Probabilistic Programming Lecture #5: Weakest Preconditions

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Overview

- 2 The guarded command language
- 3 Weakest preconditions
- Weakest liberal preconditions

Overview

2 The guarded command language

- 3 Weakest preconditions
- 4 Weakest liberal preconditions

Approaches to semantics

Operational semantics:

(developed by Plotkin)

- The meaning of a program in terms of how it executes on an abstract machine.
- Useful for modelling the execution behaviour of a program.
- Axiomatic semantics: (developed by Floyd and Hoare)
 - Provides correctness assertions for each program construct.
 - Useful for verifying that a program's computed results are correct with respect to the specification.
- Denotational semantics: (developed by Strachey and Scott)
 - Provides a mapping of language constructs onto mathematical objects.
 - Useful for obtaining an abstract insight into the working of a program.

Today: denotational semantics of Dijkstra's GCL in terms of weakest preconditions. No probabilities yet.

Next lecture: how to extent preconditions to the probabilistic setting.

Code-level reasoning

Proving properties of programs: not by executing them, but by reasoning at the syntax level of programs.

 $\begin{array}{c} \mbox{Compositionality: determine the correctness of composed program P} \\ \mbox{by reasoning about its parts in isolation and} \\ \mbox{then obtain P's correctness result by combining those parts' analyses.} \end{array}$

Overview

2 The guarded command language

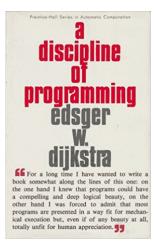
- 3 Weakest preconditions
- 4 Weakest liberal preconditions

▶ skip	empty statement
▶ diverge	divergence
▶ x := E	assignment
▶ prog1 ; prog2	sequential composition
▶ if (G) prog1 else prog2	choice
<pre>> prog1 [] prog2</pre>	non-deterministic choice
▶ while (G) prog	iteration

Dijkstra's guarded command language

For simplicity: we omit non-deterministic choice.

A discipline of programming





Some preliminaries

- Variable valuation s: Vars → Q maps each program variable onto a value (here: rational numbers)
- \blacktriangleright Let $\mathbb S$ denote the set of variable valuations.
- ▶ Let [[E]] denote the valuation of expression E
- ▶ The indicator function of guard *G* is denoted by [*G*]:

$$[G](s) = \begin{cases} 1 & \text{if } s \models G \\ 0 & \text{if } s \notin G \end{cases}$$

These are also known as Iverson brackets.

Predicate transformers

Predicates

A predicate F maps program states onto Booleans, i.e., $F : \mathbb{S} \to \mathbb{B}$.

Let \mathbb{P} denote the set of all predicates and $F \subseteq G$ if and only if $F \Rightarrow G$.

 $(\mathbb{P}, \sqsubseteq)$ is a complete lattice.

Proof.

Predicate F equals $\{s \in S \mid s \models F\}$. Thus $P = 2^{S}$. Partial order \sqsubseteq equals \subseteq .

Predicate transformer

A predicate transformer is a total function between predicates.

Examples

- Predicates are sets of variable valuations.
- Program statements can be viewed as predicate transformers
- One is interested in preconditions that are least restrictive

Overview

2 The guarded command language



Weakest preconditions

Weakest precondition

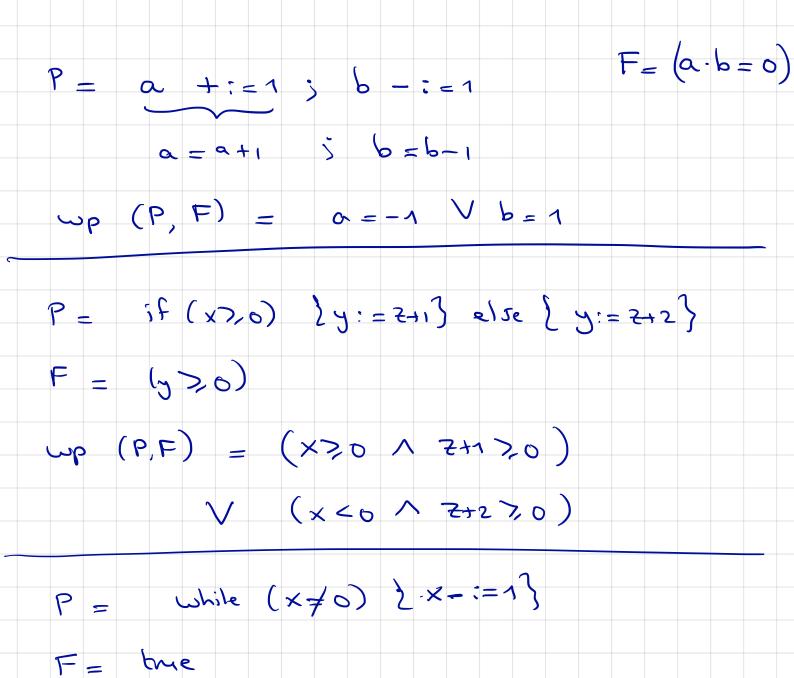
For program P and $E, F \in \mathbb{P}$, the predicate transformer $wp(P, \cdot) : \mathbb{P} \to \mathbb{P}$ is defined by wp(P, F) = E if and only if when P starts in an initial state satisfying E it holds:

