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The importance of Bayesian networks

“Bayesian networks are as important to Al and machine learning

as Boolean circuits are to computer science.”

[Stuart Russell (Univ. of California, Berkeley), 2009]
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Judea Pearl: The father of Bayesian networks

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:

al stuay Networks of Plausible Inference

P* (x,02)

Turing Award 2011: “for fundamental contributions to Al

through the development of a calculus for probabilistic and causal reasoning”.
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Probabilistic graphical models

» Combine graph theory and probability theory

P Vertices are random variables

» Edges are dependencies between these variables

» Enable usage of graph algorithms

P Graph representation makes (conditional) independence explicit

» Two main types of probabilistic graphical models

P directed acyclic graphs: Bayesian networks
» undirected graphs: Markov random fields

» We consider only discrete random variables

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming What are Bayesian networks?

Overview

© What are Bayesian networks?

Bayesian networks

Bayesian network

A Bayesian network (BN, for short) is a tuple B = (V, E, ©) where

» (V, E) is a directed acyclic graph with finite V' in which each v € V
represents a random variable with values from finite domain D, and
(v, w) € E represents the (causal) dependencies of w on v, and

> for each vertex v with k parents, the function ©, : D* - Dist(D) is
the conditional probability table of (the random variable represented
by) vertex v.

Here, w € V is a parent of v € V whenever (w, v) € E.

The graph structure induces a natural ordering on the parents of a vertex v; the i-th
entry in a tuple d € D" of ©, corresponds to the value assigned to the i-th parent of v.
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Example: Student’s mood after an exam Bayesian network semantics
Joint probability function of a Bayesian network
D=0 | D=1 P=0|P=1

07 | o3 Let B=(V, E,©) be a BN, and W ¢ V be a downward closed set of
vertices where w € W has value w € D. The (unique) joint probability
function of BN B in which the nodes in W assume values W equals:

G=0| G=1
D=0,P=0 0.95 0.05

D=1P=1| 005 | 0.95 PAW =W) = H Pr(w = w | parents(w) = parents(w))
D=0,P=1 0.5 0.5 weWw -
D=1P=0| 06 0.4
M=o0| M=1 = H O, (parents(w))(w) .
G=0 0.9 0.1 wew -
G=1 03 0-7 also called f'actorisation

The conditional probability distribution of W S V given observations on a

set O C V of vertices is given by PHW = W | O = 0) = %

The interpretation of an entry in a vertex' conditional probability table is:

PAv =d | parents(v) =d) = ©,(d)(d), with d the values of v's parents
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Example Example
D=0 | D=1 & " pP=0| P=1
— — _ _ reparation
D=0 | D=1 P=0| P=1 0.6 0.4 0.7 0.3
0.6 0.4 0.7 0.3
G=0| G=1
G=0 D=0,P=0] 0.95 0.05
D=0,P=0 0.95 D=1P=1 0.05 0.95
D=1P=1 0.05 D=0,P=1 0.5 0.5
D=1,P=0 0.6 0.4
D=0,P=1 0.5
M=0 | M=1
D=1,P=0 0.6
G=0 0.9 0.1
M=o M=1 G=1| 03 0.7
0.9 0.1
0.3 0.7

P{D=0,G6=0,M=0,P =1)

P{D=0,G=0,M=0]|P=1) PP =T

How likely does a student end up with a bad mood after getting 06-05-0.9-0.3

a bad grade for an easy exam, given that she is well prepared? = 03 = 027
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The benefits of Bayesian networks Overview

Bayesian networks provide a compact representation of joint distribution functions

if the dependencies between the random variables are sparse.

Another advantage of BNs is © Conditional independence

the explicit representation of conditional independencies.
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Conditional independence Graphoid axioms of Bayesian networks
Two independent events may become dependent given some observation.
This is captured by the following notion. Graphoid axioms [Dawid, 1979], [Spohn, 1980]
Conditional ind d Conditional independence satisfies the following axioms for disjoint sets of
oncitiona’ ingepencence random variables W, X, Y, Z:
L::_tyX,.Y, Z;ed(discrztj));a;doy va:ables. X is conditionally independent 1. I(X,Z,Y) if and only if I(Y,Z, X) Symmetry
SF Y D 25 S 1050 2, 1)) WIS 2. I(X,Z,Y UW) implies (/(X,Z,Y) and I(X,Z,W))  Decomposition
Pr(XAY|Z) = P(X|Z)-P{Y | Z) or PHZ)=0. 3. I(X,Z,Y UW) implies I(X,ZUY,W) Weak union
4. (I(X,Z,Y) and I(X,ZUY,W)) implies /(X,Z,YUW)  Contraction
Equivalent formulation: PHX | Y A Z) = PAX | Z) or PAY A Z) = 0. 5. 1X,Z,2) Triviality
These notions can be easily lifted in a point-wise manner to sets of random
variables, e.g., X = {Xi,..., X }. Decomposition+Weak union+Contraction together are equivalent to:
1 I(X,Z,YUuW) ifandonlyif /(X ,Z Y)and/(X,ZUY, W)

Examples on the black board.
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Checking conditional independencies

Deriving the (conditional) independencies is non-trivial.

