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§  What is probabilistic programming? 

§  What are probabilistic programs good for? 

§  Why are probabilistic programs intricate? 

§  What are we going to do in this course? 

§  What do we expect from you in this course?  
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What is probabilistic programming? 
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The crux of probabilistic programming 
is to consider normal-looking programs 
as if they were probability distributions. 

Michael Hicks, Univ. of Maryland  



Probabilistic Programming Languages 
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Security 

Robotics 

Approximate 
Computing 

Quantum Computing 

Bayesian Networks 

Randomised Algorithms 
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MIT Technology Review (2014) 
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Airbus A-330 AF 447 

June 1, 2009 

Air France Flight AF 447 
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AF 447: First search attempts 

June 7, 2009 

June 6, 2009 
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AF 447: Where is the wreckage? 

 East-west cross section Atlantic 
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A `Probabilistic Program’ 
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Probability of possible location 
Relative to beginning emergency 

   Reverse drift prior 
(ocean and wind drift) 

The prior distributions 
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Pingers black boxes worked 

Pingers of black boxes failed 

The posterior distributions 



Bayesian Networks  
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Rethinking the Bayesian Approach 
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Randomised Algorithms 

§ A randomised algorithm depends on random numbers 
-  some decisions are based on random number generations 

§  That is: 
-  Generate a random number k from some range {1, …, N} 
-  Make decisions based on the value of k 

§  Instead of guessing whether the order is random,  
a random order is imposed 

§ Behavior of the algorithm depends on input and  
on the values produced by the random-number generator 
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Randomised Algorithms 

§ What? Randomised algorithms depend on random numbers 
-  some decisions are based on random number generations 

§  Why randomised algorithms? 
1.  Their conceptual simplicity 
2.  Their speed: many are faster than deterministic algorithms 

(no particular input elicits worst-case behavior) 
3.  Their existence:  

many solve problems that have no deterministic solution 

§  Types of randomised algorithms: 
1.  Las Vegas: always produces correct results, random run-time  
2.  Monte Carlo: may produces errors, deterministic run-time 
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Sample Randomised Algorithms 

§ Randomised Quicksort 

§ Randomised Binary Search 

§ Rabin-Miller’s Primality Test (1980) 

§  Freivald’s Matrix Multiplication (1977) 

§  Lehmann Rabin’s Randomised Mutual Exclusion (1981) 

§  Itah-Rodeh’s Leader Election Protocol (1990) 
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Hoare’s Quicksort 

22 

Pivot 43 
 
 
Pivots 15, 67 
 
Pivot 91 



Hoare’s Quicksort 
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Randomised Quicksort 
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Why: better efficiency! 
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input size 
Hoare’s 
quicksort 

randomised 
quicksort 



Randomized versus Hoare’s quicksort 
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Sherwood Algorithms 

§ Basic idea: randomise to lower the worst case complexity 
and increase the best case complexity. 

§  Like Robin Hood in Sherwood Forest, this approach gives to 
the poor (worst case) and robs from the rich (best case). 

§ E.g.: randomised quicksort and randomised binary search 
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Matrix Multiplication 
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§  until end 1960s: cubic 
§  1969: 2.808  
§  1978: 2.796 
§  1979: 2.78 
§  1981: 2.522 
§  1982: 2.527 
§  1984: 2.496 
§  1986: 2.479 
§  1989: 2.376 
§  2014: 2.373 

Time complexity: 



Freivald’s Matrix Multiplication (1977)         
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Randomised Leader Election 

§ A unidirectional ring network of N stations 
-  Each node proceeds in a lock-step fashion 
-  Each time-slot: read message + process it +  send message 

§  Aim: elected a unique designated leader 

§ Each round starts by each station randomly selecting its id 
-  According to rand(1, …, K) with K << N 

§ Stations pass their selected id around the ring 

§  Leader := station with highest unique id, if present  
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Randomised Leader Election 
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Randomised Leader Election 
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Randomised Leader Election 
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Randomised Leader Election 
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Randomised Leader Election 
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End of First Election Round 
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New Election Round 
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Probability to End Elections 
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Security 

Robotics 

Approximate 
Computing 

Quantum Computing 

Bayesian Networks 

Randomised Algorithms 



Security 

41 

Turing Award Winners 2013 

“Goldwasser and Micali proved (1982)  
that encryption schemes must be random 
rather than deterministic […] an insight 
that revolutionised the study of encryption 
and laid the foundation for the theory of 
cryptographic security.” 

used in almost all communication protocols,  
Internet transactions and cloud computing 



The Famous RSA-OAEP Protocol 
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Its Correctness Proof Took Very Long 
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Three Core Issues 

1.  Program Correctness 

2.  Termination 

3.  Run-Time  
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Issue 1: Program Correctness 

§  Traditional programs:  
-  A program is correct with respect to a (formal) specification  
          “for input array A, the output array B is sorted and  
           contains all elements contained in A” 
-  It refers to the deterministic input-output relation of a program 
           on a given input, always the same output is provided 
-  Partial correctness: if an output is produced, it is correct 
-  Total correctness: in addition, the program terminates 

§ Probabilistic programs: 
-  They do not always generate the same output 
-  They generate a probability distribution over possible outputs 
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Let us start simple 
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Loops 



Program Equivalence 

49 
For which p and q are these two programs equivalent? 



Conditioning 
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Conditioning 
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 Observations thus normalize the probability of the “feasible” program runs 



The Piranha Puzzle       [Tijms 2004] 
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The Piranha Puzzle Program 
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 What is the probability that the original fish was a piranha? 



