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Probabilistic Programming Motivation

Aims and su�cient conditions

Z In denotational program semantics, the semantics of a loop is defined
as some fixed point of a mathematical function

Z We will consider this for pGCL

Z Goals:
Z Prove existence of such fixed points
Z Show how they can be “computed” (more exactly: approximated)

Z Su�cient conditions:
Z on function domains: complete lattices
Z on functions: monotonicity and Scott continuity
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Probabilistic Programming Complete lattices

Partial orders
Partial order
A partial order (PO) (D,F) consists of a set D, called domain, and of a
relation F N D ✓ D such that, for every d1, d2, d3 " D:

Z d1 F d1 (reflexivity)
Z d1 F d2 and d2 F d3 º d1 F d3 (transitivity)
Z d1 F d2 and d2 F d1 º d1 = d2 (antisymmetry)

A PO is called total if, in addition, always d1 F d2 or d2 F d1.

Examples

1. (N,() is a total partial order
2. (2N,N) is a (non-total) partial order
3. (N,<) is not a partial order (since not reflexive)
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Probabilistic Programming Complete lattices

Upper and lower bounds

Upper bound
An element d " D is called an upper bound of S N D, denoted S F d , if
s F d for every s " S.

An upper bound d of S N D is called least upper bound (LUB) or
supremum of S, denoted d = "S, if d F d ¨ for every upper bound d ¨ of S.

Lower bound
An element d " D is called a lower bound of S N D, denoted d F S, if
d F s for every s " S.
A lower bound d of S N D is called greatest lower bound (GLB) or
infimum of S, denoted d =  S, if d ¨ F d for every lower bound d ¨ of S.
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Probabilistic Programming Complete lattices

Chains

Chains
S N D is called a chain in D if, for every s1, s2 " S,

s1 F s2 or s2 F s1.

That is, S is a totally ordered subset of D.

A chain S = s1 F s2 F s3 F . . . is a ascending.
A chain S = s1 G s2 G s3 G . . . is a descending.
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Probabilistic Programming Complete lattices

Examples: chains

1. Every subset S N N is a chain in (N,().
It has a LUB (its greatest element) i� it is finite.

2. {o, { 0 }, { 0, 1 }, . . . } is a chain in (2N,N) with LUB N.
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Probabilistic Programming Complete lattices

Complete lattices
Complete lattice
A PO (D,F) is called a complete lattice, if every subset S N D has a
supremum in D, i.e., "S " D.

Every complete lattice (D,F) has a least element · and, dually, a greatest
element „ which satisfy:

ºd " D. · F d F „ .

F
or complete lattice (D,F): every subset S N D has an infimum in D, i.e.,
 S " D.

Every ascending or descending chain has a least upper bound and greatest lower bound.
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Probabilistic Programming Complete lattices

Examples: lattices

1. (2N,N) is a complete lattice with "S = �M"S M for every subset S N 2N.

2. (N,() is not a complete lattice, as, e.g., the chain N has no upper bound.

3. Which of the following structures are complete lattices?
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Probabilistic Programming Monotonic and continuous functions

Monotonicity
Monotonicity
Let (D,F) and (D ¨,F¨) be partial orders, and let F ⇥ D � D ¨. F is called
monotonic (w.r.t. (D,F) and (D ¨,F¨)) if, for every d1, d2 " D,

d1 F d2 implies F (d1) F¨ F (d2).

Interpretation: monotonic functions preserve information

1. Let T ⇥= {S N N ∂ S finite}. Then F1 ⇥ T � N ⇥ S ( 8n"S n is
monotonic w.r.t. (2N,N) and (N,().

2. F2 ⇥ 2N � 2N ⇥ S ( N \ S is not monotonic w.r.t. (2N,N)
(since, e.g., o N N but F2(o) = N /N F2(N) = o).
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Probabilistic Programming Monotonic and continuous functions

Monotonicity on chains

The following lemma states how chains behave under monotonic functions.