The graphical structure of Bayesian networks enable a simple test.

This is based on the concept of d-separation.
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Valves

» Consider undirected paths in the underlying DAG G = (V, E) of the BN.

P View every such path as a pipe, and each vertex W on the path as a valve.

P Valves have the status open or closed.

» An undirected path is blocked if at least one valve along the path is closed.

» A valve v is open or closed on a path depending on its type on this path:

1. Sequential: when v is a parent of one of its neighbours (on the path)
and a child of its other neighbour (on the path)

2. Divergent: when v is a parent of both neighbours

3. Convergent: when v is a child of both neighbours

Probabilistic Programming Conditional independence

Valve types

O

Sequential Divergent Convergent
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Sequential valve Divergent valve Convergent valve
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Valve status

A valve v is closed for set Z of variables whenever:
1. Sequential: if v (is a variable that) occurs in Z
2. Divergent: if v occurs in Z

3. Convergent: if neither v nor any of its descendants occurs in Z.

w is a descendant of v if w is reachable via (directed) edge relation E from v.

1. the sequential valve A is closed iff we know the value of A, otherwise an
earthquake E may change our belief in getting a call C.

2. the divergent valve E is closed iff we know the value of variable E, otherwise a
radio report on an earthquake may change our belief in the alarm triggering.

3. the convergent valve A is closed iff neither the value of variable A nor the value of
C are known, otherwise, a burglary may change our belief in an earthquake.
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D-separation

Conditional independence

D-separation

Let X, Y, Z be disjoint sets of vertices in the DAG G. X and Y are
d-separated by Z in G, denoted dseps(X, Z,Y), iff every (undirected) path D-separation implies independence [Pearl 1986], [Verma, 1986]

between a vertex in X and a vertex in Y is blocked by some vertex in Z.

dsepc(X,Z,Y) implies (X, Z,Y).

A path is blocked by Z iff at least one vertex on the path is closed given Z.

B
Gl N

g E:anhquak;:i\
— ®

l/ 1&1&0?)
B

Cau;(%;WD Left as an exercise. Note that the reverse implication does not hold. ]
_B)

’Ruarm}\) As d-separation is defined over all paths, this theorem yields an exponential-time
\-fr)-—' procedure to check (a sufficient condition for) conditional independence.

(a'u‘?\

_©

Figure 4.9: On the left, R and B are d-separated by E, C. On the right, R and C are not d-separated.
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A polynomial algorithm for d-separation Markov blanket

Let X, Y, Z be disjoint sets of vertices in the DAG G. Apply the following
pruning procedure on the DAG G:

The complexity of inference on a Bayesian network is measured in terms of the
Markov blanket, an indication of the degree of dependence in the BN.

1. Eliminate any leaf vertex v from G with v ¢ XUY U Z.

2. Repeat this elimination procedure until no more leafs can be Markov blanket

eliminated.

3. Eliminate all edges emanating vertices in Z.

The remaining DAG is referred to as pruney y z(G).

The Markov blanket for a vertex v in a BN is the set Jv of vertices
composed of v, v's parents, its children, and its children’s other parents.

The average Markov blanket of BN B is the average size of the Markov
blanket of all its vertices, that is, ﬁ Y ey lOv].

Every set of nodes in the BN is conditionally independent of v when conditioned

Let X, Y, Z be disjoint sets of vertices in the DAG G. Then: on the set dv. That is, for distinct vertices v and w:

dsepg(X, Y, Z) if and only if X and Y are disconnected in pruney y z(G).

Prlv|Ov A w) = Plv|0v) or, equivalently [({v}, {w} Ov)

two sets of vertices are disconnected if there is no path between them.

Joost-Pieter Katoen

Probabilistic Programming

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming

Conditional independence

Probabilistic Programming

Printer troubleshooting in Windows 95

ot Tt
et i) 7 G

\
\

O Conditions
- O Faults

O Intermediate
Win95pts ©  symploms

Developed by Microsoft
GeowD) Edited for style by Norsys Software Corp.

