
Probabilistic Programming

Probabilistic Programming

Lecture #3: Markov Chains

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/35

Probabilistic Programming

Overview

1 Markov Chains

2 State classification

3 Rewards

Joost-Pieter Katoen Probabilistic Programming 2/35

Probabilistic Programming Markov Chains

Overview

1 Markov Chains

2 State classification

3 Rewards

Joost-Pieter Katoen Probabilistic Programming 3/35

Probabilistic Programming Markov Chains

Probability distribution

Probability distribution

A probability distribution on countable set X is a function
µ ⇥ X � [0, 1] N R such that 8x"X µ(x) = 1.

The set { x ∂ µ(x) > 0 } is the support set of probability distribution µ.

Let Dist(X) denote the set of all probability measures on X .

Joost-Pieter Katoen Probabilistic Programming 4/35

µ
discrete

Probabilistic Programming Markov Chains

Andrei Andrejewitsch Markow

Joost-Pieter Katoen Probabilistic Programming 5/35

Probabilistic Programming Markov Chains

Markov chains

Markov chain

A Markov chain (MC) D is a triple (�, ‡I , P) with:
Z � being a countable set of states
Z ‡I " � the initial state, and
Z P ⇥ � � Dist(�) the transition probability function

where Dist(�) is a (discrete) probability measure on �.

A state ‡ " � for which P(‡, ‡) = 1 is called absorbing.

Joost-Pieter Katoen Probabilistic Programming 6/35

Plo ,r
.) - I O

t
"

Pco
,

.) E Dist CE) = Pcr ,r
") T

"

g
,

o
' * .

Probabilistic Programming Markov Chains

Transition probability matrix

For MC D with finite state space �, function P is called the transition
probability matrix of D.

Properties:
1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its

elements are in [0, 1], and each row sum equals one.
2. P has an eigenvalue of one, and all its eigenvalues are at most one.
3. For all n " N, P

n is a stochastic matrix.

Joost-Pieter Katoen Probabilistic Programming 7/35

Pcr
,

.) c- Dist CE)

Use

Ceresin
's

theorem

.
let A = (aij)

be a matrix in Cl
" × n

.

Then : every

Eigenvalue of A lies in the cycle

Cet) k= { Zee / Iz - aii) E ¥ ,
Iain }

=

-

: ri

Ig radius ri

-
-

-
- - aoi

-

Let P be stochastic and to be an

Eigenvalue of P
.

1) A = I b - Pci ;D t Pci ,i))

.
E I b - Pcii)) t) Pci ,i))

CH E ¥ .

1Pa;D) tlpci.it - a

Probabilistic Programming Markov Chains

Paths

Paths

Path fi = ‡0 ‡1 . . . is a path through MC D whenever P(‡i , ‡i+1) > 0 for all
natural i .
Let Paths(D) denotes the set of paths in D that start in its initial state ‡I .

Joost-Pieter Katoen Probabilistic Programming 8/35

Probabilistic Programming Markov Chains

Example

Joost-Pieter Katoen Probabilistic Programming 9/35

transient TI
= a

recurrent =

÷

" "

fan
② a-

③ ⑥

TT
= 123

Cyl CI) = { 4235
,

423540
,

(us)
+

at @651

Probabilistic Programming Markov Chains

Cylinder sets

Cylinder set

The cylinder set of finite path fî = ‡0 ‡1 . . . ‡n in MC D is defined by:

Cyl(fî) = sfi " Paths(D) ∂ fî is a prefix of fi y
The cylinder set spanned by finite path fî consists of all infinite paths that
have prefix fî.

Joost-Pieter Katoen Probabilistic Programming 10/35

Probabilistic Programming Markov Chains

Probability measure on sets of infinite paths

Probability measure

Pr is the unique probability distribution defined on cylinder sets by:

Pr�Cyl(‡0 . . . ‡n)⌥ = 5
0&i<n

P(‡i , ‡i+1)
for n > 0 and P(‡0) = 1 i� ‡0 = ‡I .

By standard results in probability theory, Pr is a distribution on all sets that are
countable unions and/or complements of cylinder sets.

Joost-Pieter Katoen Probabilistic Programming 11/35

Prk, HE) = Pr Cc ,) t (a - Prca))

←
disjoint

got

To T
, rz - . . . Tn PC to ,

r
,
) . PCT

, , E) -
.

. . .

