Probabilistic Programming

Probabilistic Programming

Lecture #16+#17: Expected Runtime Analysis

Joost-Pieter Katoen

: Software Modeling

‘ Bl and Verification Chair

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Overview

© Motivation

© An unsound approach

© The expected runtime transformer

@ Properties

© Proof rules for runtimes of loops

@ Proving positive almost-sure termination

@ Case studies

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Motivation

Overview

© Motivation

The runtime of a probabilistic program

The runtime of a probabilistic program depends
on the input and

on the internal randomness of the program.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Motivation

The runtime of a probabilistic program is random

int i := 0;
repeat {i++; (c := false [0.5] c

until (c)

:= true)}

Program Runtime

Program Output
72 Distribution

Probability
Probability

1 2 3 4 5 Output 3 5 7 9 11 Run-Time

The expected runtime is 1 + 3-1/2+ 6-1/a +...(3n+1)-1/2" = 5.

Probabilistic Programming

Joost-Pieter Katoen

Expected runtimes

Expected run-time of program P on input s:

— . (“P terminates after
2 i+ Pr

~ i steps on input s”

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Motivation

Efficiency of randomised algorithms

Quicksort: Randomised Quicksort:

QS.(A) - rQs(A) =
if |A] <= 1 { return A; } if |A| <= 1 { return A; }
i := ceil(lAl/2); i := Unif[1 AT ’
A< := {a in A | a < A[il}; A<" {a in.;;,.l a ; A[il};
A> := {a in A | a > A[il}; A> . {ain A | a > ‘5,[1]}r
return QS(A<) ++ A[i] ++ QS(A>) return rQS(A<) ++ A[i] ++ rQS(A>)

Worst case complexity: Worst case complexity:

Joost-Pieter Katoen Probabilistic Programming

7/50

Probabilistic Programm Motivation

Coupon collector’s problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

by

P. ERDOS and A. RENYI
= 20l
20
350
400

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Motivation

Coupon collector’s problem

cp := [0,...,0]; // no coupons yet
i :=1; // coupon to be collected nezt
x := 0: // number of coupons collected

while (x < N) {
while (cpl[i] '= 0) {
i := uniform(1..N) // next coupon
}
cplil :=1; // coupon i obtained
x++; // ome coupon less to go

}

The expected runtime of this program is in ©(N-log N).

Probabilistic Programming

Joost-Pieter Katoen

Closest-pair problem

Closest-pair problem: find two distinct points u, v € R? among N points in the
plane that minimise the Euclidean distance among all pairs of these points.

A naive deterministic approach takes O(N?). More efficient version in O(N-log N).

Rabin’s randomised algorithm has an expected runtime in O(N).

Joost-Pieter Katoen Probabilistic Programming

Randomised primality test

Problem: is N prime or not?

Basic structure of a randomised primality test:

1. Randomly pick a number a, say

2. Do the primality test: Check some equality involving a and N
3. If equality fails, N is composite (with witness a)
4

. Otherwise repeat the process.

If after K > 0 iterations, N is not found to be composite, then N is
probably prime.

Joost-Pieter Katoen Probabilistic Programming

Some primality tests

» Fermat primality test:
Select a € Z relative prime to N. If 2" mod N #1, then N is composite.

» Rabin-Miller test:
Select 0 < a< N. Let 2°-d = N—1 where d is odd. If a° # 1 (mod N) and
a®>“# -1 (mod N) for all 0 < r < s—1, then N is composite.

» Solovay and Strassen test:
For N odd, pick a< N. If a

My , then N is composite.

Adleman and Huang (1992) provided a randomised primality test that terminates
with expected polynomial runtime and certainly provides the correct answer.1

!Decision problems with this characteristic constitute the complexity class ZPP
(zero-error probabilistic polynomial time).

Joost-Pieter Katoen Probabilistic Programming

The aim of this lecture

A wp-calculus to reason about runtimes at the source code level.
No “descend” into the underlying probabilistic model.

The calculus should be compositional.

eck ((P 5 Q?) = erk (?) >i’<2rk'(®)

Joost-Pieter Katoen Probabilistic Programming

Proving positive almost-sure termination

» What? AST+termination in finite expected time

Joost-Pieter Katoen Probabilistic Programming

Proving positive almost-sure termination

» What? AST+termination in finite expected time

» Generalise. How?

