Probabilistic Programming

Lecture #16+#17: Expected Runtime Analysis

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Overview

- Motivation
- 2 An unsound approach
- 3 The expected runtime transformer
- Properties
- 5 Proof rules for runtimes of loops
- 6 Proving positive almost-sure termination
- Case studies

Overview

- Motivation
- 2 An unsound approach
- The expected runtime transformer
- 4 Properties
- 5 Proof rules for runtimes of loops
- 6 Proving positive almost-sure termination
- Case studies

The runtime of a probabilistic program

The runtime of a probabilistic program depends on the input and on the internal randomness of the program.

Joost-Pieter Katoen Probabilistic Programming 4/5

The runtime of a probabilistic program is random

```
int i := 0;
repeat {i++; (c := false [0.5] c := true)}
until (c)
```


The expected runtime is $1 + 3 \cdot 1/2 + 6 \cdot 1/4 + \dots (3n+1) \cdot 1/2^n = 5$.

Joost-Pieter Katoen Probabilistic Programming 5/50

Expected runtimes

Expected run-time of program P on input s:

$$\sum_{i=1}^{\infty} i \cdot Pr \left(\begin{array}{c} "P \text{ terminates after} \\ i \text{ steps on input } s" \end{array} \right)$$

Joost-Pieter Katoen Probabilistic Programming 6/5

Efficiency of randomised algorithms

Quicksort:

```
QS(A) =
    if |A| <= 1 { return A; }
    i := ceil(|A|/2);
    A< := {a in A | a < A[i]};
    A> := {a in A | a > A[i]};
    return QS(A<) ++ A[i] ++ QS(A>)
```

Worst case complexity: O(N²) comparisons

Randomised Quicksort:

```
rQS(A) =
if |A| <= 1 { return A; }
i := Unif[1...|A|];
A< := {a in A | a < A[i]};
A> := {a in A | a > A[i]};
return rQS(A<) ++ A[i] ++ rQS(A>)
```

Worst case complexity:

O(N log N) expected comparisons

Coupon collector's problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

Coupon collector's problem

```
cp := [0,...,0]; // no coupons yet
i := 1; // coupon to be collected next
x := 0: // number of coupons collected
while (x < N) {
    while (cp[i] != 0) {
        i := uniform(1..N) // next coupon
    }
    cp[i] := 1; // coupon i obtained
    x++; // one coupon less to go
}</pre>
```

The expected runtime of this program is in $\Theta(N \cdot \log N)$.

Joost-Pieter Katoen Probabilistic Programming 9/

Closest-pair problem

Closest-pair problem: find two distinct points $u, v \in \mathbb{R}^2$ among N points in the plane that minimise the Euclidean distance among all pairs of these points.

A naive deterministic approach takes $O(N^2)$. More efficient version in $O(N \cdot \log N)$.

Rabin's randomised algorithm has an expected runtime in O(N).

Joost-Pieter Katoen Probabilistic Programming 10/50

Randomised primality test

Problem: is *N* prime or not?

Basic structure of a randomised primality test:

- 1. Randomly pick a number a, say
- 2. Do the primality test: Check some equality involving a and N
- 3. If equality fails, N is composite (with witness a)
- 4. Otherwise repeat the process.

If after K > 0 iterations, N is not found to be composite, then N is probably prime.

Joost-Pieter Katoen Probabilistic Programming 11/

Some primality tests

- ► Fermat primality test:
 - Select $a \in \mathbb{Z}$ relative prime to N. If $a^{N-1} \mod N \neq 1$, then N is composite.
- ▶ Rabin-Miller test: Select 0 < a < N. Let $2^s \cdot d = N-1$ where d is odd. If $a^d \ne 1 \pmod{N}$ and $a^{2^r \cdot d} \ne -1 \pmod{N}$ for all $0 \le r \le s-1$, then N is composite.
- Solovay and Strassen test: For N odd, pick a < N. If $a^{N-1/2} \neq \dots$, then N is composite.

Adleman and Huang (1992) provided a randomised primality test that terminates with expected polynomial runtime and certainly provides the correct answer. 1

Joost-Pieter Katoen Probabilistic Programming 12.

¹Decision problems with this characteristic constitute the complexity class ZPP (zero-error probabilistic polynomial time).

The aim of this lecture

A wp-calculus to reason about runtimes at the source code level.