P (rn
. , , Tn)

Probabilistic Programming Markov Chains

Reachability

Reachability

Let MC D with countable state space � and G N � the set of goal states.
The event eventually reaching G is defined by:

ÉG = {fi " Paths(D) ∂ Ωi " N. fi[i] " G }
where fi[i] = ‡i+1 for fi = ‡0 ‡1

The event ÉG is measurable, i.e., the probability Pr(ÉG) is well defined.

Joost-Pieter Katoen Probabilistic Programming 12/35

Boar

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

Z Consider the event É4

Z We have:

Pr(É4) = 9
s0...sn"(�\4ò)4

P(s0 . . . sn)
Z This yields:

P(s0s2s54) + P(s0s2s6s2s54) +

Z Or:
ô

9
k=0

P(s0s2(s6s2)ks54)
Z Or: 1

8 �
ô

9
k=0

�14 ⌥k
Z Geometric series: 1

8 �
1

1 � 1
4

= 1
8 �

4
3 = 1

6
For finite state spaces, reachability probabilities can be obtained algorithmically.

Joost-Pieter Katoen Probabilistic Programming 13/35

⑨

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

Z Consider the event É4
Z We have:

Pr(É4) = 9
s0...sn"(�\4ò)4

P(s0 . . . sn)

Z This yields:
P(s0s2s54) + P(s0s2s6s2s54) +

Z Or:
ô

9
k=0

P(s0s2(s6s2)ks54)
Z Or: 1

8 �
ô

9
k=0

�14 ⌥k
Z Geometric series: 1

8 �
1

1 � 1
4

= 1
8 �

4
3 = 1

6
For finite state spaces, reachability probabilities can be obtained algorithmically.

Joost-Pieter Katoen Probabilistic Programming 13/35

- - - Fat

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

Z Consider the event É4
Z We have:

Pr(É4) = 9
s0...sn"(�\4ò)4

P(s0 . . . sn)
Z This yields:

P(s0s2s54) + P(s0s2s6s2s54) +

Z Or:
ô

9
k=0

P(s0s2(s6s2)ks54)
Z Or: 1

8 �
ô

9
k=0

�14 ⌥k
Z Geometric series: 1

8 �
1

1 � 1
4

= 1
8 �

4
3 = 1

6
For finite state spaces, reachability probabilities can be obtained algorithmically.

Joost-Pieter Katoen Probabilistic Programming 13/35

0

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

Z Consider the event É4
Z We have:

Pr(É4) = 9
s0...sn"(�\4ò)4

P(s0 . . . sn)
Z This yields:

P(s0s2s54) + P(s0s2s6s2s54) +

Z Or:
ô

9
k=0

P(s0s2(s6s2)ks54)

Z Or: 1
8 �

ô

9
k=0

�14 ⌥k
Z Geometric series: 1

8 �
1

1 � 1
4

= 1
8 �

4
3 = 1

6
For finite state spaces, reachability probabilities can be obtained algorithmically.

Joost-Pieter Katoen Probabilistic Programming 13/35

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

Z Consider the event É4
Z We have:

Pr(É4) = 9
s0...sn"(�\4ò)4

P(s0 . . . sn)
Z This yields:

P(s0s2s54) + P(s0s2s6s2s54) +

Z Or:
ô

9
k=0

P(s0s2(s6s2)ks54)
Z Or: 1

8 �
ô

9
k=0

�14 ⌥k

Z Geometric series: 1
8 �

1
1 � 1

4
= 1

8 �
4
3 = 1

6
For finite state spaces, reachability probabilities can be obtained algorithmically.

Joost-Pieter Katoen Probabilistic Programming 13/35

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

Z Consider the event É4
Z We have:

Pr(É4) = 9
s0...sn"(�\4ò)4

P(s0 . . . sn)
Z This yields:

P(s0s2s54) + P(s0s2s6s2s54) +

Z Or:
ô

9
k=0

P(s0s2(s6s2)ks54)
Z Or: 1

8 �
ô

9
k=0

�14 ⌥k
Z Geometric series: 1

8 �
1

1 � 1
4

= 1
8 �

4
3 = 1

6

For finite state spaces, reachability probabilities can be obtained algorithmically.