» Provide an weakest-precondition calculus
> .. for expected runtimes

> Why?
» Reason about the efficiency of randomised algorithms
» Reason about simulation efficiency of Bayesian networks
» Is compositional and reasons at the program’s code

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Motivation

Hurdles in runtime analysis

1. Programs may admit diverging runs while still having a finite
expected runtime

while (x > 0) { x-- [1/2] skip }

admits a diverging run but has expected runtime O(x).
2. Having a finite expected time is not compositional w.r.t. sequencing
3. Expected runtimes are extremely sensitive to variations in probabilities
while (x > 0) { x—— [1/2+p] x++ } // 0 <=p <= 1/2

» For p=0, the expected runtime is infinite.
» For arbitrary small p > 0, the expected runtime is 1/2-p-x, linear in x.

Joost-Pieter Katoen Probabilistic Programming

oo

Ksr=1 Z -L “
T s - 2' =
? Ve —_—Vv
wWe (o) { erp Ne\ne
NS\
d.le [%—] QT;'\) ol % aSte—
X:i=2XxX il
1 PAST(9)
e (x>0) {74——’5 Pa o7 (®)

— Ppsv (PQ)

Probabilistic Programming An unsound approach

Overview

© An unsound approach

Joost-Pieter Katoen istic Programming

Re-use weakest preconditions?

Idea: equip the program ith a counter rc

and use standard wp-reasoning to determine its expected

Determine wp(P, rc) for program P. °
<

Dexter Kozen
A probabilistic PDL

1983

Joost-Pieter Katoen Probabilistic Programming

An example

Consider the program P:

x = 1;
while (x > 0) { x := 0 [1/2] skip }

Joost-Pieter Katoen Probabilistic Programming

An example

Consider the program P:

x = 1;
while (x > 0) { x := 0 [1/2] skip }

Equipping P with a runtime counter yields P,.:

x :=1; rc := 4;
while (x > 0) { rc++; (x := 0 [1/2] skip) }

Joost-Pieter Katoen Probabilistic Programming

An unsound approach

Probabilistic Programming

An example

Consider the program P:

x = 1;
while (x > 0) { x := 0 [1/2] skip }

[W)
Equipping P with a runtime counter yields P,C:/ nexk
\ace
x :=1; rc := 0; 74 ‘-;P‘s
while (x > 0) { rc++; (x := 0 [1/2] skip) })
et

It follows ®(/) < [for I =rc+[x>0]-2.

In total, we thus obtain wp(P,., rc) = 2.

Probabilistic Programming

Joost-Pieter Katoen

An example

Consider the program Q:

X :=1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }
—

A\Nﬁ<

Joost-Pieter Katoen Probabilistic Programming

An example

Consider the program Q:

X :=1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }

Equipping @ with a runtime counter yields Q,.:

x :=1; rc := 0;
while (x > 0) {
rctt;

(x := 0 [1/2] while(true) { rc++ ; skipl})

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming An unsound approach

An example

Consider the program Q:

X :=1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }

Equipping @ with a runtime counter yields Q,.:

x :=1; rc := 0;
while (x > 0) {

TCH+;

(x := 0 [1/2] while(true) { rc++ ; skipl})
}

As wp(inner loop,) = 0 for every f, it follows ®o_ < ®p

rc’

” S\K;’Y' oA~

ot Rre (2:20

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming An unsound approach

An example

Consider the program Q:

X :=1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }

Equipping @ with a runtime counter yields Q,.:

x :=1; rc := 0;
while (x > 0) {
rctt;

(x := 0 [1/2] while(true) { rc++ ; skipl})
}

As wp(inner loop,) = 0 for every f, it follows ®q_ < ®p_.
Thus, g (/) < ®p (/) < I for | =rc+[x>0]-2.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming An unsound approach

An example

Consider the program Q:

X :=1;
while (x > 0) { x := 0 [1/2] while(true) { skip } }

Equipping @ with a runtime counter yields Q,.:

x :=1; rc := 0;
while (x > 0) {

TCH+;

(x := 0 [1/2] while(true) { rc++ ; skipl})
}

As wp(inner loop,) = 0 for every f, it follows ®q_ < ®p_.
Thus, g (/) < ®p (/) < I for | =rc+[x>0]-2.