No "descend" into the underlying probabilistic model.

The calculus should be compositional.

ert
$$(P; 9) = ert(P) \stackrel{?}{\nearrow} ert(9)$$

Joost-Pieter Katoen Probabilistic Programming 13,

Proving positive almost-sure termination

▶ What? AST+termination in finite expected time

Joost-Pieter Katoen Probabilistic Programming 14/

Proving positive almost-sure termination

- What? AST+termination in finite expected time
- ► Generalise. How?
 - Provide an weakest-precondition calculus
 - ▶ for expected runtimes
- ► Why?
 - Reason about the efficiency of randomised algorithms
 - Reason about simulation efficiency of Bayesian networks
 - Is compositional and reasons at the program's code

Joost-Pieter Katoen Probabilistic Programming 14/

Hurdles in runtime analysis

1. Programs may admit diverging runs while still having a finite expected runtime

```
while (x > 0) { x-- \lceil 1/2 \rceil skip }
```

admits a diverging run but has expected runtime O(x).

- 2. Having a finite expected time is not compositional w.r.t. sequencing
- 3. Expected runtimes are extremely sensitive to variations in probabilities

while
$$(x > 0) \{ x-- [1/2+p] x++ \} // 0 <= p <= 1/2$$

- ▶ For p=0, the expected runtime is infinite.
- For arbitrary small p > 0, the expected runtime is $1/2 \cdot p \cdot x$, linear in x.

Joost-Pieter Katoen Probabilistic Programming 15/50

Overview

- Motivation
- 2 An unsound approach
- The expected runtime transformer
- 4 Properties
- 5 Proof rules for runtimes of loops
- 6 Proving positive almost-sure termination
- Case studies

Re-use weakest preconditions?

Idea: equip the program with a counter rc and use standard wp-reasoning to determine its expected value.

Determine wp(P, rc) for program P.

Dexter Kozen A probabilistic PDL 1983

Consider the program *P*:

```
x := 1;
while (x > 0) { x := 0 [1/2] skip }
```

Joost-Pieter Katoen Probabilistic Programming 18/

Consider the program P:

```
x := 1;
while (x > 0) { x := 0 [1/2] skip }
```

Equipping P with a runtime counter yields P_{rc} :

```
x := 1; rc := 4;
while (x > 0) \{ rc++; (x := 0 [1/2] skip) \}
```

Joost-Pieter Katoen Probabilistic Programming 18/50

Consider the program *P*:

```
x := 1;
while (x > 0) { x := 0 [1/2] skip }
```

```
Equipping P with a runtime counter yields P_{rc}:
```

x := 1; rc := 0; while (x > 0) { rc++; (x := 0 [1/2] skip) }

It follows $\Phi(I) \leq I$ for $I = rc + [x > 0] \cdot 2$.

In total, we thus obtain $wp(P_{rc}, rc) = 2$.

next replace this fragment

Consider the program Q:

```
x := 1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }
```

Joost-Pieter Katoen Probabilistic Programming 19/5

Consider the program Q:

```
x := 1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }
```

Equipping Q with a runtime counter yields Q_{rc} :

```
x := 1; rc := 0;
while (x > 0) {
   rc++;
   (x := 0 [1/2] while(true) { rc++ ; skip})
}
```

Joost-Pieter Katoen Probabilistic Programming 19/

Consider the program Q:

```
x := 1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }
```

Equipping Q with a runtime counter yields Q_{rc} :

```
x := 1; rc := 0;
while (x > 0) {
   rc++;
   (x := 0 [1/2] while(true) { rc++ ; skip})
}
```

As $wp(\text{inner loop}, \mathbf{f}) = 0$ for every \mathbf{f} , it follows $\Phi_{Q_{rc}} \leq \Phi_{P_{rc}}$.

