Probabilistic Programming Lecture #5: Domain Theory

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Overview

1 Motivation

2 Complete lattices

3 Monotonic and continuous functions

Fixpoint theorems

Aims and sufficient conditions

- In denotational program semantics, the semantics of a loop is defined as some fixed point of a mathematical function
 - We will consider this for pGCL

$$-f(x) = x$$

Aims and sufficient conditions

- In denotational program semantics, the semantics of a loop is defined as some fixed point of a mathematical function
 - We will consider this for pGCL

$$f(x) = x$$

Goals:

- Prove existence of such fixed points
- Show how they can be "computed" (more exactly: approximated)

Aims and sufficient conditions

In denotational program semantics, the semantics of a loop is defined as some fixed point of a mathematical function

We will consider this for pGCL

Goals:

- Prove existence of such fixed points
- Show how they can be "computed" (more exactly: approximated)
- Sufficient conditions:

- on function domains: complete lattices
- on functions: monotonicity and Scott continuity

Overview

3 Monotonic and continuous functions

Fixpoint theorems

Partial order

A partial order (PO) (D, \subseteq) consists of a set D, called domain, and of a relation $\subseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$:

A PO is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Partial order

A partial order (PO) (D, \subseteq) consists of a set D, called domain, and of a relation $\subseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$:

A PO is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Examples

1. (\mathbb{N} , \leq) is a total partial order

Partial order

A partial order (PO) (D, \subseteq) consists of a set D, called domain, and of a relation $\subseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$:

$$d_1 \subseteq d_1$$
(reflexivity) $d_1 \subseteq d_2$ and $d_2 \subseteq d_3 \implies d_1 \subseteq d_3$ (transitivity) $d_1 \subseteq d_2$ and $d_2 \subseteq d_1 \implies d_1 = d_2$ (antisymmetry)

A PO is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Examples

1. (
$$\mathbb{N}$$
, ≤) is a total partial order
2. (2 ^{\mathbb{N}} , ⊆) is a (non-total) partial order

Partial order

A partial order (PO) (D, \subseteq) consists of a set D, called domain, and of a relation $\subseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$:

$$d_1 \subseteq d_1$$
(reflexivity) $d_1 \subseteq d_2$ and $d_2 \subseteq d_3 \implies d_1 \subseteq d_3$ (transitivity) $d_1 \subseteq d_2$ and $d_2 \subseteq d_1 \implies d_1 = d_2$ (antisymmetry)

A PO is called total if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Examples

- 1. (\mathbb{N} , \leq) is a total partial order
- 2. $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order
- 3. (\mathbb{N} , <) is not a partial order (since not reflexive)

Upper and lower bounds

Upper bound

An element $d \in D$ is called an upper bound of $S \subseteq D$ denoted $S \sqsubseteq d$, if $s \sqsubseteq d$ for every $s \in S$.

Upper and lower bounds

Upper bound

An element $d \in D$ is called an upper bound of $S \subseteq D$, denoted $S \sqsubseteq d$, if $s \sqsubseteq d$ for every $s \in S$.

An upper bound d of $S \subseteq D$ is called least upper bound (LUB) or supremum of S, denoted $d = \bigsqcup S$, if $d \sqsubseteq d'$ for every upper bound d' of S.

Upper and lower bounds

Upper bound

An element $d \in D$ is called an upper bound of $S \subseteq D$, denoted $S \sqsubseteq d$, if $s \sqsubseteq d$ for every $s \in S$.

An upper bound d of $S \subseteq D$ is called least upper bound (LUB) or supremum of S, denoted $d = \bigsqcup S$, if $d \sqsubseteq d'$ for every upper bound d' of S.

Lower bound

An element $d \in D$ is called a lower bound of $S \subseteq D$, denoted $d \subseteq S$, if $d \subseteq s$ for every $s \in S$.

Upper and lower bounds

$$\langle 2^{N}, \subseteq \rangle S [1, 2, 3, 4], \{2, 4]$$

glb (s) = $\{2, 4\}$

Upper bound

An element $d \in D$ is called an upper bound of $S \subseteq D$, denoted $S \sqsubseteq d$, if $s \sqsubseteq d$ for every $s \in S$.

An upper bound *d* of $S \subseteq D$ is called least upper bound (LUB) or supremum of *S*, denoted $d = \bigsqcup S$, if $d \sqsubseteq d'$ for every upper bound *d'* of *S*.