Joost-Pieter Katoen Probabilistic Programming 13/35

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth’s die

Z Consider the event É4
Z We have:

Pr(É4) = 9
s0...sn"(�\4ò)4

P(s0 . . . sn)
Z This yields:

P(s0s2s54) + P(s0s2s6s2s54) +

Z Or:
ô

9
k=0

P(s0s2(s6s2)ks54)
Z Or: 1

8 �
ô

9
k=0

�14 ⌥k
Z Geometric series: 1

8 �
1

1 � 1
4

= 1
8 �

4
3 = 1

6
For finite state spaces, reachability probabilities can be obtained algorithmically.

Joost-Pieter Katoen Probabilistic Programming 13/35

Probabilistic Programming Markov Chains

Reachability probabilities

Problem statement

Let D be an MC with finite state space �, ‡ " �, and G N �.
Aim: determine Pr(‡ Ï ÉG) = Pr‡(ÉG)

= Pr{fi " Paths(D‡) ∂ fi " ÉG }
where D‡ is the MC D with initial state ‡.

Joost-Pieter Katoen Probabilistic Programming 14/35

!

Probabilistic Programming Markov Chains

Reachability probabilities

Problem statement

Let D be an MC with finite state space �, ‡ " �, and G N �.
Aim: determine Pr(‡ Ï ÉG) = Pr‡(ÉG) = Pr{fi " Paths(D‡) ∂ fi " ÉG }
where D‡ is the MC D with initial state ‡.

Joost-Pieter Katoen Probabilistic Programming 14/35

°

Probabilistic Programming Markov Chains

Characterisation of reachability probabilities

Let variable x‡ = Pr(‡ Ï ÉG) for any state ‡ be defined by:

Z if ‡ /" Preò(G), then x‡ = 0

Z if ‡ " G , then x‡ = 1

Z otherwise:

x‡ = 9
·"�\G

P(‡, ·) � x·

Õ““— ““œ
reach G via · " � \ G

+ 9
“"G

P(‡, “)
Õ““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““œ

reach G in one step

Preò(G) is the set of states in � from which G is reachable, i.e.,{‡ " � ∂ Pr(‡ Ï ÉG) > 0 }.

Joost-Pieter Katoen Probabilistic Programming 15/35

- -
-

woman

>

Pre
*

(G) = { re E I Pt 0 }
graph analysis

Probabilistic Programming Markov Chains

Characterisation of reachability probabilities

Let variable x‡ = Pr(‡ Ï ÉG) for any state ‡ be defined by:

Z if ‡ /" Preò(G), then x‡ = 0

Z if ‡ " G , then x‡ = 1

Z otherwise:

x‡ = 9
·"�\G

P(‡, ·) � x·

Õ““— ““œ
reach G via · " � \ G

+ 9
“"G

P(‡, “)
Õ““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““œ

reach G in one step

Preò(G) is the set of states in � from which G is reachable, i.e.,{‡ " � ∂ Pr(‡ Ï ÉG) > 0 }.

Joost-Pieter Katoen Probabilistic Programming 15/35

Probabilistic Programming Markov Chains

Characterisation of reachability probabilities

Let variable x‡ = Pr(‡ Ï ÉG) for any state ‡ be defined by:

Z if ‡ /" Preò(G), then x‡ = 0

Z if ‡ " G , then x‡ = 1

Z otherwise:

x‡ = 9
·"�\G

P(‡, ·) � x·

Õ““— ““œ
reach G via · " � \ G

+ 9
“"G

P(‡, “)
Õ““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““œ

reach G in one step

Preò(G) is the set of states in � from which G is reachable, i.e.,{‡ " � ∂ Pr(‡ Ï ÉG) > 0 }.
Joost-Pieter Katoen Probabilistic Programming 15/35

-
re . .

. .no

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4

Z The previous characterisation yields:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1
2 xs1 +

1
2 xs2

xs2 =
1
2 xs5 +

1
2 xs6

xs5 =
1
2 x5 +

1
2 x4

xs6 =
1
2 xs2 +

1
2 x6

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 16/35

0

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z The previous characterisation yields:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1
2 xs1 +

1
2 xs2

xs2 =
1
2 xs5 +

1
2 xs6

xs5 =
1
2 x5 +

1
2 x4

xs6 =
1
2 xs2 +

1
2 x6

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 16/35

0 -

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z The previous characterisation yields:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1
2 xs1 +

1
2 xs2

xs2 =
1
2 xs5 +

1
2 xs6

xs5 =
1
2 x5 +

1
2 x4

xs6 =
1
2 xs2 +

1
2 x6

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 16/35

-
-

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z The previous characterisation yields:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1
2 xs1 +