"skip" roiat
of Qrc (pro. slide)

Consider the program Q:

```
x := 1; while (x > 0) \{ x := 0 [1/2] \text{ while(true) } \{ \text{ skip } \} \}
```

Equipping Q with a runtime counter yields Q_{rc} :

```
x := 1; rc := 0;
while (x > 0) {
    rc++;
    (x := 0 [1/2] while(true) { rc++ ; skip})
}
```

```
As wp(\text{inner loop}, f) = 0 for every f, it follows \Phi_{Q_{rc}} \leq \Phi_{P_{rc}}.
Thus, \Phi_{Q_{rc}}(I) \leq \Phi_{P_{rc}}(I) \leq I for I = \text{rc} + [x > 0] \cdot 2.
```

Joost-Pieter Katoen Probabilistic Programming 19/

Consider the program Q:

```
x := 1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }
```

Equipping Q with a runtime counter yields Q_{rc} :

```
x := 1; rc := 0;
while (x > 0) {
    rc++;
    (x := 0 [1/2] while(true) { rc++ ; skip})
}
```

```
As wp(\text{inner loop}, f) = 0 for every f, it follows \Phi_{Q_{rc}} \leq \Phi_{P_{rc}}.
Thus, \Phi_{Q_{rc}}(I) \leq \Phi_{P_{rc}}(I) \leq I for I = \text{rc} + [x > 0] \cdot 2.
```

This contradicts the fact that the true expected runtime of Q is ∞ .

Joost-Pieter Katoen Probabilistic Programming 19/

Overview

- Motivation
- 2 An unsound approach
- 3 The expected runtime transformer
- 4 Properties
- Froof rules for runtimes of loops
- 6 Proving positive almost-sure termination
- Case studies

The basic idea

function: \$ → R>0+00

Let $ert(): pGCL \rightarrow (\mathbb{T} \rightarrow \mathbb{T})$ where:

- ightharpoonup ert(P, t)(s) is the expected runtime of P on input state s if t captures the runtime of the computation following P.
- $ightharpoonup ert(P, \mathbf{0})(s)$ is the expected runtime of P on input state s.

Joost-Pieter Katoen Probabilistic Programming 21/50

Runtimes

Expectations

A expectation $f: \mathbb{S} \to \mathbb{R}_{>0} \cup \{\infty\}$.

Let \mathbb{E} be the set of all expectations and let \sqsubseteq be defined for $f, g \in \mathbb{E}$ by:

$$f \subseteq g$$
 if and only if $f(s) \le g(s)$ for all $s \in \mathbb{S}$.

Runtimes

A runtime $t: \mathbb{S} \to \mathbb{R}_{\geq 0} \cup \{\infty\}$.

Let \mathbb{T} denote the set of all runtimes and let \leq be defined for $t, u \in \mathbb{T}$ by:

$$t \le u$$
 if and only if $t(s) \le u(s)$ for all $s \in \mathbb{S}$.

A runtime transformer is defined in a similar way as an expectation transformer

The runtime model

We assume the following runtimes:

- Executing a skip-statement takes a single time unit
- Executing an (ordinary or random) assignment takes a single time unit
- Evaluating a guard takes a single time unit
- ▶ Flipping a coin in a probabilistic choice takes a single time unit
- Sequential composition does not take time

The ert-calculus can be easily adapted to other runtime models.

Expected runtime transformer for pGCL

erk (P1,)

Syntax

- ▶ skip
- diverge
- ▶ x := E
- ▶ x :r= mu
- ▶ P1 ; P2
- ▶ if (G) P1 else P2
- ▶ P1 [p] P2
- ▶ while(G)P

Expected runtime ert(P, t)

- $\mathbf{1} + \mathbf{t}[x := E]$

ert (P2, t)

24/50

- ▶ $\mathbf{1} + \lambda s. \int_{\mathbb{O}} (\lambda v. t(s[x \coloneqq v])) d\mu_s$
- \triangleright ert(P_1 , ert(P_2 , t))
- ▶ $\mathbf{1} + [G] \cdot ert(P_1, \mathbf{t}) + [\neg G] \cdot ert(P_2, \mathbf{t})$
- ▶ **1** + p · ert(P_1 , t) + (1-p) · ert(P_2 , t)
- ▶ Ifp X. $(\mathbf{1} + \lceil G \rceil \cdot ert(P, X) + \lceil \neg G \rceil \cdot t)$

Joost-Pieter Katoen Probabilistic Programming

Expected runtime transformer for pGCL

Syntax

- ▶ skip
- diverge
- ▶ x := E
- ▶ x :r= mu
- ▶ P1 ; P2
- ▶ if (G) P1 else P2
- ▶ P1 [p] P2
- ▶ while(G)P

Expected runtime ert(P, t)