This contradicts the fact that the true expected runtime of Q is 0o.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming The expected runtime transformer

Overview

© The expected runtime transformer

Joost-Pieter Katoen istic Programmi

P RS §— Ry
The basic |dea/ &

Let ert() : pGCL » (T - T) where:

> ert(P, t)(s) is the expected runtime of P on input state s
if t captures the runtime of the computation following P.

» ert(P, 0)(s) is the expected runtime of P on input state s.

ert [Py] (ert [I?z] (0)) Ps; ert [f’g] (Q) P 0
ert [P1; P,] (0) time neec-ied time neec.:led
after executing Py after executing P

Joost-Pieter Katoen Probabilistic Programming

)
Runtimes

Expectations

A expectation f : S - Ry U {00}.
Let [E be the set of all expectations and let E be defined for f, g € E by:

fCg ifandonlyif f(s)<g(s) forallseS.

A runtime t: S > RyguU {00 }.

Let T denote the set of all runtimes and let < be defined for t, u € T by:

t<u ifandonlyif t(s)<u(s) foralls€S.

A runtime transformer is defined in a similar way as an expectation transformer

Joost-Pieter Katoen Probabilistic Programming 22/50

Probabilistic Programming The expected runtime transformer

The runtime model

We assume the following runtimes:
» Executing a skip-statement takes a single time unit
» Executing an (ordinary or random) assignment takes a single time unit
» Evaluating a guard takes a single time unit
» Flipping a coin in a probabilistic choice takes a single time unit
» Sequential composition does not take time

The ert-calculus can be easily adapted to other runtime models.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming The expected runtime transformer

Expected runtime transformer for pGCL . .. (7,)

P
Expected runtime e:t(P,)
, > 1+t 7 5 P, ok
> skip 1 2
> diverge > % \/ \/
by e » 1+ t[x:=E] ek (7, \)
> x :r= mu > 1+As./@()\v.t(s[x =v])) dus
> P1; P2 > ert(Py, ert(P,, t))
e > 1+[G]-ert(Py, t) +[~G]- ert(Ps, t)
> P1 [p] P2 > 1+ p-ert(Py, t) + (1-p) - ert(Ps, t)
- asilele) > Ifp X. (1 +[G]- ert(P, X) +[~G]- t)

Joost-Pieter Katoen Probabilistic Programming

Expected runtime transformer for pGCL

Expected runtime ert(P,)

> skip > 1+t

> diverge > %

> - E » 1+ t[x:=E]

> x :r= mu > 1+As./@()\v.t(s[x =v])) dus

> P1; P2 > ert(Py, ert(P,, t))

> if (@OPLelse P2\ 1G] ert(Py,) +[~G]- ert(Ps, t)
> P1 [p] P2 > 1+ p-ert(Py, t) + (1-p) - ert(Ps, t)
- sl > Ifp X. (1+[G]- ert(P, X) +[~G]- t)

Ifp is the least fixed point operator wrt. the ordering < on runtimes

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming The expected runtime transformer

Examples ?;.

erk (?, Q) =

I

Swect =1 E‘:,l (Sucqy e Eij 5\'(@.;0)
1+ lz., erk (auCc:-:«\) Q)
+ ‘\Z‘ erk (NQC‘._:»\ C‘LSQ , Q)
A+ 2(a+0 l:s“ccx=«]>
¢ ——
=0
—_—e—
’,\/Z
4——\;-(A “;' erk (hltc-'\ 0) A lLe_rl- (s;u.g —00)
s(a+0) L (140)

IR CEPTRY

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Properties

Overview

@ Properties

Elementary properties

» Continuity: ert(P, t) is continuous on (T, <)
» Monotonicity: t < t' implies ert(P, t) < ert(P, t')
» Constant propagation: ert(P,k +t) =k + ert(P, t)
» Preservation of oo: ert(P, 00) = 00
» Connection to wp: ert(P, t) = ert(P, 0) + wp(P, t)
> Affinity: ert(P,a-t+t) = ert{P,0)+@e=ert(P, t) + ert(P, t')