Lower bound

An element $d \in D$ is called a lower bound of $S \subseteq D$, denoted $d \sqsubseteq S$, if $d \sqsubseteq s$ for every $s \in S$.

A lower bound d of $S \subseteq D$ is called greatest lower bound (GLB) or infimum of S, denoted $d = \prod S$, if $d' \subseteq d$ for every lower bound d' of S.

Chains

Chains

 $S \subseteq D$ is called a chain in D if, for every $s_1, s_2 \in S$,

 $s_1 \sqsubseteq s_2$ or $s_2 \sqsubseteq s_1$.

That is, S is a totally ordered subset of D.

Chains

Chains

 $S \subseteq D$ is called a chain in D if, for every $s_1, s_2 \in S$,

 $s_1 \sqsubseteq s_2$ or $s_2 \sqsubseteq s_1$.

That is, *S* is a totally ordered subset of *D*. A chain $S = s_1 \sqsubseteq s_2 \sqsubseteq s_3 \sqsubseteq \dots$ is a ascending. A chain $S = s_1 \sqsupseteq s_2 \sqsupseteq s_3 \sqsupseteq \dots$ is a descending.

Examples: chains

Every subset S ⊆ N is a chain in (N, ≤).
 It has a LUB (its greatest element) iff it is finite.

Examples: chains

 Every subset S ⊆ N is a chain in (N, ≤). It has a LUB (its greatest element) iff it is finite.
 {Ø, {0}, {0,1},...} is a chain in (2^N, ⊆) with LUB N.

Complete lattice

A PO (D, \sqsubseteq) is called a complete lattice, if every subset $S \subseteq D$ has a supremum in D, i.e., $\bigsqcup S \in D$.

Complete lattice

A PO (D, \sqsubseteq) is called a complete lattice, if every subset $S \subseteq D$ has a supremum in D, i.e., $\bigsqcup S \in D$.

Every complete lattice (D, \sqsubseteq) has a least element \bot and, dually, a greatest element \top which satisfy:

 $\forall d \in D. \quad \bot \sqsubseteq d \sqsubseteq \top .$

by definition
$$\not Q \subseteq D$$

by definition every deD is an upper bound of $\not Q$
thus $\bigsqcup \varphi$ exists and is the least elt \bot
of (D, Ξ)

Complete lattice

A PO (D, \sqsubseteq) is called a complete lattice, if every subset $S \subseteq D$ has a supremum in D, i.e., $\bigsqcup S \in D$.

Every complete lattice (D, \sqsubseteq) has a least element \bot and, dually, a greatest element \top which satisfy:

$$\forall d \in D. \quad \bot \sqsubseteq d \sqsubseteq \top .$$

Ð

 \square complete lattice (*D*, \sqsubseteq): every subset *S* ⊆ *D* has an infimum in *D*, i.e., $\square S \in D$.

Every ascending or descending chain has a least upper bound and greatest lower bound.

Joost-Pieter Katoen

Examples: lattices

1. $(2^{\mathbb{N}}, \subseteq)$ is a complete lattice with $\bigsqcup S = \bigcup_{M \in S} M$ for every subset $S \subseteq 2^{\mathbb{N}}$.

Examples: lattices

- 1. $(2^{\mathbb{N}}, \subseteq)$ is a complete lattice with $\bigsqcup S = \bigcup_{M \in S} M$ for every subset $S \subseteq 2^{\mathbb{N}}$.
- 2. (\mathbb{N}, \leq) is not a complete lattice, as, e.g., the chain \mathbb{N} has no upper bound.

Examples: lattices

- 1. $(2^{\mathbb{N}}, \subseteq)$ is a complete lattice with $\bigsqcup S = \bigcup_{M \in S} M$ for every subset $S \subseteq 2^{\mathbb{N}}$.
- 2. (\mathbb{N}, \leq) is not a complete lattice, as, e.g., the chain \mathbb{N} has no upper bound.
- 3. Which of the following structures are complete lattices?

Overview

3 Monotonic and continuous functions

Fixpoint theorems

Monotonicity

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \to D'$. F is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

 $d_1 \sqsubseteq d_2$ implies $F(d_1) \sqsubseteq' F(d_2)$.

Monotonicity

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \to D'$. F is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2$$
 implies $F(d_1) \sqsubseteq' F(d_2)$.