- 1. the execution of P terminates in a state satisfying F, and
- 2. for any $H \in \mathbb{P}$ such that P terminates in a state satisfying $F, H \Rightarrow E$.

wp(P, F) is called the weakest precondition on the initial state of P such that P terminates in a final state satisfying the postcondition F.

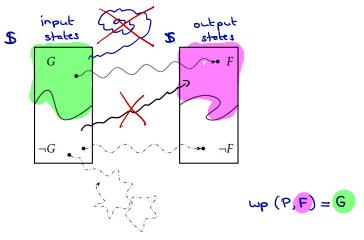
Weakest preconditions correspond to so-called total correctness.

Examples.



 $u_{\mathsf{P}}(\mathsf{P},\mathsf{F}) = \times \geq 0$

Weakest precondition G w.r.t. postcondition F



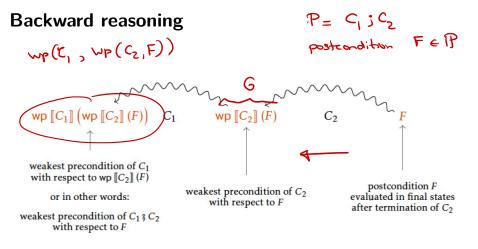
This holds for every deterministic program.

Weakest preconditions

Consider the program P and postcondition $F \in \mathbb{P}$.

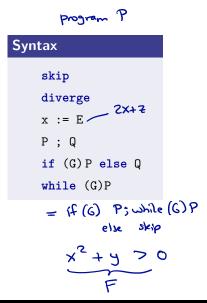
Then wp(P, F) = E means:

- 1. From any state $s \models E$, the program P terminates in some state $t \models F$.
- 2. From any state $s \notin E$, it holds:
 - 2.1 either P terminates in a state $t \notin F$
 - 2.2 or P does not terminate at all.



Weakest preconditions reason in a backward manner about programs.

Predicate transformer semantics of Dijkstra's GCL



wp (P, F) F false F[x:=[E]] up (P, up (Q, F)) $(G \land \psi(P,F)) \lor (\neg G \land \psi(Q,F))$ (2x+2) + 4 > 0 F [x:= 2x+2]

Predicate transformer semantics of Dijkstra's GCL

Syntax	Semantics wp(P, F)
skip	F
diverge	false
x := E	F[x := E]
P ; Q	wp(P, wp(Q, F))
if (G)P else Q	$(G \land wp(P, F)) \lor (\neg G \land wp(Q, F))$
$\omega \rho (\text{while (G)P}, F)$	$lfp X. ((G \land wp(P, X)) \lor (\neg G \land F))$
	"skip"

 $=\overline{\Phi}(X)$

Predicate transformer semantics of Dijkstra's GCL

Syntax	Semantics wp(P, F)	
skip	F	
diverge	false	
x := E	$F[x \coloneqq E] $	
P ; Q	wp(P, wp(Q, F))	
if (G)P else Q	$(G \land wp(P, F)) \lor (\neg G \land wp(Q, F))$	
while (G)P	$lfp X. ((G \land wp(P, X)) \lor (\neg G \land F))$	
\$ \$ \$		
If p is the least fixed point wrt. the ordering \sqsubseteq = \Rightarrow on the set \mathbb{P} of predicates.		
(P, E)		
\downarrow \Rightarrow		

Loop-free examples a. up $(x_{i=1}, x_{i=1}) \stackrel{\text{def}}{=} x_{i=1} (x_{i=1}) = 1 = 1 = 1$ b. up (X+i=1, X=3) = X=3(X+i=1) = X+1=3€) X=2 c. $wp(x+i=1;y-i=1, x \in y)$ = $\omega p(x+:=1, \omega p(y:=:1, x=y))$ X 5 4-1

= x+1 5y-1

Loops

$$wp(while (G) \{P\}, F) = Ifp X. \underbrace{((G \land wp(P, X)) \lor (\neg G \land F))}_{\Phi(X)}$$

Scott continuity of Φ

The function $\Phi : \mathbb{P} \to \mathbb{P}$ (defined as above) is continuous on $(\mathbb{P}, \sqsubseteq)$.