1
2 xs2

xs2 =
1
2 xs5 +

1
2 xs6

xs5 =
1
2 x5 +

1
2 x4

xs6 =
1
2 xs2 +

1
2 x6

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 16/35

①
I Pl so

, sz)

O

C)
JP (so

,
) = o

P (so ,
SD

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z The previous characterisation yields:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1
2 xs1 +

1
2 xs2

xs2 =
1
2 xs5 +

1
2 xs6

xs5 =
1
2 x5 +

1
2 x4

xs6 =
1
2 xs2 +

1
2 x6

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 16/35

①
Pls

,

7=0
Tess

-2 Plz ,E) .tt/E=sf
TEE) G

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z The previous characterisation yields:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1
2 xs1 +

1
2 xs2

xs2 =
1
2 xs5 +

1
2 xs6

xs5 =
1
2 x5 +

1
2 x4

xs6 =
1
2 xs2 +

1
2 x6

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 16/35

0

•

-

- I E- t I

¥ , @

Pls ,
t If ,

Pbs , t)

-

= Pls , HI

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z The previous characterisation yields:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1
2 xs1 +

1
2 xs2

xs2 =
1
2 xs5 +

1
2 xs6

xs5 =
1
2 x5 +

1
2 x4

xs6 =
1
2 xs2 +

1
2 x6

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 16/35

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z The previous characterisation yields:

x1 = x2 = x3 = x5 = x6 = 0 and x4 = 1

xs1 = xs3 = xs4 = 0

xs0 =
1
2 xs1 +

1
2 xs2

xs2 =
1
2 xs5 +

1
2 xs6

xs5 =
1
2 x5 +

1
2 x4

xs6 =
1
2 xs2 +

1
2 x6

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 16/35

Probabilistic Programming Markov Chains

Linear equation system

Z Let �? = Preò(G) \ G , the states that can reach G by > 0 steps

Z A = �P(‡, ·) ⌥‡,·"�?
, the transition probabilities in �?

Z b = �b‡⌥‡"�?
, the probs to reach G in 1 step, i.e., b‡ = 9

“"G
P(‡, “)

Theorem

The vector x = (x‡)‡"�? with x‡ = Pr(‡ Ï ÉG) is the unique solution of the
linear equation system:

x = A�x + b or, equivalently (I � A)�x = b

where I is the identity matrix of cardinality ∂�?∂�∂�?∂.

Joost-Pieter Katoen Probabilistic Programming 17/35

-

non 0,7 cases

Probabilistic Programming Markov Chains

Linear equation system

Z Let �? = Preò(G) \ G , the states that can reach G by > 0 steps
Z A = �P(‡, ·) ⌥‡,·"�?

, the transition probabilities in �?

Z b = �b‡⌥‡"�?
, the probs to reach G in 1 step, i.e., b‡ = 9

“"G
P(‡, “)

Theorem

The vector x = (x‡)‡"�? with x‡ = Pr(‡ Ï ÉG) is the unique solution of the
linear equation system:

x = A�x + b or, equivalently (I � A)�x = b

where I is the identity matrix of cardinality ∂�?∂�∂�?∂.

Joost-Pieter Katoen Probabilistic Programming 17/35

Probabilistic Programming Markov Chains

Linear equation system

Z Let �? = Preò(G) \ G , the states that can reach G by > 0 steps
Z A = �P(‡, ·) ⌥‡,·"�?

, the transition probabilities in �?

Z b = �b‡⌥‡"�?
, the probs to reach G in 1 step, i.e., b‡ = 9

“"G
P(‡, “)

Theorem

The vector x = (x‡)‡"�? with x‡ = Pr(‡ Ï ÉG) is the unique solution of the
linear equation system:

x = A�x + b or, equivalently (I � A)�x = b

where I is the identity matrix of cardinality ∂�?∂�∂�?∂.

Joost-Pieter Katoen Probabilistic Programming 17/35

0

Probabilistic Programming Markov Chains

Linear equation system

Z Let �? = Preò(G) \ G , the states that can reach G by > 0 steps
Z A = �P(‡, ·) ⌥‡,·"�?

, the transition probabilities in �?

Z b = �b‡⌥‡"�?
, the probs to reach G in 1 step, i.e., b‡ = 9

“"G
P(‡, “)

Theorem

The vector x = (x‡)‡"�? with x‡ = Pr(‡ Ï ÉG) is the unique solution of the
linear equation system:

x = A�x + b or, equivalently (I � A)�x = b

where I is the identity matrix of cardinality ∂�?∂�∂�?∂.