Joost-Pieter Katoen Probabilistic Programming

ek (P, 4ak) = et (R 4 we (P41

Rooh (s\cef’rt\-\) \:\3 MmN A o~ e 3N od T

evk (‘P;Q) \:+\:') — (+ 3eS. of e b x)
ere (P, ot (Q, wt)
= (= IV e @)

et (P e (V)4 wp (QX))

= (4 TV, o~ P #)

&k (P, et (Qk\) + wp (P wpr (Q&'))

ek (P59, &+ wp (P3q, ")
lops s =4 6] b » [6] et (P X)
Oe () L)
Vi

'§)c1 = E"\C‘D’]'\:/*—\— IGJ NN (?; X)

To Mo et Q\OQP’ £
— —] /\/\ﬂ
o A T (%) = W X T (%)

e (oop \ak’) + Uy X'KE%' S

\r\r(D (\QX‘;\&/>

A) (o) = W §k (0) 753;,“ (o)

N— RN A)
— v)
2% (\osp, rk!) ek Qoop) 4 wap (W, t7)
~ | (+)
Pef v Wy & @) = 8" (@) + B (o)
\?YE' - ‘r'
bv \\r\nd"(\\;ﬁ Y ey Bale coclie VW=D 5 Q;Q'\'_Q.
T sRp,
" (o) _

\.—+E'

1.+ E—\G]-\M')J{Gj ek (P, §:}t§9§)

= (+ IV o~ 0 x)

Ar Gl ek [6)- ex (7, T2 4T)

et T
\-’/_\f\/

—_ (:.k TH, on \QSP \933\:) P «):)

14 E\ Gl-(k*\c') + [C’Jl < e (?) @: (ny ~

— ¢, 3.7 ())

= A4+ RG]+ (6] ex (7,3 :VQ(O\B

r BN+ Te) (s () DY

(Positive) almost-sure termination

|
For every pGCL program P and input state s:

ert(P,0)(s) < o0 implies wp(P,1)(s) = 1
positive a.s-termination on s almost-sure termination on s
Moreover:
ert(P,0) & oo implies wp(P,1) = 1
\—v—l %—J
universal positive a.s-termination universal almost-sure termination

Joost-Pieter Katoen Probabilistic Programming

A Markov chain perspective on runtimes

» Consider ert(P, t) for pCGL program P

» Consider the Markov chain [[P]| of program P
kee s dack of xwe especked e oF

> Attach rewards to each Markov chain state in [PT: PVP::ME
» State (I, s) gets reward t(s) S &

State (skip, s) gets reward one

State (diverge, s) gets reward oo 2 ‘RZQ-HQ
State (x := E, s) gets reward one

State (x :x pu, s) gets reward one

State (if G...,s) gets reward one

State (P[p]Q, s) gets reward one

State (while(G)P'...,s) gets reward one

All other states get reward zero

vV V.V vV vV vV VvVY

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Properties

Example Sweel =4 [-:_] (Swcc = 4 C;_] sSuce :D) = (Y)
R — <P s>

ert (P, 9) 2 / \l?—
A 1

4 <SNCC::1, S°> %—ﬁ— <s\'«\=\ [;\—l JCCI =0 '5°>

4l le

O_ = 9. <l) S° [S\ACC:.L13> <5°QC"=°) sg) 4

N I

< l) SD'ENCQ::03>]

)

€'Y '\/\/ ™
g .
° 1 U ek (P 0) = R (X))

Joost-Pieter Katoen Probabilistic Programming

Correspondence between ert() and Markov chains

Compatibility theorem
For every pGCL program P and input s:

ert(P,0)(s) = ER[[P]](s, Osink)

In words: the ert(P, 0) for input s equals the expected reward to reach final state
sink in MC [[P] where reward function r in [[P]| is defined as defined on the
previous slide.

Joost-Pieter Katoen Probabilistic Programming

Backward compatibility

Deterministic programs

For any GCL program P, ert(P, 0) equals the number of executed
computational steps2 of P until P terminates.