Proof.

By structural induction on the program P.

Corollary

By Kleene's fixpoint theorem, it follows Ifp $\Phi = \sup_{n \in \mathbb{N}} \Phi^n$ (false).

 Φ^n (false) denotes the wp of running while (G){ *P*} exactly *n* times starting from the empty set of states.

Joost-Pieter Katoen

smallest element

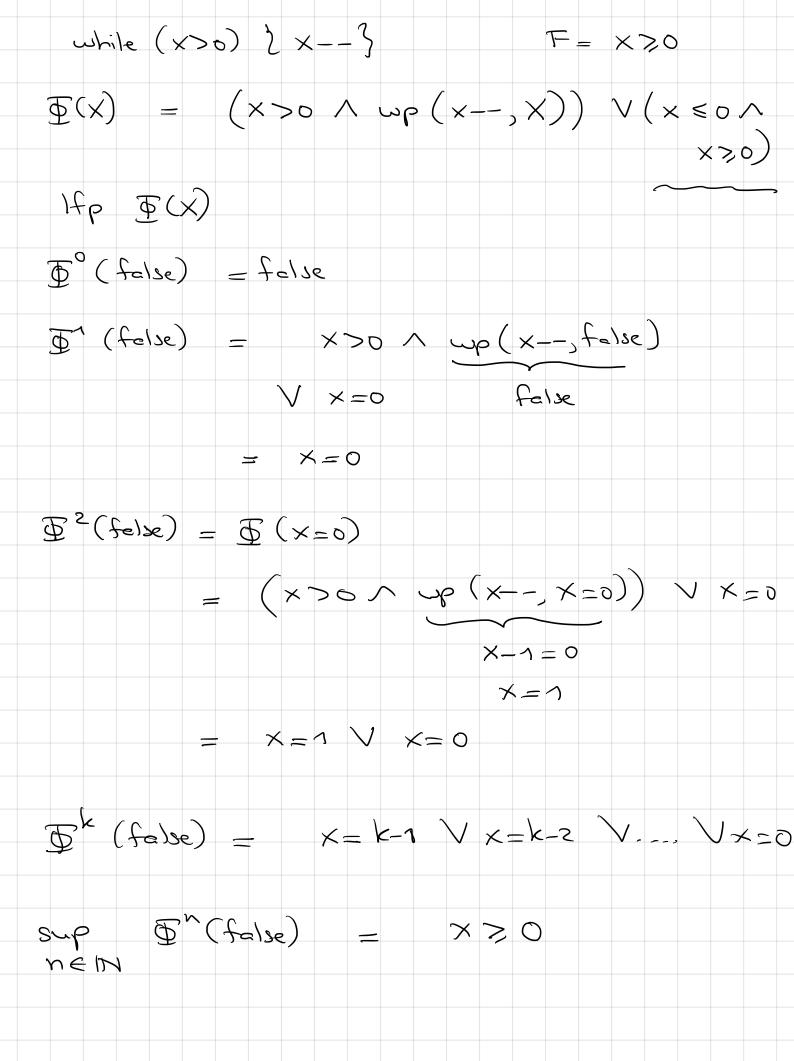
~ (P.5)

A loopy program example

while (x > 0) {
x-}

What is the weakest pre-condition on ${\bf x}$ such that on termination ${\bf x}$ is non-negative?

×70



Approximating while-loops

Let:

while⁰(G){P}) = diverge
while^{$$n+1$$}(G){P}) = if (G) then P; while ^{n} (G){P}) else skip

Approximating while-loops

Let:

while⁰(G){P}) = diverge
while^{$$n+1$$}(G){P}) = if (G) then P; while ^{n} (G){P}) else skip

Let $\Phi(X) = ((G \land wp(P, X)) \lor (\neg G \land F))$. Then for all $n \in \mathbb{N}$ it holds: $\Phi^{n}(\text{false}) = wp(\text{while}^{n}(G)\{P\}, F)$

Proof.

By induction on n using the inductive definition of wp.