Issue 2: Program Termination 

§  Traditional programs:  
-  They terminate (on a given/all inputs), or they do not 
-  If they terminate, it takes finitely many steps to do so 
-  Showing program termination is undecidable (halting problem) 

§ Probabilistic programs: 
-  They terminate (or not) with a certain likelihood 
-  They may have diverging runs whose likelihood is zero 
-  They may take infinitely many steps (on average) to terminate 
-  Showing “probability one” termination is “more” undecidable 
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Termination 

This program does not always terminate. 
     It terminates with probability one. 

In finite time, on average. 
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When does it terminate? 
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Issue 3: Program Efficiency 

§  Traditional programs:  
-  They have a deterministic, fixed run-time for a given input 
-  Run-times of terminating programs in sequence are compositional 

  if P and Q terminate in n and k steps, then P;Q halts in n+k steps  
-  Analysis techniques: recurrence equations, tree analysis, etc. 

§ Probabilistic programs: 
-  Every run-time has a probability; their run-time is a distribution  
-  Run-times of “probability one” terminating programs in sequence 

are not compositional 
-  Analysis techniques: involve reasoning about expected values etc. 
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How long does it take (on average) to run the programs in sequence? 
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§  What is probabilistic programming? 
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Probabilistic Programming Organisation 
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§  This course is a block course 

§  Two lectures/week in December 2016 and January 2017 
§  Mondays 16:15-17:45, room 9U10 
§  Tuesdays 10:15-11:45, room 9U10 
§  Weeks 49, 50, 51, 2, 3, and 5 

§  One exercise class/week December 2016 – February 2017 
§  Fridays 14:15-15:45, room 9U10 
§  Weeks 49, 50, 2, 3, 5, and 6 
§  Instructors: Federico Olmedo and Christoph Matheja 



Probabilistic Programming Material 
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§  Lecture material = the slides + the lectures + the exercises 
web page: moves.rwth-aachen.de/teaching/ws-1617/ 

§  webPPL website (webppl.org) and its accompanying 
book (on dippl.org): 

Noah Goodman and Andreas Stuhlmüller: 
The Design and Implementation of Probabilistic 
Programming Languages, 2016 
 

§  Course is based on (very recent) literature and the book: 
Annabelle McIver and Carroll Morgan: 
Abstraction, Refinement and Proof for Probabilistic Systems 
Springer, 2005. 



Probabilistic Programming Topics 
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§  Probabilistic programming in webPPL 
examples, recursion, plots, conditioning  

 
§  The probabilistic guarded command language pGCL 

examples, syntax, semantics (Markov chains), conditioning,  
non-determinism, [recursion] 

 
§  Formal reasoning about probabilistic programs 

weakest pre-conditions, loop invariants, post-conditions 
 

§  Almost-sure termination 

§  Run-time analysis of probabilistic programs 



Milestones in Program Verification 

§  1969: Program annotations 

§  1970: Weakest precondition 

§  1977: Modal logic 

§  1981: Model checking 
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Tony Hoare 

Edsger Dijkstra 

Amir Pnueli 

E. Clarke A. Emerson J. Sifakis 



Milestones in Verifying Probabilistic Programs 

§  1979: Program semantics 

§  1983: Dynamic logic  

§  1997: Weakest precondition 

§  2006: New programming 
          languages 
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Dexter Kozen 

A. McIver 
C. Morgan 

A. Pfeffer D. Roy N. Goodman 
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Probabilistic Programming: You 
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§  You are expected to hand in homework exercises 
§  working in groups of max. two students 
§  50% of the points are required for exam qualification 
§  at least 90% of the point: bonus point for exam 
§  webPPL programming exercises + (mostly) theory exercises 
 

§  Dates 
§  Exercise class: Fridays 14:15-15:45, Weeks 49-50, 2-3, 5-6 
§  First exercise series available: December 2, 2016 
§  First exercise hand-in deadline: December 9, 2016 
§  Written exam: February (week 7) and March 2017 (week 12) 

§  Reward: 4 ECTS 
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Probabilistic Programming is ……. 

•  Hot 
•  Exciting 
•  Tricky 
•  Efficient 
•  Very useful 

moves.rwth-aachen.de