Joost-Pieter Katoen Probabilistic Programming 17/35

Probabilistic Programming Markov Chains

Linear equation system

Z Let �? = Preò(G) \ G , the states that can reach G by > 0 steps
Z A = �P(‡, ·) ⌥‡,·"�?

, the transition probabilities in �?

Z b = �b‡⌥‡"�?
, the probs to reach G in 1 step, i.e., b‡ = 9

“"G
P(‡, “)

Theorem

The vector x = (x‡)‡"�? with x‡ = Pr(‡ Ï ÉG) is the unique solution of the
linear equation system:

x = A�x + b or, equivalently (I � A)�x = b

where I is the identity matrix of cardinality ∂�?∂�∂�?∂.

Joost-Pieter Katoen Probabilistic Programming 17/35

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4

Z �? = { s0, s2, s5, s6 }
�⇣⇣⇣⇣⇣⇣�

1 � 1
2 0 0

0 1 � 1
2 � 1

2
0 0 1 0
0 � 1

2 0 1

�⌘⌘⌘⌘⌘⌘✏
�

�⇣⇣⇣⇣⇣�
xs0
xs2
xs5
xs6

�⌘⌘⌘⌘⌘✏ =
�⇣⇣⇣⇣⇣⇣�

0
0
1
2
0

�⌘⌘⌘⌘⌘⌘✏
Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 18/35

⇐- A) ex = b

T

00
E

?

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z �? = { s0, s2, s5, s6 }

�⇣⇣⇣⇣⇣⇣�
1 � 1

2 0 0
0 1 � 1

2 � 1
2

0 0 1 0
0 � 1

2 0 1

�⌘⌘⌘⌘⌘⌘✏
�

�⇣⇣⇣⇣⇣�
xs0
xs2
xs5
xs6

�⌘⌘⌘⌘⌘✏ =
�⇣⇣⇣⇣⇣⇣�

0
0
1
2
0

�⌘⌘⌘⌘⌘⌘✏
Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 18/35

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z �? = { s0, s2, s5, s6 }

�⇣⇣⇣⇣⇣⇣�
1 � 1

2 0 0
0 1 � 1

2 � 1
2

0 0 1 0
0 � 1

2 0 1

�⌘⌘⌘⌘⌘⌘✏
�

�⇣⇣⇣⇣⇣�
xs0
xs2
xs5
xs6

�⌘⌘⌘⌘⌘✏

=
�⇣⇣⇣⇣⇣⇣�

0
0
1
2
0

�⌘⌘⌘⌘⌘⌘✏
Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 18/35

O 7¥
× =

b

E
?

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z �? = { s0, s2, s5, s6 }

�⇣⇣⇣⇣⇣⇣�
1 � 1

2 0 0
0 1 � 1

2 � 1
2

0 0 1 0
0 � 1

2 0 1

�⌘⌘⌘⌘⌘⌘✏
�

�⇣⇣⇣⇣⇣�
xs0
xs2
xs5
xs6

�⌘⌘⌘⌘⌘✏ =
�⇣⇣⇣⇣⇣⇣�

0
0
1
2
0

�⌘⌘⌘⌘⌘⌘✏

Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 18/35

So

Sz

Sgs

Sf

Probabilistic Programming Markov Chains

Reachability probabilities: Knuth-Yao’s die

Z Consider the event É4
Z �? = { s0, s2, s5, s6 }

�⇣⇣⇣⇣⇣⇣�
1 � 1

2 0 0
0 1 � 1

2 � 1
2

0 0 1 0
0 � 1

2 0 1

�⌘⌘⌘⌘⌘⌘✏
�

�⇣⇣⇣⇣⇣�
xs0
xs2
xs5
xs6

�⌘⌘⌘⌘⌘✏ =
�⇣⇣⇣⇣⇣⇣�

0
0
1
2
0

�⌘⌘⌘⌘⌘⌘✏
Z Gaussian elimination yields:

xs5 =
1
2 , xs2 =

1
3 , xs6 =

1
6 , and xs0 =

1
6

Joost-Pieter Katoen Probabilistic Programming 18/35

Probabilistic Programming Markov Chains

Computing reachability probabilities

Polynomial complexity

Reachability probabilities in finite MCs can be computed in polynomial
time.

