
Probabilistic Programming (WS18/19)
Prof. Dr. Ir. Dr. h.c. Joost-Pieter Katoen
Christoph Matheja

Exercise Sheet 4
General remarks:

• Due date: November 16th (before the exercise class).

• You can hand in your solutions at the start of the exercise class or via L2P. Please
remember to provide your matriculation number. We kindly ask you to hand in your
solutions in groups of three.

• Solutions must be written in English.

• While we will publish sketches of exercise solutions, we do not guarantee that these
sketches contain all details that are necessary to properly solve an exercise. Hence, it is
recommended to attend the exercise classes.

• If you have any questions regarding the lecture or the exercise, feel free to write us an
email or visit us at the chair.

Exercise 1 (Program Verification with Weakest Pre-expectations) 25%
For each of the programs P and expectations f ∈ E below, compute wp(P, f).
(a) [10%] P : if(x = 0) { skip } else {x := 1 + x [1/3] x := 6 }, f = x.
(b) [15%] P : { while(true) {x := 1 } } [1/2] { diverge }, f = 1.

Exercise 2 (Conservative Pre-expectations) 30%
Prove that the weakest pre-expectation semantics is a conservative extension of Dijkstra’s
weakest pre-condition semantics (see lecture 7, slide 26). That is, show that for every
GCL program P and every predicate F ∈ P, we have

wp(P, [F ])︸ ︷︷ ︸
weakest pre-expectation

= wp(P, F )︸ ︷︷ ︸
weakest pre-condition

.

Exercise 3 (Liberal Invariants) 15%
Let Ploop = while(G){P} be a pGCL program. We call I ∈ E≤1 a liberal invariant of
Ploop if [G] · I v wlp(P, I). Show that for every liberal invariant I of Ploop, we have

I v wlp(Ploop, [¬G] · I ) .

Page 1 of 2



Exercise 4 (Non-deterministic Choice) 30%
Recall from lecture 6, slide 7 that Disjkstra’s original guarded command language con-
tained a non-deterministic choice statement P1[]P2, which we largely ignored so far.
Intuitively, this statement executes either program P1 or program P2, but there is no
probability distribution underlying this choice. Two common models to deal with non-
determinism are known as demonic non-determinism and angelic non-determinism, i.e.
we either choose the “worst” (demonic) or “best” (angelic) option. In terms of weakest
(liberal) pre-expectations, this translates to minimizing (demonic) or maximizing (an-
gelic) an expected value. We call the corresponding transformers dwp, awp, dwlp, and
awlp, respectively. More formally, for f ∈ E≤1, we define

dwp(P1[]P2, f) = min{dwp(P1, f), dwp(P2, f)} (demonic wp)
dwlp(P1[]P2, f) = min{dwlp(P1, f), dwlp(P2, f)} (demonic wlp)
awp(P1[]P2, f) = max{awp(P1, f), awp(P2, f)} (angelic wp)
awlp(P1[]P2, f) = max{awlp(P1, f), awlp(P2, f)} (angelic wlp)

For all other pGCL statements, both dwp and awp coincide with wp. Analogously, dwlp
and awlp coincide with wlp.
Show that for all pGCL programs P (including non-deterministic choice) and f ∈ E≤1,

dwp(P, f) = 1 − awlp(P, 1− f)

Page 2 of 2


