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Probabilistic Programming Motivation

The importance of Bayesian networks

“Bayesian networks are as important to AI and machine learning

as Boolean circuits are to computer science.”

[Stuart Russell (Univ. of California, Berkeley), 2009]
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Probabilistic Programming Motivation

Judea Pearl: The father of Bayesian networks

Turing Award 2011: “for fundamental contributions to AI
through the development of a calculus for probabilistic and causal reasoning”.
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Probabilistic Programming Motivation

Probabilistic graphical models

▶ Combine graph theory and probability theory
▶ Vertices are random variables
▶ Edges are dependencies between these variables
▶ Enable usage of graph algorithms
▶ Graph representation makes (conditional) independence explicit

▶ Two main types of probabilistic graphical models
▶ directed acyclic graphs: Bayesian networks
▶ undirected graphs: Markov random fields

▶ We consider only discrete random variables
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Probabilistic Programming What are Bayesian networks?

Bayesian networks

Bayesian network
A Bayesian network (BN, for short) is a tuple B = (V ,E ,Θ) where
▶ (V ,E ) is a directed acyclic graph with finite V in which each v ∈ V

represents a random variable with values from finite domain D, and
(v ,w ) ∈ E represents the (causal) dependencies of w on v , and

▶ for each vertex v with k parents, the function Θv ∶ Dk
→ Dist(D) is

the conditional probability table of (the random variable represented
by) vertex v .

Here, w ∈ V is a parent of v ∈ V whenever (w , v ) ∈ E .

The graph structure induces a natural ordering on the parents of a vertex v ; the i-th
entry in a tuple d ∈ Dk of Θv corresponds to the value assigned to the i-th parent of v .
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Probabilistic Programming What are Bayesian networks?

Example: Student’s mood after an exam

The interpretation of an entry in a vertex’ conditional probability table is:
Pr(v = d ∣ parents(v ) = d) = Θv (d)(d), with d the values of v ’s parents
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Probabilistic Programming What are Bayesian networks?

Bayesian network semantics

Joint probability function of a Bayesian network
Let B = (V ,E ,Θ) be a BN, and W ⊆ V be a downward closed set of
vertices where w ∈ W has value w ∈ D. The (unique) joint probability
function of BN B in which the nodes in W assume values W equals:

Pr(W = W ) = ∏
w∈W

Pr (w = w ∣ parents(w ) = parents(w ))

= ∏
w∈W

Θw (parents(w ))(w )
ÍÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ

also called factorisation

.

The conditional probability distribution of W ⊆ V given observations on a
set O ⊆ V of vertices is given by Pr(W = W ∣ O = O) =

Pr(W=W∧O=O)
Pr(O=O) .
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Probabilistic Programming What are Bayesian networks?

Example

How likely does a student end up with a bad mood after getting
a bad grade for an easy exam, given that she is well prepared?
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Probabilistic Programming What are Bayesian networks?

Example

Pr(D = 0,G = 0,M = 0 ∣ P = 1) =
Pr(D = 0,G = 0,M = 0,P = 1)

Pr(P = 1)

=
0.6 ⋅ 0.5 ⋅ 0.9 ⋅ 0.3

0.3 = 0.27
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Probabilistic Programming What are Bayesian networks?

The benefits of Bayesian networks

Bayesian networks provide a compact representation of joint distribution functions

if the dependencies between the random variables are sparse.

Another advantage of BNs is

the explicit representation of conditional independencies.
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Probabilistic Programming Conditional independence

Conditional independence
Two independent events may become dependent given some observation.
This is captured by the following notion.

Conditional independence
Let X ,Y ,Z be (discrete) random variables. X is conditionally independent
of Y given Z , denoted I(X ,Z ,Y ), whenever:

Pr (X ∧ Y ∣ Z ) = Pr(X ∣ Z ) ⋅ Pr(Y ∣ Z ) or Pr(Z ) = 0.

Equivalent formulation: Pr(X ∣ Y ∧ Z ) = Pr(X ∣ Z ) or Pr(Y ∧ Z ) = 0.

These notions can be easily lifted in a point-wise manner to sets of random
variables, e.g., X = { X1, . . . ,Xk }.