- ▶ 1+t
- ▶ ∞
- \blacktriangleright 1 + t[x := E]
- ▶ $\mathbf{1} + \lambda s. \int_{\mathbb{Q}} (\lambda v. t(s[x \coloneqq v])) d\mu_s$
- ightharpoonup ert(P_1 , ert(P_2 , t))
- $1 + [G] \cdot ert(P_1, t) + [\neg G] \cdot ert(P_2, t)$
- ▶ $1 + p \cdot ert(P_1, t) + (1-p) \cdot ert(P_2, t)$
- ▶ Ifp X. $(1 + [G] \cdot ert(P, X) + [\neg G] \cdot t)$

Ifp is the least fixed point operator wrt. the ordering ≤ on runtimes

Joost-Pieter Katoen Probabilistic Programming 24/50

Examples P_{11} such = 1 $\left(\frac{1}{2}\right)\left(\frac{1}{2}\log_{12}\left(\frac{1}{2}\right)\right)$ and = 0

ert
$$(P_1 Q) = 1 + \frac{1}{2}$$
 ert $(succ! = 1, Q)$
 $+ \frac{1}{2}$ ert $(succ! = 1, C_2^1)$
 $= 1 + \frac{1}{2}(1 + Q)[succ! = 1]$
 $= Q$
 $= 1/2$
 $+ \frac{1}{2}(1 + \frac{1}{2})$ ert $(succ! = 1, Q) + \frac{1}{2}$ ert $(succ! = 0, Q)$
 $= 1 + \frac{1}{2} + \frac{1}{2}(1 + \frac{1}{2} + \frac{1}{2})$
 $= 1 + \frac{1}{2} + \frac{1}{2}(1 + \frac{1}{2} + \frac{1}{2})$

Overview

- Motivation
- 2 An unsound approach
- The expected runtime transformer
- Properties
- 5 Proof rules for runtimes of loops
- 6 Proving positive almost-sure termination
- Case studies

Joost-Pieter Katoen Probabilistic Programming 26/50

Elementary properties

► Continuity:

ert(P, t) is continuous on (T, \leq)

► Monotonicity:

 $t \le t'$ implies $ert(P, t) \le ert(P, t')$

► Constant propagation:

 $ert(P, \mathbf{k} + t) = \mathbf{k} + ert(P, t)$

▶ Preservation of ∞:

$$ert(P, \infty) = \infty$$

► Connection to wp:

$$ert(P, t) = ert(P, 0) + wp(P, t)$$

► Affinity: $ert(P, a \cdot t + t') = ert(P, \mathbf{0}) + \mathbf{e} \cdot ert(P, t) + ert(P, t')$

```
ert(P, t+t') = ert(P,t) + wp(P,t')
Proof (sketch) by induction on the stricture of P.
ert (P; Q, t+t') = (+ def. of ert +)
                      ert (P, ert (Q, ++t'))
                  = (* I.H on Q *)
              ert (P, ert (Q, t) + wp (Q, t'))
           = (+ I.H. on P +)
         ert (P, et (Q,t)) + wp (P, up (Q,t1))
            ert (P; Q, L) + up (P; Q, L')
        $\P_1 = 1 + [76]. \tau + [6] ent (P, X)
egos!
                            while (G) 2P3
        Tr = [76]. E'+ [6] wp (P, X)
                      ert (loop, t)
world ot
 Itb X. DFAFI(X) = Itb X. DF(X)
                     + Pb X. $(X)
  ert (Jose, F+F,)
                        up (loge, t')
```

This is equivalet to prove: $\lim_{N\to\infty} \frac{1}{\Phi} \left(\begin{array}{c} 0 \end{array} \right) = \lim_{N\to\infty} \frac{1}{\Phi} \left(\begin{array}{c} 0 \end{array} \right) + \frac{1}{\Phi} \left(\begin{array}{c} 0 \end{array} \right)$ ert (loop, t+t!) ert (loop, t) + up (loop, t!)