*This equals the number of skip statements, guard evaluations and assignments.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proof rules for runtimes of loops

Overview

© Proof rules for runtimes of loops

Joost-Pieter Katoen istic Programmi

Probabilistic Programming Proof rules for runtimes of loops

Loops
eck
Rp € (e (@) 2PY) S ub
bs—\a,\n\noﬁc-"\: 5"?""‘“%\&&
Reasoning about loops requires — like for wp — invariants.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proof rules for runtimes of loops

Runtime invariants
A+ [RG)-k + [G) = (7, %)

Runtimz invariants

Let ®% be the wp-characteristic function of P' = while(G){P} with respect
to post-runtime t € T and let / € T. Then:

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proof rules for runtimes of loops
Runtime invariants

Runtime invariants

Let ®, be the wp-characteristic function of P' = while(G){P} with respect
to post-runtime t € T and let / € T. Then:

1. I is a runtime-superinvariant of P" w.r.t. t iff ®,(/) < I.
——

ek (e &)

Joost-Pieter Katoen Probabilistic Programming

Runtime invariants

Runtime invariants

Let ®, be the wp-characteristic function of P' = while(G){P} with respect
to post-runtime t € T and let / € T. Then:

1. I is a runtime-superinvariant of P" w.r.t. t iff ®,(/) < I.

2. |'is a runtime-subinvariant of P' w.r.t. t iff I < & (/).

|
If | is a runtime-superinvariant of while(G){P} with respect to t € T, then:

ert(while(G){P}, t) < |

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programm Proof rules for runtimes of loops

Example

ieter Katoen

e (e=1))L c:— (3] c::’\’g

ot \I - A+ EC;M 1§ N (e
\Svp-'zr‘

TRy - ol
wt O

Eog . Eo () =« %™

@)= Ax (440 + (o] ok (esdy , T)

—

.—Q

=0

I\

1y [Q;’\] (4+ 3 ek (erzo0,IT) + /lL & C°?=",3)>

= A4 [Q:'\j A D %(1 \ I(CT:O))-)"\i ('\‘)’tE(C::/\)))

g +
T A4 YQ:’Q (4 + 4 +.q)
—_—
=K

Theortm oS Fhebt T = A9 Ten]-b
IS o \A(Q(-)Q’\Dox.x\d\ QS;‘

A wrong proof rule for lower bonds

Probabilistic programs do not satisfy:
if | < ®,(/)then | = ert(while(G)P, t).
T is & sLbwedat T s alb of ot Qop)
These “metering” functions | do work for ordinary programs

[Frohn et al., IJCAR 2016]

\.J\-D? e \lechue o \oop UNEPSAY-R ¥
(Pw\ o~ Tork's \QIV\MQ)

Joost-Pieter Katoen Probabilistic Programming

A counterexample

while (true) { skip [1/2] x++ }

» Characteristic functional F(X)=1+1/2(1+ 1+ X[x/x+1])
> Least fixed point is 4 as F(4) =2+ 1/2:4 =4
> 4+2 s a fixed point of F too:

F(4+2i) = 2+%(4+2i+1) = 4+2

> Thus: 4+2" < F(4+2)butd4+2" 4 4 = Ifp F

In fact, 4 + 2% is a fixed point of F for any c:

v

Fla+2") = 2+%(4+2i+c+1) = 4+27°

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proof rules for runtimes of loops

Runtime w-invariants
To, 3, T, o

T, €3, <73,-...

Runtime w-invariants

Let ne N, t € T and &, the ert-chgracteristic function of while(G){P}.

The monotonically increasing® sequence (/),ex is a runtime-w-subinvariant
of the loop w.r.t. runtime t iff E
lp £ ®,(0) and /,;1 < ®(/,) forall n.

In a similar way, runtime w-superinvariants can be defined, but we will not
use them here.

*But not necessarily strictly increasing.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proof rules for runtimes of loops

Lower bounds
T, ¢37, €5, £, s+) B S g, (@)

Runtime lower bounds

If 1, is a runtime w-subinvariant of while(G){P} with respect to t, then:

sup/, < ert(while(G)P,t)

Consider the same program as for proving an upper bound on the expected
runtime.

