

Overview

MotivationMotivationWhat are Bayesian networks?Conditional independenceInference(2) What are Bayesian networks?
"Bayesian networks are as important to Al and machine learning
(4) Inference
as Boolean circuits are to computer science." [Stuart Russell (Univ. of California, Berkeley), 2009]

Probabilistic graphical models

- Combine graph theory and probability theory
- Vertices are random variables
- Edges are dependencies between these variables
- Enable usage of graph algorithms
- Graph representation makes (conditional) independence explicit
- Two main types of probabilistic graphical models
- directed acyclic graphs: Bayesian networks
- undirected graphs: Markov random fields
- We consider only discrete random variables
Joost-Pieter Katoen
Probabilistic Programming
Bayesian networks
Bayesian network
A Bayesian network ($B N$, for short) is a tuple $B=(V, E, \Theta)$ where
(V, E) is a directed acyclic graph pith froginamining V in which each $v \in V$
represents a random variable with values from finite domain D, and
$(v, w) \in E$ represents the (causal) dependencies of w on v, and
for each vertex v with k parents, the function $\Theta_{v}: D^{k} \rightarrow$ Dist(D) is
the conditional probability table of (the random variable represented
by) vertex v.
Here, $w \in V$ is a parent of $v \in V$ whenever $(w, v) \in E$.
The graph structure induces a natural ordering on the parents of a vertex v; the i-th
entry in a tuple $d \in D^{k}$ of Θ_{v} corresponds to the value assigned to the i-th parent of v.

Example: Student's mood after an exam

The interpretation of an entry in a vertex' conditional probability table is:

$$
\operatorname{Pr}(v=d \mid \operatorname{parents}(v)=\mathbf{d})=\Theta_{v}(\mathbf{d})(d) \text {, with } \mathbf{d} \text { the values of } v \text { 's parents }
$$

Example

How likely does a student end up with a bad mood after getting a bad grade for an easy exam, given that she is well prepared?

Bayesian network semantics

Joint probability function of a Bayesian network

Let $B=(V, E, \Theta)$ be a BN , and $W \subseteq V$ be a downward closed set of vertices where $w \in W$ has value $\underline{w} \in D$. The (unique) joint probability function of $B N B$ in which the nodes in W assume values \underline{W} equals:

$$
\begin{aligned}
\operatorname{Pr}(W=\underline{W}) & =\prod_{w \in W} \operatorname{Pr}(w=\underline{w} \mid \operatorname{parents}(w)=\underline{\operatorname{parents}(w)}) \\
& =\underbrace{\prod_{w \in W} \Theta_{w}(\underline{\operatorname{parents}(w))}(\underline{w})}_{\text {also called factorisation }} .
\end{aligned}
$$

The conditional probability distribution of $W \subseteq V$ given observations on a set $O \subseteq V$ of vertices is given by $\operatorname{Pr}(W=\underline{W} \mid O=\underline{O})=\frac{\operatorname{Pr}(W=\underline{W} \wedge O=\underline{O})}{\operatorname{Pr}(O=\underline{O})}$.

Example

$$
\begin{aligned}
\operatorname{Pr}(D=0, G=0, M=0 \mid P=1) & =\frac{\operatorname{Pr}(D=0, G=0, M=0, P=1)}{\operatorname{Pr}(P=1)} \\
& =\frac{0.6 \cdot 0.5 \cdot 0.9 \cdot 0.3}{0.3}=0.27
\end{aligned}
$$

Bayesian networks provide a compact representation of joint distribution functions
if the dependencies between the random variables are sparse.

Another advantage of BNs is
the explicit representation of conditional independencies.

Conditional independence

Two independent events may become dependent given some observation. This is captured by the following notion.

Conditional independence

Let X, Y, Z be (discrete) random variables. X is conditionally independent of Y given Z, denoted $I(X, Z, Y)$, whenever:

$$
\operatorname{Pr}(X \wedge Y \mid Z)=\operatorname{Pr}(X \mid Z) \cdot \operatorname{Pr}(Y \mid Z) \quad \text { or } \operatorname{Pr}(Z)=0
$$

Equivalent formulation: $\operatorname{Pr}(X \mid Y \wedge Z)=\operatorname{Pr}(X \mid Z)$ or $\operatorname{Pr}(Y \wedge Z)=0$.
These notions can be easily lifted in a point-wise manner to sets of random

$$
\text { variables, e.g., } \mathbf{X}=\left\{X_{1}, \ldots, X_{k}\right\}
$$

(3) Conditional independence

Graphoid axioms of Bayesian networks

Graphoid axioms

[Dawid, 1979], [Spohn, 1980]
Conditional independence satisfies the following axioms for disjoint sets of random variables $\mathbf{W}, \mathbf{X}, \mathbf{Y}, \mathbf{Z}$