Proof: $\forall n: \mathcal{D}^n$ (0) = \mathcal{D}^n (0)

type: $\forall n: \mathcal{D}^n$ (0) by induction on n. Base case n=0; Q=Q+QInd, skp, $\underline{\mathcal{P}}^{n+1}(Q) = 1 + \left[-G \right] \cdot (k+k') + \left[G \right] \cdot ert(P, \underline{\mathcal{P}}^{n}(Q))$ = (+ T,H, on n +) 1+ [G](+++')+ [G]-e+(P, 0)+0)+0) = (* I.H. on loop body P *) 1+ [-G](E+t)+ [G] (ert (P, T)(0))+ mb (b' D, (0)) = 1+ [76](+)+[6]. et (P, \$\mathbb{T}_{1}^{\pi}(0)) + [- C] (+) + [C]. ~ (P, \(\frac{\pi}{2}\), (0)) Ø

(Positive) almost-sure termination

For every pGCL program P and input state s:

$$ert(P, \mathbf{0})(s) < \infty$$
 implies $ert(P, \mathbf{1})(s) = \mathbf{1}$ positive a.s-termination on s almost-sure termination on s

Moreover:

$$ert(P, \mathbf{0}) \not \leq \infty$$
 implies $wp(P, \mathbf{1}) = \mathbf{1}$ universal positive a.s-termination universal almost-sure termination

A Markov chain perspective on runtimes

- Consider ert(P, t) for pCGL program P
- Consider the Markov chain \[P \] of program P
- beeps track of the expected runtime of a payman a payman state in [P]: ▶ Attach rewards to each Markov chain state in **P**:

 $\Gamma: \Sigma \longrightarrow \mathbb{R}_{\geq 0} + \infty$

- ▶ State $\langle \downarrow, s \rangle$ gets reward t(s)
- State (skip, s) gets reward one
- State ⟨diverge, s⟩ gets reward ∞
- ▶ State $\langle x := E, s \rangle$ gets reward one
- ▶ State $\langle x :\approx \mu, s \rangle$ gets reward one
- ▶ State $\langle \text{if } G \dots, s \rangle$ gets reward one
- ▶ State $\langle P[p]Q, s \rangle$ gets reward one
- ▶ State $\langle while(G)P'..., s \rangle$ gets reward one
- All other states get reward zero

Example

such = 1
$$\left[\frac{1}{2}\right]\left(such = 1 \cdot \left[\frac{1}{2}\right] such = 0\right) = P$$

$$P = \frac{1}{2}$$

$$2 = \frac{1}{2}$$

$$3 =$$

Correspondence between ert() and Markov chains

Compatibility theorem

For every pGCL program P and input s:

$$ert(P, \mathbf{0})(s) = ER^{\mathbb{I}P\mathbb{I}}(s, \diamond sink)$$

In words: the $ert(P, \mathbf{0})$ for input s equals the expected reward to reach final state sink in MC $[\![P]\!]$ where reward function r in $[\![P]\!]$ is defined as defined on the previous slide.

Backward compatibility

Deterministic programs

For any GCL program P, $ert(P, \mathbf{0})$ equals the number of executed computational steps² of P until P terminates.

²This equals the number of skip statements, guard evaluations and assignments.

Overview

- Motivation
- 2 An unsound approach
- The expected runtime transformer
- 4 Properties
- 5 Proof rules for runtimes of loops
- 6 Proving positive almost-sure termination
- Case studies

Loops

Reasoning about loops requires — like for wp — invariants.

Runtime invariants

Runtime invariants

Let Φ_t' be the wp-characteristic function of P' = while(G){P} with respect to post-runtime $t \in \mathbb{T}$ and let $I \in \mathbb{T}$. Then:

Runtime invariants

Runtime invariants

Let Φ_t be the wp-characteristic function of P' = while(G){P} with respect to post-runtime $t \in \mathbb{T}$ and let $t \in \mathbb{T}$. Then:

1. I is a runtime-superinvariant of P' w.r.t. t iff $\Phi_t(I) \leq I$.

Runtime invariants

Runtime invariants

Let Φ_t be the wp-characteristic function of $P' = \text{while}(G)\{P\}$ with respect to post-runtime $t \in \mathbb{T}$ and let $l \in \mathbb{T}$. Then:

- 1. I is a runtime-superinvariant of P' w.r.t. t iff $\Phi_t(I) \leq I$.
- 2. I is a runtime-subinvariant of P' w.r.t. t iff $I \leq \Phi_t(I)$.

If I is a runtime-superinvariant of while G with respect to $t \in \mathbb{T}$, then:

$$ert(while(G)\{P\}, t) \leq I$$

Example

claim:
$$T = 1 + [c=1]b$$
 is a runtine super invariant.