Joost-Pieter Katoen Probabilistic Programming 19/35

Probabilistic Programming State classification

Overview

1 Markov Chains

2 State classification

3 Rewards

Joost-Pieter Katoen Probabilistic Programming 20/35

Probabilistic Programming State classification

First visit probabilities

First visit probabilities

For states ‡, · " �, let

f (n)‡,· = Pr {first visit to · after exactly n steps from ‡}
(This di�ers from the probability to move from · to ‡ in n steps.)
We have:

P
n(‡, ·) =

n
9
¸=1

f (¸)‡,· � Pn�¸(· , ·)
The probability to reach · from state ‡ equals:

Pr(‡ Ï É ·) = f‡,· =
ô

9
n=1

f (n)‡,·

Joost-Pieter Katoen Probabilistic Programming 21/35

O O

T I

O n

-
PG

,
t)

-

Oreg : It

Probabilistic Programming State classification

Return probabilities

Return probabilities

For state ‡ " �, let

f (n)‡ = Pr {first return to ‡ after exactly n}
We have:

f (n)‡ = f (n)‡,‡ = Pr {first visit to ‡ after n steps from ‡} .

The return probability to state ‡ equals: Pr(‡ Ï É‡) = f‡ = 8ô
n=1 f (n)‡ .

Joost-Pieter Katoen Probabilistic Programming 22/35

It off n

*

f
steps

Probabilistic Programming State classification

Transient and recurrent states

The return probability to ‡ equals: Pr(‡ Ï É‡) = f‡ = 8ô
n=1 f (n)‡ .

Transient and recurrent states

State ‡ is called recurrent if f‡ = 1, i.e., with probability one (aka: almost
surely) the MC returns to ‡.
State ‡ is called transient otherwise, i.e., if f‡ < 1. With a positive
probability, the MC does not return to a transient state.

Example on the black board.

Joost-Pieter Katoen Probabilistic Programming 23/35

getty " "

Probabilistic Programming State classification

Null and positive recurrence

Let ‡ be a recurrent state, i.e., Pr(‡ Ï É‡) = f‡ = 1.

Mean recurrence time

The mean recurrence time of recurrent state ‡ equals

m‡ =
n
9
i=1

n � f (n)‡

This is the expected number of steps between two successive visits to ‡.

Null and positive recurrent states

State ‡ is called positive recurrent whenever m‡ < ô. Otherwise, state ‡
is called null recurrent; then m‡ = ô.

Example on the black board.
Joost-Pieter Katoen Probabilistic Programming 24/35

-

:

A
.

E÷o÷÷o÷÷a. . .

' k

state O is null recurrent

{
B

.

⑥±E③L I
,

recurrent = { 2,3 } = positive recurrent

transient
= 20,7)

expected #
ingLij steps from i→j

O

mij =
I n .

f
")

n= ,
Tj

for finite MCs
,

these values can be

obtained by solving a system of linear

equations :

Mig
. =

Pci ,j) - r t
I Pci ,k) (it

- ktj muj)
i - sj in

-
rskp

i→k→j
= Plisj) t #

,

Risk) t ¥j Risk) .

my.

÷
= s t E Ph ;D .

mkj
k¥5

Probabilistic Programming State classification

Null and positive recurrence in finite MC

1. Every state in a finite MC is either positive recurrent or transient.

2. At least one state in a finite MC is positive recurrent.

3. A finite MC has no null recurrent states.

Joost-Pieter Katoen Probabilistic Programming 25/35

-

↳ null recurrence is only of
. importance

for infinite MCs
.

Probabilistic Programming State classification

Foster’s theorem

A countable Markov chain is “non-dissipative”
if almost every infinite path eventually enters

— and remains in — positive recurrent states.

Foster’s theorem

A su�cient condition for being non-dissipative is:

9
j'0

j � P(i , j) & i for all states i

Frederic Gordon Foster
Marko� chains with an enumerable number of states

and a class of cascade processes
1951

Joost-Pieter Katoen Probabilistic Programming 26/35

Probabilistic Programming State classification

Foster’s theorem

A countable Markov chain is “non-dissipative”
if almost every infinite path eventually enters

— and remains in — positive recurrent states.

Foster’s theorem

A su�cient condition for being non-dissipative is:

9
j'0

j � P(i , j) & i for all states i

Frederic Gordon Foster
Marko� chains with an enumerable number of states

and a class of cascade processes
1951

Joost-Pieter Katoen Probabilistic Programming 26/35

Probabilistic Programming State classification

Foster’s theorem

A countable Markov chain is “non-dissipative”
if almost every infinite path eventually enters

— and remains in — positive recurrent states.