Interpretation: monotonic functions preserve information

Monotonicity

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \to D'$. F is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2$$
 implies $F(d_1) \sqsubseteq' F(d_2)$.

Interpretation: monotonic functions preserve information

1. Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $F_1 : T \to \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leqslant) . $T_{=} \quad \begin{array}{l} 22, 27, 301 \end{array}$ $F_1 = \quad 2+27+301 \end{array}$

Monotonicity

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \rightarrow D'$. F is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2$$
 implies $F(d_1) \sqsubseteq' F(d_2)$.

Interpretation: monotonic functions preserve information

Monotonicity on chains

The following lemma states how chains behave under monotonic functions.

Let (D, \sqsubseteq) and (D', \sqsubseteq') be complete lattices, $F : D \rightarrow D'$ monotonic, and $S \subseteq D$ a chain in D. Then: 1. $F(S) := \{F(d) \mid d \in S\}$ is a chain in D'. 2. $||F(S) \sqsubseteq' F(||S)$.

Monotonicity on chains

The following lemma states how chains behave under monotonic functions.

Let
$$(D, \sqsubseteq)$$
 and (D', \sqsubseteq') be complete lattices, $F : D \to D'$ monotonic, and $S \subseteq D$ a chain in D . Then:
1. $F(S) \coloneqq \{F(d) \mid d \in S\}$ is a chain in D' .
2. $\bigsqcup F(S) \sqsubseteq' F(\bigsqcup S)$.

Proof.

Left as a homework exercise.

A function F is continuous if applying F and taking LUBs is commutable:

A function F is continuous if applying F and taking LUBs is commutable:

Scott continuity

Let (D, \sqsubseteq) and (D', \sqsubseteq') be complete lattices and $F : D \to D'$ monotonic. Then F is called continuous if, for every non-empty chain $S \subseteq D$,

 $F\left(\bigsqcup S\right) = \bigsqcup F(S).$

A function F is continuous if applying F and taking LUBs is commutable:

Scott continuity

Let (D, \sqsubseteq) and (D', \sqsubseteq') be complete lattices and $F : D \to D'$ monotonic. Then F is called continuous if, for every non-empty chain $S \subseteq D$,

$$F\left(\bigsqcup S\right) = \bigsqcup F(S).$$

Every continuous function is monotonic.

A function F is continuous if applying F and taking LUBs is commutable:

Scott continuity

Let (D, \sqsubseteq) and (D', \sqsubseteq') be complete lattices and $F : D \to D'$ monotonic. Then F is called continuous if, for every non-empty chain $S \subseteq D$,

 $F\left(\bigsqcup S\right) = \bigsqcup F(S).$

Every continuous function is monotonic.

Proof.

- 1. Let $d \subseteq e$. Then $\{d, e\}$ is a chain with $\bigsqcup \{d, e\} = e$.
- 2. Let F be continuous. Then $F(d) \sqsubseteq \bigsqcup \{ F(d), F(e) \}$.
- 3. By continuity of F, $\{F(d), F(e)\} = F(\bigsqcup \{d, e\})$, which equals F(d).

Overview

Motivation f(x) = XComplete lattices Monotonic and continuous functions f(x) - x = 0

4 Fixpoint theorems

Fixed points

Fixed point

Let $F : D \to D$ be a function. Element $d \in D$ is called a fixed point of F if and only if F(d) = d.

Fixed points

Fixed point

Let $F : D \to D$ be a function. Element $d \in D$ is called a fixed point of F if and only if F(d) = d.

Examples

- 1. Function $F : \mathbb{R} \to \mathbb{R}$ with $F(x) = x^2 3x + 4$ has a fixed point at 2.
- 2. For function $F : \mathbb{R} \to \mathbb{R}$ with F(x) = x, all $x \in \mathbb{R}$ are fixed points.
- 3. Function $F : \mathbb{R} \to \mathbb{R}$ with F(x) = x+4 has no fixed points.
- 4. Function $F : \mathbb{R} \to \mathbb{R}$ with $F(x) = \frac{x}{2} + \frac{1}{x}$ has a fixed point at $\sqrt{2}$.
- 5. Function $F : \mathbb{R} \to \mathbb{R}$ with $F(x) = \cos(x)$ has a fixed point, but this is hard to determine.

How to find fixed points?

Naive scheme: start with an initial value x_0 , and then iterate: $x_{n+1} = f(x_n)$.