Proof: $D_0(T) = T$

$$D_0(T) = 1 + [c+1] \cdot 0 + [c=1] \text{ ert } (body, T)$$

$$= 1 + [c=1] \left(1 + \frac{1}{2} \text{ ert } (c:=0, T) + \frac{1}{2} \text{ ert } (c:=1)\right)$$

$$= 1 + [c=1] \left(1 + \frac{1}{2} \left(1 + T(c:=0)\right) + \frac{1}{2} \left(1 + T(c:=1)\right)\right)$$

Theorem says that $T = 1 + [c=1] \cdot b$

is an imperband of ert $(payram)$

A wrong proof rule for lower bonds

Probabilistic programs do not satisfy:

if $l \leq \Phi_t(l)$ then $l \leq ert(\text{while}(G)P, t)$.

I is a sub-imposert I is a Ub of at (loop)

These "metering" functions I do work for ordinary programs

[Frohn et al., IJCAR 2016]

why? see lecture on loop invariants (pot on Park's lemma)

A counterexample

- ► Characteristic functional $F(X) = \mathbf{1} + \frac{1}{2}(\mathbf{1} + \mathbf{1} + X[x/x+1])$
- ▶ Least fixed point is **4** as $F(4) = 2 + 1/2 \cdot 4 = 4$
- ▶ $\mathbf{4} + \mathbf{2}^i$ is a fixed point of F too:

$$F(4+2^{i}) = 2 + \frac{1}{2}(4+2^{i+1}) = 4+2^{i}$$

- ► Thus: $4 + 2^i \le F(4 + 2^i)$ but $4 + 2^i \nleq 4 = \text{lfp } F$
- ▶ In fact, $4 + 2^{i+c}$ is a fixed point of F for any c:

$$F(4+2^{i+c}) = 2+\frac{1}{2}(4+2^{i+c+1}) = 4+2^{i+c}$$

Runtime ω -invariants

Runtime ω -invariants

Let $n \in \mathbb{N}$, $t \in \mathbb{T}$ and Φ_t the ert-characteristic function of while $(G)\{P\}$.

The monotonically increasing sequence $(I)_{n\in\mathbb{N}}$ is a runtime- ω -subinvariant of the loop w.r.t. runtime t iff

$$I_0 \le \Phi_t(\mathbf{0})$$
 and $I_{n+1} \le \Phi_t(I_n)$ for all n .

In a similar way, runtime ω -superinvariants can be defined, but we will not use them here.

³But not necessarily strictly increasing.

Lower bounds

$$I_{2} \leq I_{1} \leq I_{2} \leq I_{3} \quad \text{s.f.} \quad I_{2} \leq \underline{\Phi}^{f}(I_{2}) \quad A^{2}$$

Runtime lower bounds

If I_n is a runtime ω -subinvariant of while $(G)\{P\}$ with respect to t, then:

$$\sup_{n} I_{n} \leq ert(\text{while}(G) P, t)$$

Example

Consider the same program as for proving an upper bound on the expected runtime.

P: [while (c=1) { c:=> [2] c:=1} } ert(P,0) guess T_n 's structure. How? $a_0 \le a_1 \le ...$ $a_0 \le a_1 \le ...$ a_1 are monotonically increasily $a_1 = 1 + [c=1] \cdot a_1$ 2 voiable of the invariat In order for In to be a W-subinvariant we have to show: 1+ [c=1]-a < 1+ [c+1].0 + [c=1].(ex (body,0)) a = 1+ = ert(c:=0,0)+= ert(c:=1,0) $a_0 \le 1 + \frac{1}{2}(1+0) + \frac{1}{2}(1+0)$ [a₀ ≤ 2] (¥) 1 $I_{n+1} \leq \overline{D}_{o}(I_{n})$ 17 [c-1]. ann \(\frac{1}{2} \tau + [c+1]. \) + [c=1] e + (
\(\frac{1}{2} \) \) = \(\frac{1}{2} \) \ $= \sqrt{a_{n+1}} \leq 3 + \frac{1}{2} a_n \left((++) \right)$

A possible solution is

$$a_n = 5 - \frac{3}{2n}$$
 $a_0 = 2$

So it follows that

 $T_n = 1 + C_{-1} \left(5 - \frac{3}{2n}\right)$

Is a w-subinvariant.

