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Probabilistic Programming Motivation

Approaches to semantics

Z Operational semantics: (developed by Plotkin)
Z The meaning of a program in terms of how it executes on an abstract

machine.
Z Useful for modelling the execution behaviour of a program.

Z Axiomatic semantics: (developed by Floyd and Hoare)
Z Provides correctness assertions for each program construct.
Z Useful for verifying that a program’s computed results are correct with

respect to the specification.

Z Denotational semantics: (developed by Strachey and Scott)
Z Provides a mapping of language constructs onto mathematical objects.
Z Useful for obtaining an abstract insight into the working of a program.

Today: denotational semantics of Dijkstra’s GCL in terms of weakest
preconditions. No probabilities yet.

Next lecture: how to extent preconditions to the probabilistic setting.
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Probabilistic Programming Motivation

Code-level reasoning

Proving properties of programs: not by executing them,
but by reasoning at the syntax level of programs.

Compositionality: determine the correctness of composed program P

by reasoning about its parts in isolation and
then obtain P’s correctness result by combining those parts’ analyses.
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Probabilistic Programming The guarded command language

Dijkstra’s guarded command language

Z skip empty statement
Z diverge divergence
Z x := E assignment
Z prog1 ; prog2 sequential composition
Z if (G) prog1 else prog2 choice
Z prog1 [] prog2 non-deterministic choice
Z while (G) prog iteration

For simplicity: we omit non-deterministic choice.
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Probabilistic Programming The guarded command language

A discipline of programming
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Probabilistic Programming The guarded command language

Some preliminaries

Z Variable valuation s ⇥ Vars � Q maps each program variable onto a
value (here: rational numbers)

Z Let S denote the set of variable valuations.

Z Let [[E ]] denote the valuation of expression E

Z The indicator function of guard G is denoted by [G]:
[G](s) = v 1 if s Ï G

0 if s /Ï G

These are also known as Iverson brackets.
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Probabilistic Programming The guarded command language

Predicate transformers

Predicates

A predicate F maps program states onto Booleans, i.e., F ⇥ S � B.
Let P denote the set of all predicates and F F G if and only if F � G .

(P,F) is a complete lattice.

Proof.

Predicate F equals { s " S ∂ s Ï F }. Thus P = 2S. Partial order F equals N.

Predicate transformer

A predicate transformer is a total function between predicates.
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Probabilistic Programming The guarded command language

Examples

Z Predicates are sets of variable valuations.

Z Program statements can be viewed as predicate transformers

Z One is interested in preconditions that are least restrictive
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Probabilistic Programming Weakest preconditions

Weakest preconditions

Weakest precondition

For program P and E , F " P, the predicate transformer wp(P, �) ⇥ P � P is
defined by wp(P, F ) = E if and only if when P starts in an initial state
satisfying E it holds:

1. the execution of P terminates in a state satisfying F , and
2. for any H " P such that P terminates in a state satisfying F , H � E .

wp(P, F ) is called the weakest precondition on the initial state of P such that P

terminates in a final state satisfying the postcondition F .

Weakest preconditions correspond to so-called total correctness.

Examples.
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Probabilistic Programming Weakest preconditions

Weakest precondition G w.r.t. postcondition F

This holds for every deterministic program.
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Probabilistic Programming Weakest preconditions

Weakest preconditions

Consider the program P and postcondition F " P.

Then wp(P, F ) = E means:
1. From any state s Ï E , the program P terminates in some state t Ï F .
2. From any state s /Ï E , it holds:

2.1 either P terminates in a state t /Ï F

2.2 or P does not terminate at all.
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Probabilistic Programming Weakest preconditions

Backward reasoning

Weakest preconditions reason in a backward manner about programs.
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Probabilistic Programming Weakest preconditions

Predicate transformer semantics of Dijkstra’s GCL

Syntax

skip
diverge
x := E
P ; Q
if (G) P else Q
while (G)P

Semantics wp(P, F )
F

false

F [x ⇥= E ]
wp(P, wp(Q, F ))(G 0 wp(P, F )) 1 (¬G 0 wp(Q, F ))
lfp X . ((G 0 wp(P, X )) 1 (¬G 0 F ))

lfp is the least fixed point wrt. the ordering F = � on the set P of predicates.
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Probabilistic Programming Weakest preconditions
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Probabilistic Programming Weakest preconditions

Predicate transformer semantics of Dijkstra’s GCL

Syntax
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Probabilistic Programming Weakest preconditions

Loop-free examples
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Probabilistic Programming Weakest preconditions

Loops

wp(while (G){P }, F ) = lfp X . ((G 0 wp(P, X )) 1 (¬G 0 F ))Õ“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““œ
�(X )

Scott continuity of �
The function � ⇥ P � P (defined as above) is continuous on (P,F).
Proof.