Let (D,F) and (D ¨,F¨) be complete lattices, F ⇥ D � D ¨ monotonic, and
S N D a chain in D. Then:

1. F (S) ⇥= {F (d) ∂ d " S } is a chain in D ¨.
2. "F (S) F¨ F ("S).

Proof.
Left as a homework exercise.
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Probabilistic Programming Monotonic and continuous functions

Scott continuity
A function F is continuous if applying F and taking LUBs is commutable:

Scott continuity
Let (D,F) and (D ¨,F¨) be complete lattices and F ⇥ D � D ¨ monotonic.
Then F is called continuous if, for every non-empty chain S N D,

F ⇥# S� = #F (S).

Every continuous function is monotonic.

Proof.

1. Let d F e. Then { d , e } is a chain with "{ d , e } = e.
2. Let F be continuous. Then F (d) F "{F (d), F (e) }.
3. By continuity of F , {F (d), F (e) } = F ("{ d , e }), which equals F (d).
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Probabilistic Programming Fixpoint theorems

Fixed points

Fixed point
Let F ⇥ D � D be a function. Element d " D is called a fixed point of F if
and only if F (d) = d .

Examples

1. Function F ⇥ R � R with F (x ) = x2 + 3x + 4 has a fixed point at 2.

2. For function F ⇥ R � R with F (x ) = x , all x " R are fixed points.

3. Function F ⇥ R � R with F (x ) = x+4 has no fixed points.

4. Function F ⇥ R � R with F (x ) = x
2 + 1

x has a fixed point at
”
2.

5. Function F ⇥ R � R with F (x ) = cos(x ) has a fixed point, but this is hard to
determine.
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Probabilistic Programming Fixpoint theorems

How to find fixed points?

Naive scheme: start with an initial value x0, and then iterate: xn+1 = f (xn).

(Wrong) idea: as n grows larger, xn converges to some fixed point of F .

1. Take F (x ) = x
2 + 1

x and x0 = 1. Iterations yields: 3
2 , 17

12 , 17
24 + 12

17 which indeed
approximates

”
2.

2. Take F (x ) = 5
2 x � 3

2 x2. Iteration converges to 1.

3. But, take F (x ) = 13
4 x � 3

2 x2. Iteration oscillates between two points,
regardless of the initial value.

When does such an iterative scheme (i.e., approximate) a fixed point,
and if so, which fixed point?

We consider this for complete lattices and continuous functions.

Joost-Pieter Katoen Probabilistic Programming 17/23
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Probabilistic Programming Fixpoint theorems

Iterative scheme to determine a fixed point
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Probabilistic Programming Fixpoint theorems

Kleene’s fixpoint theorem

Kleene’s fixpoint theorem
Let (D,F) be a complete lattice and F ⇥ D � D continuous. Then F has a
least fixed point lfp F and greatest fixed point gfp F respectively, given by:

lfp F ⇥= sup
n"N

F n(·) and gfp F ⇥= inf
n"N

F n(„)
where F 0(d) = d and F n+1(d) = F (F n(d)).

Proof.
on the board
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"
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F n(„)
where F 0(d) = d and F n+1(d) = F (F n(d)).
Proof.
on the board
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Probabilistic Programming Fixpoint theorems

Examples

Z Domain: complete lattice (2N,N) with "S = �N"S N

Z Function: F ⇥ 2N � 2N ⇥ N ( N < A for some fixed A N N
Z F monotonic: M N N º F (M) = M < A N N < A = F (N)
Z F continuous: F ("S) = F ��N"S N⌥ = ��N"S N⌥ < A = �N"S (N < A) =
�N"S F (N) = "F (S).