Foster’s theorem

A su�cient condition for being non-dissipative is:

9
j'0

j � P(i , j) & i for all states i

Frederic Gordon Foster
Marko� chains with an enumerable number of states

and a class of cascade processes
1951

Joost-Pieter Katoen Probabilistic Programming 26/35

ft

Probabilistic Programming State classification

Periodicity and ergodicity

Periodic state

A state ‡ is called periodic if

f (n)‡ > 0 implies n = k � d where period d > 1.

A state is aperiodic otherwise.

A state is ergodic if it is positive recurrent and aperiodic.
An MC is ergodic if all its states are ergodic.

E

xample on the black board.

Joost-Pieter Katoen Probabilistic Programming 27/35

- -

1

-
state a

→ ① ② is periodic
I

this any holds So

!
f!

"
> o

h = 2 → period is two

Iy
O stolen is

✓ µ periodic ,
period =3

20^-303 Cn)

\ ↳
f

,
so

0 this holds for n⇒
,

6

4 ⇒ period is 3

r (as god (3,6) = s)

it
"

so14O_0(& n -- 3,7
1
0¥

I

god Git) = h

⇒ aperiodic

Probabilistic Programming State classification

Connected states are of the same “type”

Let ‡ and · be mutually reachbale from each other. Then:

‡ is transient i� · is transient
‡ is null-recurrent i� · is null-recurrent

‡ is positive recurrent i� · is positive recurrent
‡ has period d i� tau has period d

Joost-Pieter Katoen Probabilistic Programming 28/35

ab

:
c-

Probabilistic Programming State classification

Irreducibility

Irreducible

A MC is irreducible if it is strongly connected, i.e., all states are mutually
reachable.

Markov’s theorem

A finite, irreducible MC D is (1) positive recurrent, and (2) ergodic
provided D is aperiodic. In the latter case, we have

P
ô = lim

n�ô
P

n =
�⇣⇣⇣⇣⇣⇣�

v
�
�
v

�⌘⌘⌘⌘⌘⌘✏
where v = ⌅ 1

m1
, . . . , 1

mk
⌦

where k = ∂�∂.
Joost-Pieter Katoen Probabilistic Programming 29/35

0-0*7>0 not irreducible

-

11rredncib.ir

' h 1h

A
. ⑧②→③④.-to← XrtI 11

I 2 2

irreducible
B

. Gambler 's ruin
.

let O Ci E N - a
,

N > 2

A gambler starts vith I € . On each gamble ,

either win 1€ with prob p , or lose 2€

with prob . n - p . Xh =
fortune after n

gambles
Gambler wins if he ears N € without

first getting ruined f- bankrupt)

n
transient a

⑧÷÷÷÷÷⑧
I 1

recurrent

notable
recurrent

Markov 's theorem
-

* ÷l :⇒ ÷:::::

ii.
Ph exists = I (IIn!)

m

,
= If = Mz

TO

Mz =

-2
solution of

N = v . P

10 Vy =
6 v

,
t vz t b vz

10 Vz s 2 Vj t 8 vz

to

Vj
= 2 V

,
t Vz t 4 us

E vie i

Probabilistic Programming State classification

Stationary distribution

Stationary distribution

A probability vector x satisfying x = x�P is called a stationary distribution
of MC D.

x‡ = 9
·"�

x· � P(· , ‡) i� x‡ � (1 � P (‡, ‡))Õ““—““œ
outflow of ‡

= 9
·j‡

x· � P(· , ‡)
Õ“““—“““œ

inflow of ‡

An irreducible, positive recurrent MC has a unique stationary distribution
satisfying x‡ = 1

m‡
for every state ‡.

Joost-Pieter Katoen Probabilistic Programming 30/35

Probabilistic Programming State classification

Limiting distribution

Ergodic stochastic matrix

Stochastic matrix P is called ergodic if:

P
ô = lim

n�ô
P

n exists and has identical rows

Limiting distribution

If P is ergodic, then each row of P
ô equals the limiting distribution.

Limiting = stationary distribution

For ergodic (aka: aperiodic and positive recurrent) MCs, the stationary
and limiting distribution are equal.