Examples on the black board.
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Probabilistic Programming Conditional independence

Graphoid axioms of Bayesian networks

Graphoid axioms [Dawid, 1979], [Spohn, 1980]

Conditional independence satisfies the following axioms for disjoint sets of
random variables W,X,Y,Z:
1. I(X,Z,Y) if and only if I(Y,Z,X) Symmetry
2. I(X,Z,Y ∪W) implies (I(X,Z,Y) and I(X,Z,W)) Decomposition
3. I(X,Z,Y ∪W) implies I(X,Z ∪ Y,W) Weak union
4. (I(X,Z,Y) and I(X,Z ∪ Y,W)) implies I(X,Z,Y ∪W) Contraction
5. I(X,Z,∅) Triviality

Decomposition+Weak union+Contraction together are equivalent to:

I(X,Z,Y ∪W) if and only if I(X,Z,Y) and I(X,Z ∪ Y,W).
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Probabilistic Programming Conditional independence

Checking conditional independencies

Deriving the (conditional) independencies is non-trivial.
The graphical structure of Bayesian networks enable a simple test.

This is based on the concept of d-separation.
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Probabilistic Programming Conditional independence

Valves
▶ Consider undirected paths in the underlying DAG G = (V ,E ) of the BN.

▶ View every such path as a pipe, and each vertex W on the path as a valve.

▶ Valves have the status open or closed.

▶ An undirected path is blocked if at least one valve along the path is closed.

▶ A valve v is open or closed on a path depending on its type on this path:
1. Sequential: when v is a parent of one of its neighbours (on the path)

and a child of its other neighbour (on the path)
2. Divergent: when v is a parent of both neighbours
3. Convergent: when v is a child of both neighbours
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Probabilistic Programming Conditional independence

Valve types
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Probabilistic Programming Conditional independence

Valve status

A valve v is closed for set Z of variables whenever:
1. Sequential: if v (is a variable that) occurs in Z
2. Divergent: if v occurs in Z
3. Convergent: if neither v nor any of its descendants occurs in Z.

w is a descendant of v if w is reachable via (directed) edge relation E from v .

Example

1. the sequential valve A is closed iff we know the value of A, otherwise an
earthquake E may change our belief in getting a call C .

2. the divergent valve E is closed iff we know the value of variable E , otherwise a
radio report on an earthquake may change our belief in the alarm triggering.

3. the convergent valve A is closed iff neither the value of variable A nor the value of
C are known, otherwise, a burglary may change our belief in an earthquake.
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Probabilistic Programming Conditional independence

D-separation
D-separation
Let X,Y,Z be disjoint sets of vertices in the DAG G . X and Y are
d-separated by Z in G , denoted dsepG (X,Z,Y), iff every (undirected) path
between a vertex in X and a vertex in Y is blocked by some vertex in Z.
A path is blocked by Z iff at least one vertex on the path is closed given Z.
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Probabilistic Programming Conditional independence

D-separation

D-separation implies independence [Pearl 1986], [Verma, 1986]

dsepG (X,Z,Y) implies I(X,Z,Y).

Proof.
Left as an exercise. Note that the reverse implication does not hold.

As d-separation is defined over all paths, this theorem yields an exponential-time
procedure to check (a sufficient condition for) conditional independence.
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Probabilistic Programming Conditional independence

A polynomial algorithm for d-separation
Let X,Y,Z be disjoint sets of vertices in the DAG G . Apply the following
pruning procedure on the DAG G :
1. Eliminate any leaf vertex v from G with v /∈ X ∪ Y ∪ Z.
2. Repeat this elimination procedure until no more leafs can be

eliminated.
3. Eliminate all edges emanating vertices in Z.

The remaining DAG is referred to as pruneX,Y,Z(G).

Theorem
Let X,Y,Z be disjoint sets of vertices in the DAG G . Then:
dsepG (X,Y,Z) if and only if X and Y are disconnected in pruneX,Y,Z(G).

two sets of vertices are disconnected if there is no path between them.
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Probabilistic Programming Conditional independence

Markov blanket

The complexity of inference on a Bayesian network is measured in terms of the
Markov blanket, an indication of the degree of dependence in the BN.

Markov blanket
The Markov blanket for a vertex v in a BN is the set ∂v of vertices
composed of v , v ’s parents, its children, and its children’s other parents.
The average Markov blanket of BN B is the average size of the Markov
blanket of all its vertices, that is, 1

∣V ∣ ∑v∈V ∣∂v ∣.