Z Fixpoint iteration: Nn ⇥= F n("o) where "o = o
Z N0 = "o = o
Z N1 = F (N0) = o < A = A
Z N2 = F (N1) = A < A = A = Nn for every n ' 1

� gfp F = A
Z Alternatively: F (N) = N = A

� gfp F = o
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Probabilistic Programming Fixpoint theorems

Knaster-Tarski theorem (1)

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Prefixed point and postfixed point
For monotonic function F ⇥ D � D on (D,F) and d " D:

1. d is a prefixed point of F if F (d) F d
2. d is a postfixed point of F if d F F (d).

d is a prefixed and a postfixed point of F i� d is a fixed point.
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Probabilistic Programming Fixpoint theorems

Knaster-Tarski theorem (2)

Knaster-Tarski theorem
For any complete lattice (D,F) the following holds:

1. The least fixed and the prefixed points of F exist, and are identical
2. The greatest fixed and the postfixed points of F exist, and are

identical
3. The fixed points of F form a complete lattice.

Proof.
On the black board.
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Probabilistic Programming Fixpoint theorems

Pictorial depiction of the Knaster-Tarski theorem
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( D
, E ) is a complete lattice

Poot F :D -s D monotonic

① Let
pre

be the set of prefixed points of F

let

pbet-heglb-in.fr#

p does exist as we deal with complete

lattices
. Claim : p is the least prefixed

let x E pre .

point of F
,

and p is the Ifp
F -

a . p I x Cta as p = inf
pre it)

⇒ Fcp ) I FG ) C * as F is monotonic

* )
=3 Fcp ) I x ( te as XE pre * )

⇒ Cta as X E pre is arbitrary ,
it

follows

tndt
Fcp ) is a Lb of pre ;

now as p = g Lb pre to )

Fcp ) I p

⇒
C * thus by definition p E pre ;

in addition
p is a Lb of pre * )

p is the least prefixed point of F



b.

pp
is the Lfp F i

Fcp ) I p Cta since p is a

prefixed point )
⇒ F C Fcp ?) I Fcp ) ( to by monotonicity te)

⇒ Cta Fcp ) is a prefixed point by def
.

+
p is a Lb pre * . )

P I Fcp )

⇒ C * p is a prefixed point

so Fcp ) Ip to )

p = Fcp )

⇒
p

is a fixed point of F

A p is lowerbound over prefixed points

⇒
p is Lb over oh fixed points

⇒
p is a least fixed point

-



(3) The fixed points of F

form
a complete

lattice .

Let W be a subset of fixed points of F

W
er

2Fixed.

/ \ points of F

Show : existence of sup W.-let I = UW. let IT = Lot a Ew }

Then I E IT
,

and by def
.

of IT
,

9- = inf off

(a) Itis a complete lattice

(b) F
maps IT onto off ( * monotonicity & )

( c ) F is a mopping over (

IT
,

I )
-

complete

⇒ I is glb of

get
lattice



proofs of (a) through (c)

(a) claim : of T is a complete lattice .
Proof :

as of T E W and W is a complete lattice
,

inf qtr
'

and supITexist and Lie in W

We have I =
inf off and of

EI
,

thus

inf off E I .

Furthermore
,

Since of E IT
,

of I sup IT . By definition of of T
,

we

have sup 9- T E IT .

(b) claim : F
mops get to get .

Let WEW

and X E IT .
To show : FCX ) E 9- T

.

We have i W Eq and q Ex

⇒ Ct monotonicity of F ; transitivity of ±

* )

Fcw ) E Fcx )

⇒ Ck W is a set of fixed points off * )

w I FK )

⇒ Cta w is an arbitrary elk of W * )

sup W I FK )
C * a  

= sup W * )
⇒ as I Fcx ) =3 Fcx ) E IT

a



(c) From Ca) and (b)
,

it follows that f

is a mapping
over the complete lattice IP

Also : Fis monotonic
.

Thus F has an Lfp

9-
'

in IT .
Since 9- I 9- t

,
IES !

Thus : of
'

= Sup Wo


