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Probabilistic Programming Motivation

Overview

© Motivation




Probabilistic Programming Motivation

Aims and sufficient conditions

» In denotational program semantics, the semantics of a loop is defined
as some fixed point of a mathematical function

» We will consider this for pGCL

"F(f\;x
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Aims and sufficient conditions

» In denotational program semantics, the semantics of a loop is defined
as some fixed point of a mathematical function

» We will consider this for pGCL

’F(u(\ = X

» Goals:

» Prove existence of such fixed points
» Show how they can be “computed” (more exactly: approximated)
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Aims and sufficient conditions

» In denotational program semantics, the semantics of a loop is defined
as some fixed point of a mathematical function

» We will consider this for pGCL

» Goals:

» Prove existence of such fixed points
» Show how they can be “computed” (more exactly: approximated)

» Sufficient conditions: ”C : DD

» on function domains: complete lattices
» on functions: monotonicity and Scott continuity
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Probabilistic Programming Complete lattices

Overview

© Complete lattices
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Partial orders

Partial order

A partial order (PO) (D, E) consists of a set D, called domain, and of a
relation € € D x D such that, for every dy, d>, d3 € D:

» di Ed; (reflexivity)
» diEdrand db Ed; = d; E ds (transitivity)
» diEdrand dbEd; = di=do (antisymmetry)

A PO is called total if, in addition, always d; E d» or d5 E d;.
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Partial orders

Partial order

A partial order (PO) (D, E) consists of a set D, called domain, and of a
relation € € D x D such that, for every dy, d>, d3 € D:

» diEd; (reflexivity)
» diEdrand db Ed; = d; E ds (transitivity)
» diEdrand dbEd; = di=do (antisymmetry)

A PO is called total if, in addition, always d; E d» or d5 E d;.

1. (N, <) is a total partial order
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Probabilistic Programming Complete lattices

Partial orders

Partial order

A partial order (PO) (D, E) consists of a set D, called domain, and of a
relation € € D x D such that, for every dy, d>, d3 € D:

» diEd; (reflexivity)
» diEdrand db Ed; = d; E ds (transitivity)
» diEdrand dbEd; = di=do (antisymmetry)

A PO is called total if, in addition, always d; E d» or d5 E d;.

1. (N <) is a total partial order
2. (2 ,C€) is a (non-total) partial order
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Probabilistic Programming Complete lattices

Partial orders

Partial order

A partial order (PO) (D, E) consists of a set D, called domain, and of a
relation € € D x D such that, for every dy, d>, d3 € D:

» diEd; (reflexivity)
» diEdrand db Ed; = d; E ds (transitivity)
» diEdrand dbEd; = di=do (antisymmetry)

A PO is called total if, in addition, always d; E d» or d5 E d;.

1. (N, <) is a total partial order
2. (2 ,C€) is a (non-total) partial order
3. (N, <)

is not a partial order (since not reflexive)
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Probabilistic Programming Complete lattices

Upper and lower bounds

Upper bound

An element d € D is called an upper bound o@ denoted S E d, if
SC d for every s € S.

DN ;
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Upper and lower bounds

Upper bound

An element d € D is called an upper bound of S € D, denoted S E d, if
SC d for every s € S.

An upper bound d of S € D is called least upper bound (LUB) or
supremum of S, denoted d = | | S, if d € d' for every upper bound d' of S.

©
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Upper and lower bounds

Upper bound

An element d € D is called an upper bound of S € D, denoted S E d, if
SC d for every s € S.

An upper bound d of S € D is called least upper bound (LUB) or
supremum of S, denoted d = | | S, if d € d' for every upper bound d' of S.

Lower bound

An element d € D is called a lower bound of S € D, denoted d E S, if
d C s for every s € S.
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Upper bound

An element d € D is called an upper bound of S € D, denoted S E d, if
SC d for every s € S.

An upper bound d of S € D is called least upper bound (LUB) or
supremum of S, denoted d = | | S, if d € d' for every upper bound d' of S.

