
1

Probabilistic Programming
Lecture #1: Introduction

October 24, 2016

Prof. Dr. Ir. Joost-Pieter Katoen

1

Probabilistic Programming

2

§  What is probabilistic programming?

§  What are probabilistic programs good for?

§  Why are probabilistic programs intricate?

§  What are we going to do in this course?

§  What do we expect from you in this course?

Probabilistic Programming

3

§  What is probabilistic programming?

§  What are probabilistic programs good for?

§  Why are probabilistic programs intricate?

§  What are we going to do in this course?

§  What do we expect from you in this course?

What is probabilistic programming?

4

The crux of probabilistic programming
is to consider normal-looking programs
as if they were probability distributions.

Michael Hicks, Univ. of Maryland

Probabilistic Programming Languages

5

Probabilistic-C

Figaro

Church

Tabular

ProbLog

Rely

Venture

PyMC

webPPL

…………

C

Scala

Scheme

Windows Excel

Prolog

Guarded Command L

….........

Python

Javascript

…………

Probabilistic Programming

6

§  What is probabilistic programming?

§  What are probabilistic programs good for?

§  Why are probabilistic programs intricate?

§  What are we going to do in this course?

§  What do we expect from you in this course?

Probabilistic Programming: Application Areas

7

Security

Robotics

Approximate
Computing

Quantum Computing

Bayesian Networks

Randomised Algorithms

Probabilistic Programming: Application Areas

8

Security

Robotics

Approximate
Computing

Quantum Computing

Bayesian Networks

Randomised Algorithms

9

MIT Technology Review (2014)

10

Airbus A-330 AF 447

June 1, 2009

Air France Flight AF 447

11

AF 447: First search attempts

June 7, 2009

June 6, 2009

12

AF 447: Where is the wreckage?

 East-west cross section Atlantic

13

A `Probabilistic Program’

14

Probability of possible location
Relative to beginning emergency

 Reverse drift prior
(ocean and wind drift)

The prior distributions

15

Pingers black boxes worked

Pingers of black boxes failed

The posterior distributions

Bayesian Networks

16

17

Rethinking the Bayesian Approach

Probabilistic Programming: Application Areas

18

Security

Robotics

Approximate
Computing

Quantum Computing

Bayesian Networks

Randomised Algorithms

Randomised Algorithms

§ A randomised algorithm depends on random numbers
-  some decisions are based on random number generations

§  That is:
-  Generate a random number k from some range {1, …, N}
-  Make decisions based on the value of k

§  Instead of guessing whether the order is random,
a random order is imposed

§ Behavior of the algorithm depends on input and
on the values produced by the random-number generator

19

Randomised Algorithms

§ What? Randomised algorithms depend on random numbers
-  some decisions are based on random number generations

§  Why randomised algorithms?
1.  Their conceptual simplicity
2.  Their speed: many are faster than deterministic algorithms

(no particular input elicits worst-case behavior)
3.  Their existence:

many solve problems that have no deterministic solution

§  Types of randomised algorithms:
1.  Las Vegas: always produces correct results, random run-time
2.  Monte Carlo: may produces errors, deterministic run-time

20

Sample Randomised Algorithms

§ Randomised Quicksort

§ Randomised Binary Search

§ Rabin-Miller’s Primality Test (1980)

§  Freivald’s Matrix Multiplication (1977)

§  Lehmann Rabin’s Randomised Mutual Exclusion (1981)

§  Itah-Rodeh’s Leader Election Protocol (1990)

21

Hoare’s Quicksort

22

Pivot 43

Pivots 15, 67

Pivot 91

Hoare’s Quicksort

23

Randomised Quicksort

24

25

Why: better efficiency!

26

input size
Hoare’s
quicksort

randomised
quicksort

Randomized versus Hoare’s quicksort

27

Sherwood Algorithms

§ Basic idea: randomise to lower the worst case complexity
and increase the best case complexity.

§  Like Robin Hood in Sherwood Forest, this approach gives to
the poor (worst case) and robs from the rich (best case).

§ E.g.: randomised quicksort and randomised binary search

28

Matrix Multiplication

29

§  until end 1960s: cubic
§  1969: 2.808
§  1978: 2.796
§  1979: 2.78
§  1981: 2.522
§  1982: 2.527
§  1984: 2.496
§  1986: 2.479
§  1989: 2.376
§  2014: 2.373

Time complexity:

Freivald’s Matrix Multiplication (1977)

30

Randomised Leader Election

§ A unidirectional ring network of N stations
-  Each node proceeds in a lock-step fashion
-  Each time-slot: read message + process it + send message

§  Aim: elected a unique designated leader

§ Each round starts by each station randomly selecting its id
-  According to rand(1, …, K) with K << N

§ Stations pass their selected id around the ring

§  Leader := station with highest unique id, if present

31

Randomised Leader Election

32

Randomised Leader Election

33

Randomised Leader Election

34

Randomised Leader Election

35

Randomised Leader Election

36

End of First Election Round

37

New Election Round

38

Probability to End Elections

39

Probabilistic Programming: Application Areas

40

Security

Robotics

Approximate
Computing

Quantum Computing

Bayesian Networks

Randomised Algorithms

Security

41

Turing Award Winners 2013

“Goldwasser and Micali proved (1982)
that encryption schemes must be random
rather than deterministic […] an insight
that revolutionised the study of encryption
and laid the foundation for the theory of
cryptographic security.”

used in almost all communication protocols,
Internet transactions and cloud computing

The Famous RSA-OAEP Protocol

42

Its Correctness Proof Took Very Long

43

Probabilistic Programming

44

§  What is probabilistic programming?