1. $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ if and only if $I(\mathbf{Y}, \mathbf{Z}, \mathbf{X})$

Symmetry
2. $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W})$ implies $(I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ and $I(\mathbf{X}, \mathbf{Z}, \mathbf{W})) \quad$ Decomposition
3. $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W})$ implies $I(\mathbf{X}, \mathbf{Z} \cup \mathbf{Y}, \mathbf{W}) \quad$ Weak union
4. $(I(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ and $I(\mathbf{X}, \mathbf{Z} \cup \mathbf{Y}, \mathbf{W}))$ implies $I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W}) \quad$ Contraction
5. $I(\mathbf{X}, \mathbf{Z}, \varnothing)$ Triviality

Decomposition+Weak union+Contraction together are equivalent to:

$$
I(\mathbf{X}, \mathbf{Z}, \mathbf{Y} \cup \mathbf{W}) \text { if and only if } I(\mathbf{X}, \mathbf{Z}, \mathbf{Y}) \text { and } I(\mathbf{X}, \mathbf{Z} \cup \mathbf{Y}, \mathbf{W}) .
$$

Examples on the black board.

Checking conditional independencies

The graphical structure of Bayesian networks enable a simple test.
This is based on the concept of d-separation.

Valve types

Sequential

Convergent

Sequential valve

Divergent valve

Convergent valve

Valves

- Consider undirected paths in the underlying DAG $G=(V, E)$ of the BN .
- View every such path as a pipe, and each vertex W on the path as a valve.
- Valves have the status open or closed.

An undirected path is blocked if at least one valve along the path is closed

- A valve v is open or closed on a path depending on its type on this path:

1. Sequential: when v is a parent of one of its neighbours (on the path) and a child of its other neighbour (on the path)
2. Divergent: when v is a parent of both neighbours
3. Convergent: when v is a child of both neighbours

Valve status

A valve v is closed for set \mathbf{Z} of variables whenever:

1. Sequential: if v (is a variable that) occurs in \mathbf{Z}
2. Divergent: if v occurs in \mathbf{Z}
3. Convergent: if neither v nor any of its descendants occurs in \mathbf{Z} w is a descendant of v if w is reachable via (directed) edge relation E from v.

Example

1. the sequential valve A is closed iff we know the value of A, otherwise an earthquake E may change our belief in getting a call C.
2. the divergent valve E is closed iff we know the value of variable E, otherwise a radio report on an earthquake may change our belief in the alarm triggering.
3. the convergent valve A is closed iff neither the value of variable A nor the value of C are known, otherwise, a burglary may change our belief in an earthquake.

D-separation

D-separation

Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ be disjoint sets of vertices in the DAG G. \mathbf{X} and \mathbf{Y} are d-separated by \mathbf{Z} in G, denoted $\operatorname{dsep}_{G}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$, iff every (undirected) path between a vertex in \mathbf{X} and a vertex in \mathbf{Y} is blocked by some vertex in \mathbf{Z}
A path is blocked by \mathbf{Z} iff at least one vertex on the path is closed given \mathbf{Z}.

Figure 4.9: On the left, R and B are d-separated by E, C. On the right, R and C are not d-separated.

A polynomial algorithm for d-separation

Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ be disjoint sets of vertices in the DAG G. Apply the following pruning procedure on the DAG G :

1. Eliminate any leaf vertex v from G with $v \notin \mathbf{X} \cup \mathbf{Y} \cup \mathbf{Z}$.
2. Repeat this elimination procedure until no more leafs can be eliminated.
3. Eliminate all edges emanating vertices in \mathbf{Z}.

The remaining DAG is referred to as $\operatorname{prune}_{\mathbf{X}, \mathbf{Y}, \mathbf{Z}}(G)$.

Theorem

Let $\mathbf{X}, \mathbf{Y}, \mathbf{Z}$ be disjoint sets of vertices in the DAG G. Then: $d^{s e p_{G}}(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$ if and only if \mathbf{X} and \mathbf{Y} are disconnected in prune $\mathbf{e}_{\mathbf{X}, \mathbf{Z}}(G)$.

Probabilistic Programming

Conditional independence

D-separation

D-separation implies independence
[Pearl 1986], [Verma, 1986]
$\operatorname{dsep}_{G}(\mathbf{X}, \mathbf{Z}, \mathbf{Y})$ implies I($\left.\mathbf{X}, \mathbf{Z}, \mathbf{Y}\right)$.

Proof.

Left as an exercise. Note that the reverse implication does not hold.

As d-separation is defined over all paths, this theorem yields an exponential-time procedure to check (a sufficient condition for) conditional independence.