According to the theorem

 $1 + C_{-1} \left(5 - \frac{3}{2n}\right) = 1$
 $1 + C_{-1} \left(5 - \frac{3}{2n}\right) = 1$
 $1 + C_{-1} \left(5 - \frac{3}{2n}\right) = 1$

Is a breakoud to the rentine

of our program

Overview

- Motivation
- 2 An unsound approach
- 3 The expected runtime transformer
- 4 Properties
- Proof rules for runtimes of loops
- 6 Proving positive almost-sure termination
- Case studies

TT3-complete

PAST is not compositional

Consider the two probabilistic programs:

```
int x := 1;
bool c := true;
while (c) {
    c := false [0.5] c := true;
    x := 2*x
}
```

Finite expected termination time

PAST is not compositional

Consider the two probabilistic programs:

```
int x := 1;
bool c := true;
while (c) {
    c := false [0.5] c := true;
    x := 2*x
}
```

Finite expected termination time

```
PAST
```

```
while (x > 0) {
    x--
}
```

Finite termination time

PAST

PAST is not compositional

ert
$$(P;Q,Q) = \infty$$

P

Consider the two probabilistic programs:

```
int x := 1;
bool c := true;
while (c) {
    c := false [0.5] c := true;
    x := 2*x
}
```

```
while (x > 0) {
    x--
}
```

Finite expected termination time

Finite termination time

Running the right after the left program vields an infinite expected termination time

$$Q: \quad \overline{\text{while } (x > 0) \ \{ \ x := x-1 \ \}}$$

$$|our bound on \quad ert (Q, Q)$$

$$\longrightarrow \quad \omega - \text{submariant}$$

$$J_n \qquad \text{(*)} \quad J_0 \leq \overline{\mathcal{Q}}_{Q,Q}(Q)$$

$$J_0, J_1, J_2, J_3, \dots (e_r) \quad J_{nn} \leq \overline{\mathcal{Q}}_{Q,Q}(J_n)$$

$$J_1 \leq J_1 \leq J_2 \leq \dots$$

While
$$(x > 0)$$
 { $x := x-1$ } or $x + n$ or $x + n$ or $x + n$.

It is easy to check that a lower ω -invariant is:

$$J_n = 1 + [0 < x < n](2x) + [x \ge n] \cdot (2n-1)$$
on iteration on termination
check $x < n$ on termination
check $x < n$ on termination
$$x > n$$
or $x + n$

$$x > n$$

$$x >$$

It is easy to check that a lower ω -invariant is:

$$J_n = 1 + \underbrace{[0 < x < n] \cdot 2x}_{\text{on iteration}} + \underbrace{[x \ge n] \cdot (2n-1)}_{\text{on termination}}$$

Thus we obtain that: $0 \le \times$

we obtain that:
$$0 < x$$

$$\lim_{n \to \infty} (1 + [0 < x < n] \cdot 2x + [x \ge n] \cdot (2n-1)) = 1 + [x > 0] \cdot 2x$$
wer bound on the runtime of the above program.

is a lower bound on the runtime of the above program.

```
P = \text{ while (c) } \{ \{ c := \text{ false } [0.5] \ c := \text{ true} \}; \ x := 2*x \}; 
Q = \frac{\text{while (x > 0) } \{ x := x-1 \}}{\text{aim: }}
a \text{ lower bound on ext } (P; Q, Q)
= \text{ext } (P, \text{ext } (Q, Q))
\Delta = \text{subinuariant}
```

(*) To \(\overline{\Delta}_{\righta} \) (0) \\
\text{How to find } \overline{\Times_n} ?

(**)

```
While (c) { {c := false [0.5] c := true}; x := 2*x};
while (x > 0) { x := x-1 }
```

Template for a lower ω -invariant of composed program:

$$I_{n} = \mathbf{1} + \underbrace{[c \neq 1] \cdot (\mathbf{1} + [x > 0] \cdot 2x)}_{\text{on termination}} + \underbrace{[c = 1] \cdot (a_{n} + b_{n} \cdot [x > 0] \cdot 2x)}_{\text{on iteration}}$$

$$\text{check c}$$

$$\text{erk } (\mathbb{Q}, \mathbb{Q})$$

$$\text{erk } (\mathbb{Q}, \mathbb{Q})$$

```
while (c) { {c := false [0.5] c := true}; x := 2*x};
while (x > 0) { x := x-1 }
```

