Z The previous characterisation yields:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1
2 xs1 +

1
2 xs2

xs2 =
1
2 xs5 +

1
2 xs6

xs5 =
1
2 x5 +

1
2 x4

xs6 =
1
2 xs2 +

1
2 x6

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6
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Probabilistic Programming Markov Chains

Linear equation system

Z Let �? = Preò(G) \ G , the states that can reach G by > 0 steps

Z A = �P(‡, · ) ⌥‡,·"�?
, the transition probabilities in �?

Z b = �b‡⌥‡"�?
, the probs to reach G in 1 step, i.e., b‡ = 9

“"G
P(‡, “)

Theorem

The vector x = (x‡)‡"�? with x‡ = Pr(‡ Ï ÉG) is the unique solution of the
linear equation system:

x = A�x + b or, equivalently (I � A)�x = b

where I is the identity matrix of cardinality ∂�?∂�∂�?∂.
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Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4

Z �? = { s0, s2, s5, s6 }
�⇣⇣⇣⇣⇣⇣�

1 � 1
2 0 0

0 1 � 1
2 � 1

2
0 0 1 0
0 � 1

2 0 1

�⌘⌘⌘⌘⌘⌘✏
�

�⇣⇣⇣⇣⇣�
xs0
xs2
xs5
xs6

�⌘⌘⌘⌘⌘✏ =
�⇣⇣⇣⇣⇣⇣�

0
0
1
2
0

�⌘⌘⌘⌘⌘⌘✏
Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6
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Probabilistic Programming Markov Chains

Computing reachability probabilities

Polynomial complexity

Reachability probabilities in finite MCs can be computed in polynomial
time.
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Probabilistic Programming State classification

First visit probabilities

First visit probabilities

For states ‡, · " �, let

f (n)‡,· = Pr {first visit to · after exactly n steps from ‡}
(This di�ers from the probability to move from · to ‡ in n steps.)
We have:

P
n(‡, · ) =

n
9
¸=1

f (¸)‡,· � Pn�¸(· , · )
The probability to reach · from state ‡ equals:

Pr(‡ Ï É · ) = f‡,· =
ô

9
n=1

f (n)‡,·
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Probabilistic Programming State classification

Return probabilities

Return probabilities

For state ‡ " �, let

f (n)‡ = Pr {first return to ‡ after exactly n}
We have:

f (n)‡ = f (n)‡,‡ = Pr {first visit to ‡ after n steps from ‡} .

The return probability to state ‡ equals: Pr(‡ Ï É‡) = f‡ = 8ô
n=1 f (n)‡ .

Joost-Pieter Katoen Probabilistic Programming 22/35
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Probabilistic Programming State classification

Transient and recurrent states

The return probability to ‡ equals: Pr(‡ Ï É‡) = f‡ = 8ô
n=1 f (n)‡ .

Transient and recurrent states

State ‡ is called recurrent if f‡ = 1, i.e., with probability one (aka: almost
surely) the MC returns to ‡.
State ‡ is called transient otherwise, i.e., if f‡ < 1. With a positive
probability, the MC does not return to a transient state.

Example on the black board.

Joost-Pieter Katoen Probabilistic Programming 23/35
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Probabilistic Programming State classification

Null and positive recurrence

Let ‡ be a recurrent state, i.e., Pr(‡ Ï É‡) = f‡ = 1.

Mean recurrence time

The mean recurrence time of recurrent state ‡ equals

m‡ =
n
9
i=1

n � f (n)‡

This is the expected number of steps between two successive visits to ‡.

Null and positive recurrent states

State ‡ is called positive recurrent whenever m‡ < ô. Otherwise, state ‡
is called null recurrent; then m‡ = ô.

Example on the black board.
Joost-Pieter Katoen Probabilistic Programming 24/35
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Probabilistic Programming State classification

Null and positive recurrence in finite MC

1. Every state in a finite MC is either positive recurrent or transient.

2. At least one state in a finite MC is positive recurrent.

3. A finite MC has no null recurrent states.
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Probabilistic Programming State classification

Foster’s theorem

A countable Markov chain is “non-dissipative”
if almost every infinite path eventually enters

— and remains in — positive recurrent states.

Foster’s theorem

A su�cient condition for being non-dissipative is:

9
j'0

j � P(i , j) & i for all states i

Frederic Gordon Foster
Marko� chains with an enumerable number of states

and a class of cascade processes
1951
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Probabilistic Programming State classification

Periodicity and ergodicity

Periodic state

A state ‡ is called periodic if

f (n)‡ > 0 implies n = k � d where period d > 1.

A state is aperiodic otherwise.

A state is ergodic if it is positive recurrent and aperiodic.
An MC is ergodic if all its states are ergodic.

E

xample on the black board.
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Probabilistic Programming State classification

Connected states are of the same “type”

Let ‡ and · be mutually reachbale from each other. Then:

‡ is transient i� · is transient
‡ is null-recurrent i� · is null-recurrent

‡ is positive recurrent i� · is positive recurrent
‡ has period d i� tau has period d
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Probabilistic Programming State classification

Irreducibility

Irreducible

A MC is irreducible if it is strongly connected, i.e., all states are mutually
reachable.