By structural induction on the program P.

Corollary

By Kleene’s fixpoint theorem, it follows lfp � = supn"N �n(false).
�n(false) denotes the wp of running while (G){P } exactly n times starting
from the empty set of states.
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Probabilistic Programming Weakest preconditions

A loopy program example

while (x > 0) {
x--

}

What is the weakest pre-condition on x
such that on termination x is non-negative?
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Probabilistic Programming Weakest preconditions

Approximating while-loops

Let:

while0(G){P }) = diverge

whilen+1(G){P }) = if (G) then P; whilen(G){P }) else skip

Let �(X ) = ((G 0 wp(P, X )) 1 (¬G 0 F )). Then for all n " N it holds:

�n(false) = wp(whilen(G){P }, F )
Proof.

By induction on n using the inductive definition of wp.
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Probabilistic Programming Weakest liberal preconditions
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Probabilistic Programming Weakest liberal preconditions

Weakest liberal preconditions

Weakest liberal precondition

For program P and E , F " P, the predicate transformer wlp(P, �) ⇥ P � P is
defined by wlp(P, F ) = E if and only if when P starts in an initial state
satisfying E it holds:

1. either P diverges or P terminates in a state satisfying F , and
2. for any H " P such that P either diverges or terminates in a state

satisfying F , H � E .

wlp(P, F ) is called the weakest liberal precondition on the initial state of P such
that P either diverges or terminates in a final state satisfying the postcondition F .

Weakest liberal preconditions correspond to so-called partial correctness: a
program is either correct, or diverges.

Examples.
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Probabilistic Programming Weakest liberal preconditions

Weakest liberal preconditions
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Probabilistic Programming Weakest liberal preconditions

Weakest liberal preconditions

Weakest liberal precondition

For program P and E , F " P, the predicate transformer wlp(P, �) ⇥ P � P is
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Probabilistic Programming Weakest liberal preconditions

Weakest liberal preconditions

Weakest liberal precondition

For program P and E , F " P, the predicate transformer wlp(P, �) ⇥ P � P is
defined by wlp(P, F ) = E if and only if when P starts in an initial state
satisfying E it holds:

1. either P diverges or P terminates in a state satisfying F , and
2. for any H " P such that P either diverges or terminates in a state
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Examples.
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Probabilistic Programming Weakest liberal preconditions

Weakest liberal precondition G w.r.t. F

This holds for every deterministic program.
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Probabilistic Programming Weakest liberal preconditions

Weakest liberal preconditions

Consider the program P and postcondition F " P.

Then wlp(P, F ) = E means:
1. From any state s Ï E ,

1.1 either the program P terminates in a state t Ï F

1.2 or does not terminate at all.
2. From any state s /Ï E , the program P terminates in a state t /Ï F
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Probabilistic Programming Weakest liberal preconditions

Weakest liberal preconditions for Dijkstra’s GCL

Syntax

skip
diverge
x := E
P ; Q
if (G) P else Q
while (G)P

Semantics wlp(P, F )
F

true

F [x ⇥= E ]
wp(P, wp(Q, F ))(G 0 wp(P, F )) 1 (¬G 0 wp(Q, F ))
gfp X . ((G 0 wp(P, X )) 1 (¬G 0 F ))

gfp is the greatest fixed point wrt. the ordering F = � on the set P of predicates.
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Probabilistic Programming Weakest liberal preconditions

Loops

wlp(while (G){P }, F ) = gfp X . ((G 0 wp(P, X )) 1 (¬G 0 F ))Õ“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““œ
�(X )

Scott continuity of �
The function � ⇥ P � P (defined as above) is continuous on (P,F).
Corollary

By Kleene’s fixpoint theorem, it follows gfp � = infn"N �n(true).
�n(true) denotes the wp of running while (G){P } exactly n times starting
from the entire set S of states.
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Probabilistic Programming Weakest liberal preconditions

Elementary properties of Dijkstra’s wp and wlp

Z Monotonicity: F � G implies wp(P, F ) � wp(P, G)

Z Duality: wlp(P, F ) = wp(P, F ) 1 ¬wp(P, true)
Z Strictness: wp(P, false) = false and wlp(P, true) = true

Z Distribution wp(P, F 1 G) = wp(P, F ) 1 wp(P, G)
wp(P, true) = weakest precondition under which P terminates
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