Lower bound

An element d € D is called a lower bound of S € D, denoted d E S, if
d C s for every s € S.

A lower bound d of S € D is called greatest lower bound (GLB) or
infimum of S, denoted d = |_| S, if d' E d for every lower bound d' of S.
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Chains

S ¢ D is called a chain in D if, for every s1,s, € S,
s E sy or sp CE sy,

That is, S is a totally ordered subset of D.
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Chains

S ¢ D is called a chain in D if, for every s1,s, € S,
s E sy or sp CE sy,

That is, S is a totally ordered subset of D.

A chain S=5 C

= C ... is a ascending.
A chain S=s; 3

3 ... is a descending.

I 1

S S3
S = 53
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Examples: chains

1. Every subset S € N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.
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Examples: chains

1. Every subset S € N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.

2. {@,{0},{0,1},...} is a chain in (2", ) with LUB N.
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Probabilistic Programming Complete lattices

Complete lattices

Complete lattice

A PO (D,E) is called a complete lattice, if every subset S € D has a
supremum in D, i.e., | |S € D.
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Probabilistic Programming Complete lattices

Complete lattices

Complete lattice

A PO (D,E) is called a complete lattice, if every subset S € D has a
supremum in D, i.e., | |S € D.

Every complete lattice (D, E) has a least element L and, dually, a greatest
element T which satisfy:

VdeD. LEdET.
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Probabilistic Programming Complete lattices

Complete lattices

Complete lattice

A PO (D,E) is called a complete lattice, if every subset S € D has a
supremum in D, i.e., | |S € D.

Every complete lattice (D, E) has a least element L and, dually, a greatest
element T which satisfy:

VdeD. LEdET.

‘

{For complete lattice (D, E): every subset S € D has an infimum in D, i.e.,

[1S€eD.

Every ascending or descending chain has a least upper bound and greatest lower bound.
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Examples: lattices

1. 2V, ¢)isa complete lattice with | |S = M for every subset S ¢ 2N,
MeS
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Examples: lattices

'
. (2", ) is a complete lattice with | | S = Jycs M for every subset S ¢ 2.

1
2. (N, <) is not a complete lattice, as, e.g., the chain N has no upper bound.
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Probabilistic Programming Complete lattices

Examples: lattices

1. (2", ¢) is a complete lattice with | | S = Jpes M for every subset S ¢ 2.
2. (N, g) is not a complete lattice, as, e.g., the chain N has no upper bound.

3. Which of the following structures are complete lattices?

LT

2Lt 1
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Probabilistic Programming Monotonic and continuous functions

Overview

9 Monotonic and continuous functions
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Monotonicity

Monotonicity

Let (D,E) and (D', E') be partial orders, and let F: D = D'. F is called
monotonic (w.r.t. (D,E) and (D', ') if, for every d;, d» € D,

di E d, implies F(dy) =4 F(d>).
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Monotonicity

Monotonicity

Let (D,E) and (D', E') be partial orders, and let F: D = D'. F is called
monotonic (w.r.t. (D,E) and (D', ') if, for every d;, d» € D,

di E d, implies F(dy) =4 F(d>).

Interpretation: monotonic functions preserve information
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Monotonicity

Monotonicity

Let (D,E) and (D', E') be partial orders, and let F: D = D'. F is called
monotonic (w.r.t. (D,E) and (D', ') if, for every d;, d» € D,

di E d, implies F(dy) =4 F(dy).

Interpretation: monotonic functions preserve information

|
1. Let T:={ScN|Sfinite}. Then F; : T >N:Sp ) _cnis
monotonic w.r.t. (2", <) and (N, <).
T= 22,‘2‘;‘30\3

F = 2+13+30)
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Monotonicity

Monotonicity

Let (D,E) and (D', E') be partial orders, and let F: D = D'. F is called
monotonic (w.r.t. (D,E) and (D', ') if, for every d;, d» € D,

di E d, implies F(dy) =4 F(dy).