How to find fixed points?

Naive scheme: start with an initial value x_0 , and then iterate: $x_{n+1} = f(x_n)$. (Wrong) idea: as *n* grows larger, x_n converges to some fixed point of *F*.

- 1. Take $F(x) = \frac{x}{2} + \frac{1}{x}$ and $x_0 = 1$. Iterations yields: $\frac{3}{2}, \frac{17}{12}, \frac{17}{24} + \frac{12}{17}$ which indeed approximates $\sqrt{2}$.
- 2. Take $F(x) = \frac{5}{2}x \frac{3}{2}x^2$. Iteration converges to 1.
- 3. But, take $F(x) = \frac{13}{4}x \frac{3}{2}x^2$. Iteration oscillates between two points, regardless of the initial value.

When does such an iterative scheme (i.e., approximate) a fixed point, and if so, which fixed point?

We consider this for complete lattices and continuous functions.

Iterative scheme to determine a fixed point

Kleene's fixpoint theorem

Kleene's fixpoint theorem

Let (D, \sqsubseteq) be a complete lattice and $F : D \rightarrow D$ continuous. Then F has a least fixed point lfp F and greatest fixed point gfp F respectively, given by:

If
$$F := \sup_{n \in \mathbb{N}} F^n(\bot)$$
 and $\operatorname{gfp} F := \inf_{n \in \mathbb{N}} F^n(\top)$

where $F^{0}(d) = d$ and $F^{n+1}(d) = F(F^{n}(d))$.

claim:

(b) $X = \bigcup F^{n}(I)$ is the least fixed point

- It follows (by induction on n)
 - that $P^{n}(L) \equiv Y \quad \forall n$.
- Since every element of the chain
 - $F^{\circ}(L) \subseteq F^{\prime}(L) \subseteq F^{2}(L) \subseteq \dots$
- is a subset of Y we have

$$X = W P^{(1)} E Y$$

so X is the least fixed point B

Kleene's fixpoint theorem

Kleene's fixpoint theorem

Let (D, \sqsubseteq) be a complete lattice and $F : D \rightarrow D$ continuous. Then F has a least fixed point lfp F and greatest fixed point gfp F respectively, given by:

If
$$F := \sup_{n \in \mathbb{N}} F^n(\bot)$$
 and gf $F := \inf_{n \in \mathbb{N}} F^n(\top)$

where
$$F^{0}(d) = d$$
 and $F^{n+1}(d) = F(F^{n}(d))$.

Proof.

on the board

▶ Domain: complete lattice $(2^{\mathbb{N}}, \subseteq)$ with $\bigsqcup S = \bigcup_{N \in S} N$

- ▶ Domain: complete lattice $(2^{\mathbb{N}}, \subseteq)$ with $\bigcup S = \bigcup_{N \in S} N$
- ▶ Function: $F: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: N \mapsto N \cup A$ for some fixed $A \subseteq \mathbb{N}$
 - ► F monotonic: $M \subseteq N \implies F(M) = M \cup A \subseteq N \cup A = F(N)$
 - ► F continuous: $F(\bigsqcup S) = F(\bigcup_{N \in S} N) = (\bigcup_{N \in S} N) \cup A = \bigcup_{N \in S} (N \cup A) = \bigcup_{N \in S} F(N) = \bigsqcup F(S).$

▶ Domain: complete lattice $(2^{\mathbb{N}}, \subseteq)$ with $\bigsqcup S = \bigcup_{N \in S} N$

- ▶ Function: $F: 2^{\mathbb{N}} \to 2^{\mathbb{N}} : N \mapsto N \cup A$ for some fixed $A \subseteq \mathbb{N}$
 - ► F monotonic: $M \subseteq N \implies F(M) = M \cup A \subseteq N \cup A = F(N)$
 - ► F continuous: $F(\bigsqcup S) = F(\bigcup_{N \in S} N) = (\bigcup_{N \in S} N) \cup A = \bigcup_{N \in S} (N \cup A) = \bigcup_{N \in S} F(N) = \bigsqcup F(S).$
- ► Fixpoint iteration: $N_n := F^n(\bigcup \emptyset)$ where $\bigcup \emptyset = \emptyset$ $\bot = \emptyset$