Joost-Pieter Katoen Probabilistic Programming 31/35

Probabilistic Programming Rewards

Overview

1 Markov Chains

2 State classification

3 Rewards

Joost-Pieter Katoen Probabilistic Programming 32/35

Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r) with D an MC with state space � and
r ⇥ � � R a function assigning a real reward to each state.
The reward r (‡) stands for the reward earned on leaving state ‡.

Cumulative reward for reachability

Let fi = ‡0 . . . ‡n be a finite path in (D, r) and G N � a set of target states
with fi " ÉG . The cumulative reward along fi until reaching G is:

rG (fi) = r (‡0) + . . . + r (‡k�1) where ‡i /" G for all i < k and ‡k " G .

If fi /" ÉG , then rG (fi) = 0.

Joost-Pieter Katoen Probabilistic Programming 33/35

Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r) with D an MC with state space � and
r ⇥ � � R a function assigning a real reward to each state.
The reward r (‡) stands for the reward earned on leaving state ‡.

Cumulative reward for reachability

Let fi = ‡0 . . . ‡n be a finite path in (D, r) and G N � a set of target states
with fi " ÉG .

The cumulative reward along fi until reaching G is:

rG (fi) = r (‡0) + . . . + r (‡k�1) where ‡i /" G for all i < k and ‡k " G .

If fi /" ÉG , then rG (fi) = 0.

Joost-Pieter Katoen Probabilistic Programming 33/35

Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r) with D an MC with state space � and
r ⇥ � � R a function assigning a real reward to each state.
The reward r (‡) stands for the reward earned on leaving state ‡.

Cumulative reward for reachability

Let fi = ‡0 . . . ‡n be a finite path in (D, r) and G N � a set of target states
with fi " ÉG . The cumulative reward along fi until reaching G is:

rG (fi) = r (‡0) + . . . + r (‡k�1) where ‡i /" G for all i < k and ‡k " G .

If fi /" ÉG , then rG (fi) = 0.

Joost-Pieter Katoen Probabilistic Programming 33/35

Probabilistic Programming Rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards

A reward MC is a pair (D, r) with D an MC with state space � and
r ⇥ � � R a function assigning a real reward to each state.
The reward r (‡) stands for the reward earned on leaving state ‡.

Cumulative reward for reachability

Let fi = ‡0 . . . ‡n be a finite path in (D, r) and G N � a set of target states
with fi " ÉG . The cumulative reward along fi until reaching G is:

rG (fi) = r (‡0) + . . . + r (‡k�1) where ‡i /" G for all i < k and ‡k " G .

If fi /" ÉG , then rG (fi) = 0.

Joost-Pieter Katoen Probabilistic Programming 33/35

Probabilistic Programming Rewards

Expected reward reachability

Expected reward for reachability

The expected reward until reaching G N � from ‡ " � is:

ER(‡,ÉG) = 9
fiÏÉG

Pr(rfi) � rG (rfi)
where rfi = ‡0 . . . ‡k is the shortest prefix of fi such that ‡k " G and ‡0 = ‡.

Conditional expected reward

Let ER(‡,ÉG ∂ ¬ÉF) be the conditional expected reward until reaching G
under the condition that no states in F N � are visited.

Joost-Pieter Katoen Probabilistic Programming 34/35

O
- -

O

÷÷÷÷:
ro CI.)

, ,

-
= rewards

= G

!to .
-
- o

E . o
" O # D ,

"

÷ µ
Er CE ,

OG)

-400
T

I

t.2tf.3ttp-13ttp.ir#
ER (TI ,

O G
' 7 =

-
. .

in a similar way . . .

ER GI , 06/7 06
')

{ . 2 t th u
3 t tf . 73

=
-

=

r - I
P

Probabilistic Programming Rewards

Expected reward reachability

Expected reward for reachability

The expected reward until reaching G N � from ‡ " � is:

ER(‡,ÉG) = 9
fiÏÉG

Pr(rfi) � rG (rfi)
where rfi = ‡0 . . . ‡k is the shortest prefix of fi such that ‡k " G and ‡0 = ‡.

Conditional expected reward

Let ER(‡,ÉG ∂ ¬ÉF) be the conditional expected reward until reaching G
under the condition that no states in F N � are visited.

Joost-Pieter Katoen Probabilistic Programming 34/35

Probabilistic Programming Rewards

Expected rewards in finite Markov chains

Polynomial complexity

Expected rewards in finite MCs can be computed in polynomial time.

Joost-Pieter Katoen Probabilistic Programming 35/35