The average Markov blanket of this BN is 5.92, |V| =76, and |E| = 117

Conditional independence

Some benchmark BN results

Benchmark BNs from www.bnlearn.com

‘ BN ‘ V| ‘ |E| ‘ aMB ‘
hailfinder | 56 66 3.54
hepar2 70 123 | 451
win9bpts 76 112 | 5.92
pathfinder | 135 | 200 | 3.04
andes 223 | 338 | 5.61
pigs 441 | 592 | 3.92
munin 1041 | 1397 | 3.54

aMB = average Markov Blanket size, a measure of independence in BNs
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Overview

@ Inference
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Probabilistic inference

We consider the following probabilistic inference problem: let B be a BN
with set V of vertices and the evidence E € V' and the questions Q € V.
(Exact) probabilistic inference is to determine the conditional probability

PMQ=qAE=¢)
PrE = e)

PiQ=q|E=e)

We consider:

Decision variants of probabilistic inference

The decision variant of probabilistic inference is: for a given probability
peQnI0,1):
» does PHQ=q|E=¢e) > p? Tt
» special case: PHE =€) > p? STI

'TI = Threshold Inference and STI = Simple TI.
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Inference
Example
D=0 | D=1 P=0| P=1
Preparation
0.6 0.4 0.7 0.3
G=0|G=1
D=0,P=0 0.95 0.05
D=1P=1 0.05 0.95
D=0,P=1 0.5 0.5
D=1,P=0 0.6 0.4
M=0| M=1
G=0 0.9 0.1
G=1 0.3 0.7

P{D=0,G=0,M=0P=1)
PP =1)
06-0.5-0.9-0.3

= 03 = 0.27

PAD=0,G=0,M=0|P=1)
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The complexity class PP

PP (Probabilistic Polynomial-Time) is the class of decision problems solvable by a
probabilistic Turing machine” in polynomial time with an error probability < 1/2.
Formally, a language L is in PP iff there is a probabilistic TM M such that:

1. M runs in polynomial time on all inputs
2. For all w € L, M outputs 1 with probability larger than 1/2

3. For all w ¢ L, M outputs 1 with probability at most /2.

A PP-problem can be solved to any fixed degree of accuracy by running a randomised

polynomial-time algorithm a sufficient (but bounded) number of times.

Remark: if all choices are binary and the probability of each transition is 1/2, then the majority of
the runs accept input w iff w € L. This majority, however, is not fixed and may (exponentially)
depend on the input, e.g., a problem in PP may accept “yes"-instances with size |w| with

probability 1/2 + ﬁ This makes problems in PP intractable in general.

A probabilistic TM is a non-deterministic TM which chooses between the available
transitions at each point according to some probability distribution.
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Complexity of probabilistic inference

Decision variants of probabilistic inference

For a given probability p € QN [0, 1):
does PHQ=q|E=¢e) > p? TI
special case: PHE =e) > p? STI

Complexity of probabilistic inference [Cooper, 1990]

The decision problems Tl and STI are PP-complete.

1. Hardness: by a reduction of MAJSAT to STI (since STl is a special case of TI,
MAJSAT is reducible to TI).

2. Membership: To show Tl is in PP, a polynomial-time algorithm is provided that
can guess a solution to T| while guaranteeing that the guess is correct with
probability exceeding 1/2.

[
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The complexity class PP

EXPSPACE

NP c PP (as SAT lies in PP) and coNP ¢ PP (as PP is closed under complement). PP

is contained in PSPACE (as there is a polynomial-space algorithm for MAJSAT).

PP is comparable to the class #P — the counting variant of NP — the class of function
problems “compute f(x)"” where f is the number of accepting runs of an NTM running

in polynomial time.
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The decision problems SAT and MAJSAT Showing hardness of STI

The decision problems SAT and MAJSAT

Let « be a propositional logical formula (in conjunctive normal form, CNF)
over a finite set X of Boolean variables.

1. Does there exist a valuation over X such that a holds? SAT

By reducing MAJSAT to STI. As STl is a special case of Tl, MAJSAT can also
MAJSAT be reduced to TI.

2. Does the majority of the assignments to X make « hold?

Known facts [Cook, 1971] and [?7?]

1. The SAT problem is NP-complete.
2. The MAJSAT problem is PP-complete.
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Showing membership

To show Tl is in PP, a polynomial-time algorithm is provided that can guess a
solution to Tl while guaranteeing that the guess is correct with probability
exceeding 1/2.
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