Probabilistic Programming

Weakest liberal preconditions

Overview y:=x-3; skip -مرب = F= 4272 (y>0 ∧ true) V(y≤0 if(y>0) } (5-3)²>2 true X:=5 (X-3)²>2 } else { (2-3)2>2 = felse $\chi_{1}=2$ (x-3)²>2 4 Weakest liberal preconditions }^(X-3), >5 7:=x-3 4272

skip y2>2

Weakest liberal precondition

For program P and $E, F \in \mathbb{P}$, the predicate transformer $\underline{wlp(P, \cdot) : \mathbb{P} \to \mathbb{P}}$ is defined by wlp(P, F) = E if and only if when P starts in an initial state satisfying E it holds:

Weakest liberal precondition

For program P and $E, F \in \mathbb{P}$, the predicate transformer $wlp(P, \cdot) : \mathbb{P} \to \mathbb{P}$ is defined by wlp(P, F) = E if and only if when P starts in an initial state satisfying E it holds:

as for up (P,F)

1. either P diverges or P terminates in a state satisfying F, and

Weakest liberal precondition

For program P and $E, F \in \mathbb{P}$, the predicate transformer $wlp(P, \cdot) : \mathbb{P} \to \mathbb{P}$ is defined by wlp(P, F) = E if and only if when P starts in an initial state satisfying E it holds:

- 1. either P diverges or P terminates in a state satisfying F, and
- 2. for any $H \in \mathbb{P}$ such that P either diverges or terminates in a state satisfying F, $H \Rightarrow E$.

- E is the weakest predicate satisfying 1.

Weakest liberal precondition

For program P and $E, F \in \mathbb{P}$, the predicate transformer $wlp(P, \cdot) : \mathbb{P} \to \mathbb{P}$ is defined by wlp(P, F) = E if and only if when P starts in an initial state satisfying E it holds:

- 1. either P diverges or P terminates in a state satisfying F, and
- 2. for any $H \in \mathbb{P}$ such that P either diverges or terminates in a state satisfying $F, H \Rightarrow E$.

wlp(P, F) is called the weakest liberal precondition on the initial state of P such that P either diverges or terminates in a final state satisfying the postcondition F.

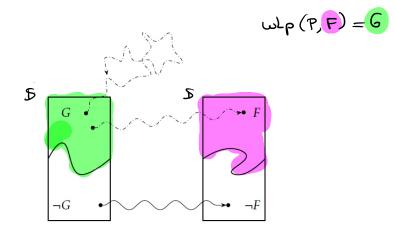
Weakest liberal preconditions correspond to so-called partial correctness: a program is either correct, or diverges. $\omega \nu p(x+i=1, x>0)$

Examples.

Joost-Pieter Katoen

= ~p (x+:=1, x>0)

Weakest liberal precondition G w.r.t. F



This holds for every deterministic program.

Consider the program P and postcondition $F \in \mathbb{P}$.

Then wlp(P, F) = E means:

- 1. From any state $s \models E$,
 - 1.1 either the program P terminates in a state $t \models F$
 - 1.2 or does not terminate at all.
- 2. From any state $s \notin E$, the program P terminates in a state $t \notin F$

Weakest liberal preconditions for Dijkstra's GCL

Syntax	Semantics wlp(P, F)
skip	F
diverge	true
x := E	F[x := E]
P ; Q	wp(P, wp(Q, F))
if (G)P else Q	$(G \land wp(P, F)) \lor (\neg G \land wp(Q, F))$
while (G)P	$gfp X. ((G \land wp(P, X)) \lor (\neg G \land F))$

gfp is the greatest fixed point wrt. the ordering $\sqsubseteq = \Rightarrow$ on the set \mathbb{P} of predicates.

Loops

$$wlp(while (G) \{ P \}, F) = gfp X. \underbrace{((G \land \psi P, X)) \lor (\neg G \land F))}_{\Phi(X)}$$

Scott continuity of Φ

The function $\Phi : \mathbb{P} \to \mathbb{P}$ (defined as above) is continuous on $(\mathbb{P}, \sqsubseteq)$.

Corollary

By Kleene's fixpoint theorem, it follows gfp $\Phi = \inf_{n \in \mathbb{N}} \Phi^n$ (true).

 Φ^n (true) denotes the wp of running while (G){ *P*} exactly *n* times starting from the entire set S of states.

• Monotonicity: $F \Rightarrow G$ implies $wp(P, F) \Rightarrow wp(P, G)$

- Monotonicity: $F \Rightarrow G$ implies $wp(P, F) \Rightarrow wp(P, G)$
- ▶ Duality: $wlp(P, F) = wp(P, F) \lor \neg wp(P, true)$

- Monotonicity: $F \Rightarrow G$ implies $wp(P, F) \Rightarrow wp(P, G)$
- ▶ Duality: $wlp(P, F) = wp(P, F) \lor \neg wp(P, true)$
- Strictness: wp(P, false) = false and wlp(P, true) = true

- Monotonicity: $F \Rightarrow G$ implies $wp(P, F) \Rightarrow wp(P, G)$
- ▶ Duality: $wlp(P, F) = wp(P, F) \lor \neg wp(P, true)$
- Strictness: wp(P, false) = false and wlp(P, true) = true
- ▶ Distribution $wp(P, F \lor G) = wp(P, F) \lor wp(P, G)$

wp(P, true) = weakest precondition under which P terminates