Markov blanket

The complexity of inference on a Bayesian network is measured in terms of the Markov blanket, an indication of the degree of dependence in the BN.

Markov blanket

The Markov blanket for a vertex v in a BN is the set ∂v of vertices composed of v, v 's parents, its children, and its children's other parents.

The average Markov blanket of BN B is the average size of the Markov blanket of all its vertices, that is, $\frac{1}{|V|} \sum_{v \in V}|\partial v|$.

Every set of nodes in the BN is conditionally independent of v when conditioned on the set ∂v. That is, for distinct vertices v and w :

$$
\operatorname{Pr}(v \mid \partial v \wedge w)=\operatorname{Pr}(v \mid \partial v) \text { or, equivalently } I(\{v\},\{w\}, \partial v)
$$

two sets of vertices are disconnected if there is no path between them.

Some benchmark BN results

Benchmark BNs from www.bnlearn.com

BN	$\|V\|$	$\|E\|$	aMB
hailfinder	56	66	3.54
hepar2	70	123	4.51
win95pts	76	112	5.92
pathfinder	135	200	3.04
andes	223	338	5.61
pigs	441	592	3.92
munin	1041	1397	3.54

aMB = average Markov Blanket size, a measure of independence in BNs

[^0]
Example

$$
\begin{aligned}
\operatorname{Pr}(D=0, G=0, M=0 \mid P=1) & =\frac{\operatorname{Pr}(D=0, G=0, M=0, P=1)}{\operatorname{Pr}(P=1)} \\
& =\frac{0.6 \cdot 0.5 \cdot 0.9 \cdot 0.3}{0.3}=0.27
\end{aligned}
$$

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming
Inference

The complexity class PP

PP (Probabilistic Polynomial-Time) is the class of decision problems solvable by a probabilistic Turing machine ${ }^{2}$ in polynomial time with an error probability < $1 / 2$. Formally, a language L is in PP iff there is a probabilistic TM M such that:

1. M runs in polynomial time on all inputs
2. For all $w \in L, M$ outputs 1 with probability larger than $1 / 2$
3. For all $w \notin L, M$ outputs 1 with probability at most $1 / 2$.

A PP-problem can be solved to any fixed degree of accuracy by running a randomised polynomial-time algorithm a sufficient (but bounded) number of times.

Remark: if all choices are binary and the probability of each transition is $1 / 2$, then the majority of the runs accept input w iff $w \in L$. This majority, however, is not fixed and may (exponentially) depend on the input, e.g., a problem in PP may accept "yes"-instances with size $|w|$ with probability $1 / 2+\frac{1}{2^{|w|}}$. This makes problems in PP intractable in general.

[^1]
Probabilistic Programmin

Complexity of probabilistic inference

Decision variants of probabilistic inference

For a given probability $p \in \mathbb{Q} \cap[0,1)$:

$$
\begin{equation*}
\nabla \text { does } \operatorname{Pr}(\mathbf{Q}=\mathbf{q} \mid \mathbf{E}=\mathbf{e})>p ? \tag{TI}
\end{equation*}
$$

$$
\text { special case: } \operatorname{Pr}(\mathbf{E}=\mathbf{e})>p \text { ? }
$$

\rightarrow special case: $\operatorname{Pr}(\mathbf{E}=\mathbf{e})>p$?

Complexity of probabilistic inference [Cooper, 1990]

The decision problems TI and STI are PP-complete.

Proof.

1. Hardness: by a reduction of MAJSAT to STI (since STI is a special case of TI , MAJSAT is reducible to TI)
2. Membership: To show TI is in PP, a polynomial-time algorithm is provided that can guess a solution to TI while guaranteeing that the guess is correct with probability exceeding $1 / 2$.

The complexity class PP

$N P \subseteq P P$ (as SAT lies in PP) and coNP $\subseteq P P$ (as PP is closed under complement). PP is contained in PSPACE (as there is a polynomial-space algorithm for MAJSAT).

PP is comparable to the class \#P — the counting variant of NP — the class of function problems "compute $f(x)$ " where f is the number of accepting runs of an NTM running in polynomial time.

Showing hardness of STI

By reducing MAJSAT to STI. As STI is a special case of TI, MAJSAT can also be reduced to TI .

To show TI is in PP, a polynomial-time algorithm is provided that can guess a solution to TI while guaranteeing that the guess is correct with probability exceeding $1 / 2$.

[^0]: ${ }^{1} \mathrm{TI}=$ Threshold Inference and STI $=$ Simple TI

[^1]: ${ }^{2}$ A probabilistic TM is a non-deterministic TM which chooses between the available transitions at each point according to some probability distribution.