Interpretation: monotonic functions preserve information

|
1. Let T:={ScN|Sfinite}. Then F; : T >N:Sp ) _cnis
monotonic w.r.t. (2", €) and (N, <).

2. Fp:2Y 5 2Y: S N\ S is not monotonic w.r.t. (2%, <)
(since, e.g., @ € N but F5(@) =N ¢ F(N) = 2).
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Monotonicity on chains

The following lemma states how chains behave under monotonic functions.

|
Let (D,E) and (D', E') be complete lattices, F : D - D' monotonic, and
S c D a chainin D. Then:

1. F(S):={F(d)|d € S}isachainin D"
2. LIF(S)E F(]S).
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Monotonicity on chains

The following lemma states how chains behave under monotonic functions.

|
Let (D,E) and (D', E") be complete lattices, F : D - D' monotonic, and
S ¢ D achainin D. Then:

1. F(S):={F(d)|d € S}isachainin D"
2. LIF(S)E F(LIS).

Left as a homework exercise. O
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Probabilistic Programming Monotonic and continuous functions

Scott continuity
A function F is continuous if applying F and taking LUBs is commutable:
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Scott continuity

A function F is continuous if applying F and taking LUBs is commutable:

Scott continuity

Let (D,E) and (D', E") be complete lattices and F : D - D' monotonic.
Then F is called continuous if, for every non-empty chain S € D,

F(L|s)=]F(s).
s

@ ye—3 e —>-—> D
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Scott continuity

A function F is continuous if applying F and taking LUBs is commutable:
Scott continuity

Let (D,E) and (D', E") be complete lattices and F : D - D' monotonic.
Then F is called continuous if, for every non-empty chain S € D,

F(L|s)=]F(s).

Every continuous function is monotonic.
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Scott continuity

A function F is continuous if applying F and taking LUBs is commutable:

Scott continuity

Let (D,E) and (D', E") be complete lattices and F : D - D' monotonic.
Then F is called continuous if, for every non-empty chain S € D,

F(L|s)=]F(s).

Every continuous function is monotonic.

Proof.

1. Let dCe. Then {d,e}is a chain with | [{d, e} =e.
2. Let F be continuous. Then F(d)E | [{ F(d), F(e)}.

3. By continuity of F, { F(d), F(e)} = F(| [{d, e}), which equals F(d).
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Probabilistic Programming Fixpoint theorems

Overview

F(x) =x

C(x)—==0

@ Fixpoint theorems
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Fixed points

Let F: D - D be a function. Element d € D is called a fixed point of F if
and only if F(d) = d.
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Fixed points

Let F: D - D be a function. Element d € D is called a fixed point of F if
and only if F(d) = d.

1. Function F : R - R with F(x) = x°= 3x + 4 has a fixed point at 2.

2. For function F : R - R with F(x) = x, all x € R are fixed points.

3. Function F : R - R with F(x) = x+4 has no fixed points.

4. Function F: R - R with F(x) = + i has a fixed point at V2.

5. Function F : R - R with F(x) = cos(x) has a fixed point, but this is hard to
determine.
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How to find fixed points?

Naive scheme: start with an initial value xg, and then iterate: x,.1 = f(x,).
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Probabilistic Programming Fixpoint theorems

How to find fixed points?

Naive scheme: start with an initial value xg, and then iterate: x,.1 = f(x,).
(Wrong) idea: as n grows larger, x, converges to some fixed point of F.

1. Take F(x) =35+ + L and xo = 1. Iterations yields: 5 % % + = Which indeed
approximates \/_

2. Take F(x) = —x - EX . Iteration converges to 1.

3. But, take F(x) = 4 T 2 . Iteration oscillates between two points,
regardless of the initial vaIue.

When does such an iterative scheme (i.e., approximate) a fixed point,
and if so, which fixed point?

We consider this for complete lattices and continuous functions.