§  What are probabilistic programs good for?

§  Why are probabilistic programs intricate?

§  What are we going to do in this course?

§  What do we expect from you in this course?

Three Core Issues

1.  Program Correctness

2.  Termination

3.  Run-Time

45

Issue 1: Program Correctness

§  Traditional programs:
-  A program is correct with respect to a (formal) specification
 “for input array A, the output array B is sorted and
 contains all elements contained in A”
-  It refers to the deterministic input-output relation of a program
 on a given input, always the same output is provided
-  Partial correctness: if an output is produced, it is correct
-  Total correctness: in addition, the program terminates

§ Probabilistic programs:
-  They do not always generate the same output
-  They generate a probability distribution over possible outputs

46

Let us start simple

47

48

Loops

Program Equivalence

49
For which p and q are these two programs equivalent?

Conditioning

50

Conditioning

51

 Observations thus normalize the probability of the “feasible” program runs

The Piranha Puzzle [Tijms 2004]

52

The Piranha Puzzle Program

53

 What is the probability that the original fish was a piranha?

Issue 2: Program Termination

§  Traditional programs:
-  They terminate (on a given/all inputs), or they do not
-  If they terminate, it takes finitely many steps to do so
-  Showing program termination is undecidable (halting problem)

§ Probabilistic programs:
-  They terminate (or not) with a certain likelihood
-  They may have diverging runs whose likelihood is zero
-  They may take infinitely many steps (on average) to terminate
-  Showing “probability one” termination is “more” undecidable

54

55

Termination

This program does not always terminate.
 It terminates with probability one.

In finite time, on average.

56

When does it terminate?

57

Issue 3: Program Efficiency

§  Traditional programs:
-  They have a deterministic, fixed run-time for a given input
-  Run-times of terminating programs in sequence are compositional

 if P and Q terminate in n and k steps, then P;Q halts in n+k steps
-  Analysis techniques: recurrence equations, tree analysis, etc.

§ Probabilistic programs:
-  Every run-time has a probability; their run-time is a distribution
-  Run-times of “probability one” terminating programs in sequence

are not compositional
-  Analysis techniques: involve reasoning about expected values etc.

58

59

60

How long does it take (on average) to run the programs in sequence?

Probabilistic Programming

61

§  What is probabilistic programming?

§  What are probabilistic programs good for?

§  Why are probabilistic programs intricate?

§  What are we going to do in this course?

§  What do we expect from you in this course?

Probabilistic Programming Organisation

62

§  This course is a block course

§  Two lectures/week in December 2016 and January 2017
§  Mondays 16:15-17:45, room 9U10
§  Tuesdays 10:15-11:45, room 9U10
§  Weeks 49, 50, 51, 2, 3, and 5

§  One exercise class/week December 2016 – February 2017
§  Fridays 14:15-15:45, room 9U10
§  Weeks 49, 50, 2, 3, 5, and 6
§  Instructors: Federico Olmedo and Christoph Matheja

Probabilistic Programming Material

63

§  Lecture material = the slides + the lectures + the exercises
web page: moves.rwth-aachen.de/teaching/ws-1617/

§  webPPL website (webppl.org) and its accompanying
book (on dippl.org):

Noah Goodman and Andreas Stuhlmüller:
The Design and Implementation of Probabilistic
Programming Languages, 2016

§  Course is based on (very recent) literature and the book:
Annabelle McIver and Carroll Morgan:
Abstraction, Refinement and Proof for Probabilistic Systems
Springer, 2005.

Probabilistic Programming Topics

64

§  Probabilistic programming in webPPL
examples, recursion, plots, conditioning

§  The probabilistic guarded command language pGCL

examples, syntax, semantics (Markov chains), conditioning,
non-determinism, [recursion]

§  Formal reasoning about probabilistic programs

weakest pre-conditions, loop invariants, post-conditions

§  Almost-sure termination

§  Run-time analysis of probabilistic programs

Milestones in Program Verification

§  1969: Program annotations

§  1970: Weakest precondition

§  1977: Modal logic

§  1981: Model checking

65

Tony Hoare

Edsger Dijkstra

Amir Pnueli

E. Clarke A. Emerson J. Sifakis

Milestones in Verifying Probabilistic Programs

§  1979: Program semantics

§  1983: Dynamic logic

§  1997: Weakest precondition

§  2006: New programming
 languages

66

Dexter Kozen

A. McIver
C. Morgan

A. Pfeffer D. Roy N. Goodman

Probabilistic Programming

67

§  What is probabilistic programming?

§  What are probabilistic programs good for?

§  Why are probabilistic programs intricate?

§  What are we going to do in this course?

§  What do we expect from you in this course?

Probabilistic Programming: You

68

§  You are expected to hand in homework exercises
§  working in groups of max. two students
§  50% of the points are required for exam qualification
§  at least 90% of the point: bonus point for exam
§  webPPL programming exercises + (mostly) theory exercises

§  Dates
§  Exercise class: Fridays 14:15-15:45, Weeks 49-50, 2-3, 5-6
§  First exercise series available: December 2, 2016
§  First exercise hand-in deadline: December 9, 2016
§  Written exam: February (week 7) and March 2017 (week 12)

§  Reward: 4 ECTS

69 69

Probabilistic Programming is …….

•  Hot
•  Exciting
•  Tricky
•  Efficient
•  Very useful

moves.rwth-aachen.de