•
$$N_0 = \bigsqcup \emptyset = \emptyset$$

$$\blacktriangleright N_1 = F(N_0) = \emptyset \cup A = A$$

• $N_2 = F(N_1) = A \cup A = A = N_n$ for every $n \ge 1$

$$\Rightarrow$$
 gfp $F = A$

- ▶ Function: $F: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: N \mapsto N \cup A$ for some fixed $A \subseteq \mathbb{N}$
 - ► F monotonic: $M \subseteq N \implies F(M) = M \cup A \subseteq N \cup A = F(N)$
 - ► F continuous: $F(\bigsqcup S) = F(\bigcup_{N \in S} N) = (\bigcup_{N \in S} N) \cup A = \bigcup_{N \in S} (N \cup A) = \bigcup_{N \in S} F(N) = \bigsqcup F(S).$

► Fixpoint iteration: $N_n := F^n(\bigcup \emptyset)$ where $\bigcup \emptyset = \emptyset$

•
$$N_0 = \bigsqcup \emptyset = \emptyset$$

$$\blacktriangleright N_1 = F(N_0) = \emptyset \cup A = A$$

►
$$N_2 = F(N_1) = A \cup A = A = N_n$$
 for every $n \ge 1$

$$\Rightarrow$$
 gfp $F = A$

• Alternatively:
$$F(N) = N \cap A$$

 \Rightarrow gfp $F = \emptyset$

Probabilistic Programming

Fixpoint theorems

Knaster-Tarski theorem (1)

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893–1990)

Prefixed point and postfixed point

For monotonic function $F: D \rightarrow D$ on (D, \sqsubseteq) and $d \in D$:

- 1. *d* is a prefixed point of *F* if $F(d) \subseteq d$
- 2. d is a postfixed point of F if $d \subseteq F(d)$.

d is a prefixed and a postfixed point of F iff d is a fixed point.

Knaster-Tarski theorem (2) Fis monatonic Knaster-Tarski theorem For any complete lattice (D, \subseteq) the following holds: 1. The least fixed and the prefixed points of F exist, and are identical 2. The greatest fixed and the postfixed points of F exist, and are ^T greatest identical 11 3. The fixed points of F form a complete lattice.

Proof.

On the black board.

Pictorial depiction of the Knaster-Tarski theorem

(D, E) is a complete lattice Proof F: D >> D monotonic let pre be the set of prefixed points of F (1)let (p be the glb = inf pre.) p does exist as we deal with complete lattices. <u>Claim</u>: p is the least prefixed let x ∈ pre. point of F, and p is the lip a. $p \sqsubseteq x$ (* as p = inf pre *)=> F(p) E F(x) (* as Fis monotonic (* as XE pre *) \Rightarrow $F(p) \sqsubseteq x$ =) (* as X E pre is arbitrary, it follows that F(p) is a Lb of pre; now as p = glb pre +) $F(p) \subseteq p$ =) (+ thus by definition p E pre; in addition p is a lb of pre *) p is the least prefixed point of F

b. p is the Lfp F:

(3) The fixed points of F form a complete lattice. let W be a subset of fixed points of F $W_{q} = q^{1}$ 2 Fixed points of F Show: existence of sup W. let g = UW. let $gf = \frac{1}{2} \cup \frac{1}{2} \subseteq \frac{1}{2}$ Then ge gt, and by def. of gt, g = inf gt (a) 91 is a complete lattice (b) F maps g1 onto g1 (* monotonicity 2) (c) F is a mapping over (ig1, ⊑) complete ⇒ g is glb of g1 / م للم رو

proofs of (a) through (c) (a) claim: qT is a complete lattice. Proof: as gt EW and Wis a complete lattice, inf gt and sup gt exist and lie in W We have q = inf qt and q eqt, thus inf g1 e g. Furthermore, since g e g1, q E sup q1. By definition of q1, we have sup gt e gt. (b) claim: Fmaps g1 to g1. Let we w and $x \in q1$. To show: $F(x) \in q1$. We have: W Eq and q Ex $\implies (* \text{ monotonicity of } F; \text{ bransibivity of } \underbrace{=}{*})$ $F(\omega) \subseteq F(x)$ => (* W is a set of fixed points of F *) $w \subseteq F(x)$ =) (* w is an arbitrary elk of w *) Sup W E F(x) (* 9= sup W *) $\Rightarrow 9 \subseteq F(x) \Rightarrow F(x) \in 9^{\uparrow}.$