Joost-Pieter Katoen

Probabilistic Programming



Probabilistic Programming Fixpoint theorems

Iterative scheme to determine a fixed point

0.8 - y = cos(x) g

0.6 - 4

A

04 g

0.2 +

~ @
N

cos (1), cos (cos(n)) , <os(cos(ea3(x)),  ekc.
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Kleene’s fixpoint theorem

Kleene’s fixpoint theorem

Let (D, E) be a complete lattice and F : D - D continuous. Then F has a
least fixed point Ifp F and greatest fixed point gfp F respectively, given by:

Ifp F:=sup F"(L) and gfpF := inf F'(T)
neN neN

where F°(d) = d and F™(d) = F(F"(d)).

L":P E. —_ o o ke se b
2 3 AN )
(F"(_D , FQ) Fr0) o F (4 ,}
-_—_J—
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Kleene’s fixpoint theorem

Kleene’s fixpoint theorem

Let (D,E) be a complete lattice and F : D - D continuous. Then F has a
least fixed point Ifp F and greatest fixed point gfp F respectively, given by:

Ifp F:=sup F"(L) and gfpF :=inf F'(T)
neN neN

where F°(d) = d and F™(d) = F(F"(d)).

on the board O
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Examples

|
» Domain: complete lattice (2", €) with LIS =Upnes N
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Examples

|
» Domain: complete lattice (2", €) with LIS =Upnes N

» Function: F:2" 52 : N> N U A for some fixed A< N
» F monotonic:c MEN = F(M)=MuUAcNuUA=F(N)
» F continuous: F(L]S)=F (Unes N) = (Unes N)U A =Upes (NU A) =
Unes FIN) = LI F(S).
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Examples

|
» Domain: complete lattice (2", €) with LIS =Upnes N

» Function: F:2Y 52V : N> N U A for some fixed Ac N
» F monotonic: MEN = F(M)=MuUAcSNuUA=F(N)
» F continuous: F(L]S)=F (Unes N) = (Unes N)U A =Upes (NU A) =
Unes FIN) = LI F(S).
» Fixpoint iteration: N, := F"(| |@) where | |@ =@ 1= 9{
» Np=|]o=2
» Ny =F(Ng)=oUA=A
» Nb =F(N;)=AUA=A=N, for every n>1
= gfpF=A
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Examples

|
» Domain: complete lattice (2", €) with LIS =Upnes N

» Function: F:2Y 52V : N> N U A for some fixed Ac N
» F monotonic:c MEN = F(M)=MuUAcNuUA=F(N)
» F continuous: F(L]S)=F (Unes N) = (Unes N)U A =Upes (NU A) =
Unes FIN) = LI F(S).
» Fixpoint iteration: N, := F"(| |@) where | |@ =@
» Np=|]o=2
» Ny =F(Ng)=oUA=A
» Nb =F(N;)=AUA=A=N, for every n>1
= gfpF=A
» Alternatively: F(N)=NNn A
=glpF=2
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Probabilistic Programming Fixpoint theorems

Knaster-Tarski theorem (1)

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Prefixed point and postfixed point

For monotonic function F: D - D on (D,E) and d € D:
1. d is a prefixed point of F if F(d)E d
2. d is a postfixed point of F if d E F(d).

d is a prefixed and a postfixed point of F iff d is a fixed point.
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Probabilistic Programming Fixpoint theorems

Knaster-Tarski theorem (2)
F \S Wﬁﬁ‘\'b f\‘\Q,

Knaster-Tarski theorem

For any complete lattice (D, E) the following holds:
1. The least fixed and thlécTasreﬁxed points of F exist, and are identical

2. The greatest fixed and the postfixed points of F exist, and are
identical T greakesk

3. |The fixed points of F form a complete Iattice.‘ n

On the black board. ]
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Probabilistic Programming Fixpoint theorems

Pictorial depiction of the Knaster-Tarski theorem

Set of prefixed points
f(x) <=x
. Greatest fixed point
= greatest postfixed poinb
= lub of postfixed points
Complete Lattice of fixed points x = fi(x) = :
Least fixed point
= least prefixed point
= glb of prefixed points
Set of postfixed points X <= f(x)

\

Complete Lattice
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