Markov’s theorem

A finite, irreducible MC D is (1) positive recurrent, and (2) ergodic
provided D is aperiodic. In the latter case, we have

P
ô = lim

n�ô
P

n =
�⇣⇣⇣⇣⇣⇣�

v
�
�
v

�⌘⌘⌘⌘⌘⌘✏
where v = ⌅ 1

m1
, . . . , 1

mk
⌦

where k = ∂�∂.
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Probabilistic Programming State classification

Stationary distribution

Stationary distribution

A probability vector x satisfying x = x�P is called a stationary distribution
of MC D.

x‡ = 9
·"�

x· � P(· , ‡) i� x‡ � (1 � P (‡, ‡))Õ““““““““““““““““““““““““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““““““““““““““““““““““““œ
outflow of ‡

= 9
·j‡

x· � P(· , ‡)
Õ“““““““““““““““““““““““““““““““““““““““““““—“““““““““““““““““““““““““““““““““““““““““““œ

inflow of ‡

An irreducible, positive recurrent MC has a unique stationary distribution
satisfying x‡ = 1

m‡
for every state ‡.

Joost-Pieter Katoen Probabilistic Programming 30/35



Probabilistic Programming State classification

Limiting distribution

Ergodic stochastic matrix

Stochastic matrix P is called ergodic if:

P
ô = lim

n�ô
P

n exists and has identical rows

Limiting distribution

If P is ergodic, then each row of P
ô equals the limiting distribution.

Limiting = stationary distribution

For ergodic (aka: aperiodic and positive recurrent) MCs, the stationary
and limiting distribution are equal.
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Probabilistic Programming Rewards

Overview
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2 State classification

3 Rewards
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Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r ) with D an MC with state space � and
r ⇥ � � R a function assigning a real reward to each state.
The reward r (‡) stands for the reward earned on leaving state ‡.

Cumulative reward for reachability

Let fi = ‡0 . . . ‡n be a finite path in (D, r ) and G N � a set of target states
with fi " ÉG . The cumulative reward along fi until reaching G is:

rG (fi) = r (‡0) + . . . + r (‡k�1) where ‡i /" G for all i < k and ‡k " G .

If fi /" ÉG , then rG (fi) = 0.

Joost-Pieter Katoen Probabilistic Programming 33/35



Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r ) with D an MC with state space � and
r ⇥ � � R a function assigning a real reward to each state.
The reward r (‡) stands for the reward earned on leaving state ‡.

Cumulative reward for reachability

Let fi = ‡0 . . . ‡n be a finite path in (D, r ) and G N � a set of target states
with fi " ÉG .

The cumulative reward along fi until reaching G is:

rG (fi) = r (‡0) + . . . + r (‡k�1) where ‡i /" G for all i < k and ‡k " G .

If fi /" ÉG , then rG (fi) = 0.

Joost-Pieter Katoen Probabilistic Programming 33/35



Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r ) with D an MC with state space � and
r ⇥ � � R a function assigning a real reward to each state.
The reward r (‡) stands for the reward earned on leaving state ‡.

Cumulative reward for reachability

Let fi = ‡0 . . . ‡n be a finite path in (D, r ) and G N � a set of target states
with fi " ÉG . The cumulative reward along fi until reaching G is:

rG (fi) = r (‡0) + . . . + r (‡k�1) where ‡i /" G for all i < k and ‡k " G .

If fi /" ÉG , then rG (fi) = 0.

Joost-Pieter Katoen Probabilistic Programming 33/35



Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r ) with D an MC with state space � and
r ⇥ � � R a function assigning a real reward to each state.
The reward r (‡) stands for the reward earned on leaving state ‡.

Cumulative reward for reachability

Let fi = ‡0 . . . ‡n be a finite path in (D, r ) and G N � a set of target states
with fi " ÉG . The cumulative reward along fi until reaching G is:

rG (fi) = r (‡0) + . . . + r (‡k�1) where ‡i /" G for all i < k and ‡k " G .

If fi /" ÉG , then rG (fi) = 0.

Joost-Pieter Katoen Probabilistic Programming 33/35



Probabilistic Programming Rewards

Expected reward reachability

Expected reward for reachability

The expected reward until reaching G N � from ‡ " � is:

ER(‡,ÉG) = 9
fiÏÉG

Pr(rfi) � rG (rfi)
where rfi = ‡0 . . . ‡k is the shortest prefix of fi such that ‡k " G and ‡0 = ‡.

Conditional expected reward

Let ER(‡,ÉG ∂ ¬ÉF ) be the conditional expected reward until reaching G
under the condition that no states in F N � are visited.
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Probabilistic Programming Rewards

Expected rewards in finite Markov chains

Polynomial complexity

Expected rewards in finite MCs can be computed in polynomial time.
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