Joost-Pieter Katoen Probabilistic Programming

(LA\A.\\Q (e=a)) <= 4] C:=n§ e (P0

Suess Th)s Shcuehace . "\Q\,._)(?
ka\o: N A [C:’\B- E

<
C‘o _Q,\S_. -

QC e \(\nb{\b\%fﬁ—

s \
\ek 1: A A [Q:f\:-s - Q. J Qc.\b W~ Cre o b

T Ucschle QS‘ Yhe Mvesek

T oder Sor T, Yole a W-slbinuode t e
V~ove YO show !

//.}— M A 3n E./—\— YC:}’\jO -5—%@\’(
=~ ody)

[ngg%\& SD\\»\C\%\A PRY

SD N\ SC\\D\,.’}&)Y\/\Q.\t
T,= A+ Leanl (S”“
IS o0 W= 39 dmUanant,

Pt Ctorc}\/\b ’\Q)(\ﬂ ' ”\/\AQO«’CM‘(‘)

P JNPoR A A tc;«](s’-i)

N/
A & YQ:’\F}—S-
IS owse, BOVAD "\\")f\«& VL»AAH‘R\Q
Qg o @&Sfcw\

Probabilistic Programming Proving positive almost-sure termination

Overview

@ Proving positive almost-sure termination

Joost-Pieter Katoen ilistic Programming

Proving positive almost-sure termination

Probabilistic Programming

PAST is not compositional

Consider the two probabilistic programs:

int x := 1;

bool ¢ := true;

while (c) {
c := false [0.5] c := true;
X = 2%x

}

Finite expected termination time

Probabilistic Programming

Joost-Pieter Katoen

Proving positive almost-sure termination

Probabilistic Programming

PAST is not compositional

Consider the two probabilistic programs:

int x := 1

bool ¢ := true;

while (c) { while (x > 0) {
c := false [0.5] c := true; x--
X 1= 2%x T

}

Finite termination time
Finite expected termination time

YosY

FesT

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programming Proving positive almost-sure termination

PAST is not compositional ert (¥;Q, Q) =<
= 4 pasT (P;Q)

Consider the two probabilistic programs:

¥ Q

int x := 1;

bool ¢ := true;

while (c) { ® ywhile (x > 0) {
c := false [0.5] ¢ := true; b] x--
X 1= 2%x T

}

Finite termination time
Finite expected termination time

— PosT (P:Q)

Running the right after the left program
yields an infinite expected termination time

Joost-Pieter Katoen Probabilistic Programming

ek (758, 0)
Q L e (x30>

= ek (P, ex (Q,QD ?74__>
& Brchisn Sepending
@ oA 2K

Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (1)

Q‘. while (x > 0) { x := x-1 }

\ow@r\s&mé\ SYal erk (Q, 9.)

—_—> WO-sobi~vasant

I, @ Y= §Q) o ()

BN ,3) »3% Y ""'é") 3mn$§?°(3ﬂ)
ey s s

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (1)

Nz A0 X-< A~
R: ¢nite (x>0 {x:=x11%} or n;n*\is
It is easy to check that a lower w-invariant is: ~ e Q
N)
J, =1+ 0<X<n@+ [x=n]- (2n- 1)
,’ \ﬂ@‘g@/ on termlnatlon
- VT . S
heck AL rwn @ n AveE
e TndNon 3,, Vs o Vouer k.
* >0 o Nﬁﬂb e Yoo

evt/:j eradion Os Q (ek 2D
e
dekes 2. Fme wAdy o x__)

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (1)

while (x > 0) { x := x-1 }

It is easy to check that a lower w-invariant is:

J, = 1 + [0<x<n]2x + [x = n](2n-1)

on iteration on termination

Thus we obtain that: o < % (_’ e (5

NN
lim (1+[0 < x < n]-2x + [x 2aF(2n-1)) = 1+[x > 0]-2x
n—->00 \\'

)
is a lower bound on the runtime of the above program.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (2)

T = while (¢) { {c := false [0.5] c := true}; x := 2%x};
Q = while (x > 0) { x := x-1 }

aim a Jower baund on e % ('\", Q) Q)

= et (P, % (Q,2)

———

A4 [x>ol. 2%
W — SV ade~t 3

T Y, T, 5, . R STET S0

©) A VYaem, T, < EP (T.,)
\—/W —
\‘\bo) 'g\‘:\d :n ? (4)&&)

» T =93,

?