Every set of nodes in the BN is conditionally independent of v when conditioned
on the set ∂v . That is, for distinct vertices v and w :

Pr(v ∣ ∂v ∧ w ) = Pr(v ∣ ∂v ) or, equivalently I({ v }, { w }, ∂v )
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Probabilistic Programming Conditional independence

Printer troubleshooting in Windows 95

The average Markov blanket of this BN is 5.92, ∣V ∣ = 76, and ∣E ∣ = 117
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Probabilistic Programming Conditional independence

Some benchmark BN results

Benchmark BNs from www.bnlearn.com

BN ∣V ∣ ∣E ∣ aMB
hailfinder 56 66 3.54
hepar2 70 123 4.51
win95pts 76 112 5.92
pathfinder 135 200 3.04
andes 223 338 5.61
pigs 441 592 3.92
munin 1041 1397 3.54

aMB = average Markov Blanket size, a measure of independence in BNs
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Probabilistic Programming Inference

Probabilistic inference
We consider the following probabilistic inference problem: let B be a BN
with set V of vertices and the evidence E ⊆ V and the questions Q ⊆ V .
(Exact) probabilistic inference is to determine the conditional probability

Pr(Q = q ∣ E = e) =
Pr(Q = q ∧ E = e)

Pr(E = e) .

We consider:
Decision variants of probabilistic inference
The decision variant of probabilistic inference is: for a given probability
p ∈ Q ∩ [0, 1):
▶ does Pr(Q = q ∣ E = e) > p? TI1

▶ special case: Pr(E = e) > p? STI

1TI = Threshold Inference and STI = Simple TI.
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Probabilistic Programming Inference

Example

Pr(D = 0,G = 0,M = 0 ∣ P = 1) =
Pr(D = 0,G = 0,M = 0,P = 1)

Pr(P = 1)

=
0.6 ⋅ 0.5 ⋅ 0.9 ⋅ 0.3

0.3 = 0.27
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Probabilistic Programming Inference

Complexity of probabilistic inference
Decision variants of probabilistic inference
For a given probability p ∈ Q ∩ [0, 1):
▶ does Pr(Q = q ∣ E = e) > p? TI
▶ special case: Pr(E = e) > p? STI

Complexity of probabilistic inference [Cooper, 1990]

The decision problems TI and STI are PP-complete.

Proof.
1. Hardness: by a reduction of MAJSAT to STI (since STI is a special case of TI,

MAJSAT is reducible to TI).
2. Membership: To show TI is in PP, a polynomial-time algorithm is provided that

can guess a solution to TI while guaranteeing that the guess is correct with
probability exceeding 1/2.
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Probabilistic Programming Inference

The complexity class PP
PP (Probabilistic Polynomial-Time) is the class of decision problems solvable by a
probabilistic Turing machine2 in polynomial time with an error probability < 1/2.
Formally, a language L is in PP iff there is a probabilistic TM M such that:

1. M runs in polynomial time on all inputs

2. For all w ∈ L, M outputs 1 with probability larger than 1/2
3. For all w /∈ L, M outputs 1 with probability at most 1/2.

A PP-problem can be solved to any fixed degree of accuracy by running a randomised
polynomial-time algorithm a sufficient (but bounded) number of times.

Remark: if all choices are binary and the probability of each transition is 1/2, then the majority of
the runs accept input w iff w ∈ L. This majority, however, is not fixed and may (exponentially)
depend on the input, e.g., a problem in PP may accept “yes”-instances with size ∣w ∣ with
probability 1/2 + 1

2∣w ∣ . This makes problems in PP intractable in general.

2A probabilistic TM is a non-deterministic TM which chooses between the available
transitions at each point according to some probability distribution.
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Probabilistic Programming Inference

The complexity class PP

NP ⊆ PP (as SAT lies in PP) and coNP ⊆ PP (as PP is closed under complement). PP
is contained in PSPACE (as there is a polynomial-space algorithm for MAJSAT).

PP is comparable to the class #P — the counting variant of NP — the class of function
problems “compute f (x )” where f is the number of accepting runs of an NTM running
in polynomial time.
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The decision problems SAT and MAJSAT

The decision problems SAT and MAJSAT
Let α be a propositional logical formula (in conjunctive normal form, CNF)
over a finite set X of Boolean variables.
1. Does there exist a valuation over X such that α holds? SAT
2. Does the majority of the assignments to X make α hold? MAJSAT

Known facts [Cook, 1971] and [??]

1. The SAT problem is NP-complete.
2. The MAJSAT problem is PP-complete.
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Probabilistic Programming Inference

Showing hardness of STI

By reducing MAJSAT to STI. As STI is a special case of TI, MAJSAT can also
be reduced to TI.
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Probabilistic Programming Inference

Showing membership

To show TI is in PP, a polynomial-time algorithm is provided that can guess a
solution to TI while guaranteeing that the guess is correct with probability

exceeding 1/2.
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