Template for a lower ω -invariant of composed program:

$$I_n = \mathbf{1} + \underbrace{[c \neq 1] \cdot (\mathbf{1} + [x > 0] \cdot 2x)}_{\text{on termination}} + \underbrace{[c = 1] \cdot (a_n + b_n \cdot [x > 0] \cdot 2x)}_{\text{on iteration}}$$

The constraints on being a lower ω -invariant yield:

$$a_0 \le 2$$
 and $a_{n+1} \le 7/2 + 1/2 \cdot a_n$ and $b_0 \le 0$ and $b_{n+1} \le 1 + b_n$

Template for a lower ω -invariant of composed program: $7 - \frac{5}{2^n}$ $\lim_{n \to \infty} I_n = 1 + \underbrace{[c \neq 1] \cdot (1 + [x > 0] \cdot 2x)}_{\text{on termination}} + \underbrace{[c = 1] \cdot (1 + [x > 0] \cdot 2x)}_{\text{on iteration}}$

The constraints on being a lower ω -invariant yield:

$$a_0 \le 2$$
 and $a_{n+1} \le 7/2 + 1/2 \cdot a_n$ and $b_0 \le 0$ and $b_{n+1} \le 1 + b_n$

This admits the solution $a_n = 7 - 5/2^n$ and $b_n = n$.

```
while (c) { {c := false [0.5] c := true}; x := 2*x};
while (x > 0) { x := x-1 }
```

Template for a lower ω -invariant of composed program:

$$I_n = \mathbf{1} + \underbrace{[c \neq 1] \cdot (\mathbf{1} + [x > 0] \cdot 2x)}_{\text{on termination}} + \underbrace{[c = 1] \cdot (a_n + b_n \cdot [x > 0] \cdot 2x)}_{\text{on iteration}}$$

The constraints on being a lower ω -invariant yield:

$$a_0 \le 2$$
 and $a_{n+1} \le 7/2 + 1/2 \cdot a_n$ and $b_0 \le 0$ and $b_{n+1} \le 1 + b_n$

This admits the solution $a_n = 7 - 5/2^n$ and $b_n = n$. Then: $\lim_{n \to \infty} I_n = \infty$.

Proving PAST

The ert-transformer enables to prove that a program is positively almost-surely terminating in a compositional manner, although PAST itself is not a compositional property.

Overview

- Motivation
- 2 An unsound approach
- The expected runtime transformer
- 4 Properties
- 5 Proof rules for runtimes of loops
- 6 Proving positive almost-sure termination
- Case studies

Coupon collector's problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

by

P. ERDŐS and A. RÉNYI

Coupon collector's problem

```
cp := [0,...,0]; i := 1; x := 0; // no coupons yet
while (x < N) {
    while (cp[i] != 0) {
        i := uniform(1..N) // next coupon
    }
    cp[i] := 1; // coupon i obtained
    x++; // one coupon less to go
}</pre>
```

Using the ert-calculus one can prove that:

$$ert(cpcl, \mathbf{0}) = \mathbf{4} + [N > 0] \cdot 2N \cdot (2 + H_{N-1}) \in \Theta(N \cdot \log N)$$

As Harmonic number $H_{N-1} \in \Theta(\log N)$.

By systematic program verification. Machine checkable.

Random walk

Using the ert-calculus one can prove that its expected runtime is ∞ . By systematic formal verification. Machine checkable.

Randomised binary search

```
proc BinSearch {
mid := Unif(left, right); // pick mid uniformly
 if (left < right) {</pre>
    if (A[mid] < val) {</pre>
        left := min(mid+1, right);
        call BinSearch
    } else {
        if (A[mid] > val) {
        right := max(mid-1, left);
        call BinSearch
    } else { skip }
} else { skip }
```


Randomised binary search

```
proc BinSearch {
mid := Unif(left, right); // pick mid uniformly
 if (left < right) {</pre>
    if (A[mid] < val) {</pre>
        left := min(mid+1, right);
        call BinSearch
    } else {
        if (A[mid] > val) {
        right := max(mid-1, left);
        call BinSearch
    } else { skip }
} else { skip }
```

Using the ert-calculus one can prove that its expected runtime is $\Theta(\log N)$.

By systematic formal verification. Machine checkable.