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (2)

T while (c) { {c := false [0.5] c := true}; x := 2%x};
Q; while (x > 0) { x := x-1 }

Template for a lower w-invariant of composed program:

«)

o= 1+ [c#1]-(1+[x>0}2x) + [c=1]-(a, + b, - [x > 0}2x)

; on termjnation on ite'ration
v
check <
¢ ek (Q,2) A4 x>0} 2x
S~—————
\b on
en (§,0)

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (2)

while (c) { {c := false [0.5] c := true}; x := 2%x};
while (x > 0) { x := x-1 }

Template for a lower w-invariant of composed program:

I, =1 + [c#1]-(1+[x>0]2x) + [c=1]-(a, + b, - [x > 0]-2x)

« J <)

on termination on iteration
(x) 0-d (&)

The constraints on being a lower w-invariant yield:

ap <2 and a,; < 72+1)2a, and by <0 and b, <1+b,

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (2)

? while (c) { {c := false [0.5] c := true}; x := 2%x};
3 Q while (x > 0) { x := x-1 }

% (v

: . e
Template for a lower w-invariant of composed prograr‘rl/

Don 1y = 1 + [c#1]-(1+[x>0]2x) + [e=1]-("+ n-[x>0]2x)

« J <)

naw on termination on iteration

The constraints on being a lower w-invariant yield:

ap <2 and a,; < 72+1)2a, and by <0 and b, <1+b,

This admits the solution a, =7 —5/2" and b, = n.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proving positive almost-sure termination

Proving that PAST is not compositional (2)

while (c) { {c := false [0.5] c := true}; x := 2%x};
while (x > 0) { x := x-1 }

Template for a lower w-invariant of composed program:

I, =1 + [c#1]-(1+[x>0]2x) + [c=1]-(a, + b, - [x > 0]-2x)

« J <)

on termination on iteration

The constraints on being a lower w-invariant yield:

ap <2 and a,; < 72+1)2a, and by <0 and b, <1+b,

This admits the solution a, =7 —5/2" and b, = n. Then: lim, 0 I, = ©0.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Proving positive almost-sure termination

Proving PAST

The ert-transformer enables to prove
that a program is positively almost-surely terminating
in a compositional manner,

although PAST itself is not a compositional property.

Joost-Pieter Katoen tic Programming

Probabilistic Programming Case studies

Overview

@ Case studies

Coupon collector’s problem

ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

by
P. ERDOS and A. RENYI

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Case studies

Coupon collector’s problem

cp := [0,...,0]; 1
while (x < N) {
while (cplil != 0) {

i =

:=1; x := 0; // no coupons yet

:= uniform(1..N) // next coupon
}
cplil :=1; // coupon i obtained
x++; // one coupon less to go

}

Using the ert-calculus one can prove that:
ert(cpcl,0) = 4+[N >0]2N-(2+ Hy_1) € O(N-log N)

As Harmonic number Hy_; € O(log N).

By systematic program verification. Machine checkable.

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Case studies

Random walk

Using the ert-calculus one can prove that its expected runtime is oo.

By systematic formal verification. Machine checkable.

Joost-Pieter Katoen Probabilistic Programming

Randomised binary search

proc BinSearch {
mid := Unif(left, right); // pick mid uniformly
if (left < right) {
if (A[mid] < val) {
left := min(mid+1, right);
call BinSearch
} else {
if (A[mid] > val) {
right := max(mid-1, left);
call BinSearch
} else { skip }
} else { skip }
}

Joost-Pieter Katoen Probabilistic Programming

Randomised binary search

proc BinSearch {
mid := Unif(left, right); // pick mid uniformly
if (left < right) {
if (A[mid] < val) {
left := min(mid+1, right);
call BinSearch
} else {
if (A[mid] > val) {
right := max(mid-1, left);
call BinSearch
} else { skip }
} else { skip }
}

Using the ert-calculus one can prove that its expected runtime is O(log N).

By systematic formal verification. Machine checkable.

Joost-Pieter Katoen Probabilistic Programming

