
Probabilistic Programming

Probabilistic Programming
Lecture #14: Proving Almost-Sure Termination

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/33

Probabilistic Programming

Overview

1 Motivation

2 Proving termination of ordinary programs

3 Variant (aka: ranking) functions

4 Proving almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 2/33

I

FIT
±

Probabilistic Programming Motivation

Proving almost-sure termination

Z What? Termination with probability one.

Z Why?
Z Termination is an elementary liveness property
Z Reachability can be encoded as termination
Z Often a prerequisite for proving correctness

Z Why is it hard in practice?
Z Requires proving lower bound 1 for termination probability
Z Lower boundsÕ“““—“““ œ

AST
are harder to prove than upper boundsÕ““— ““œ

positive AST
Z This is especially true for null-terminating programs

Joost-Pieter Katoen Probabilistic Programming 4/33

Probabilistic Programming Motivation

Our aim

A powerful proof rule at the source code level.
No “descend” into the underlying probabilistic model.

Joost-Pieter Katoen Probabilistic Programming 5/33

-

Markov chains

Probabilistic Programming Proving termination of ordinary programs

Overview

1 Motivation

2 Proving termination of ordinary programs

3 Variant (aka: ranking) functions

4 Proving almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 6/33

Probabilistic Programming Proving termination of ordinary programs

Termination by weakest preconditions

Determine wp(P, true) for program P and postcondition true.

Edsger Wybe Dijkstra
A Discipline of Programming

1976

Joost-Pieter Katoen Probabilistic Programming 7/33

Probabilistic Programming Proving termination of ordinary programs

How to prove termination?

Use a variant function on the program’s state space
whose value — on each loop iteration — is monotonically decreasing

with respect to a (strict) well-founded relation.

Alan Mathison Turing
Checking a large routine

1949

Joost-Pieter Katoen Probabilistic Programming 8/33

Probabilistic Programming Variant (aka: ranking) functions

Overview

1 Motivation

2 Proving termination of ordinary programs

3 Variant (aka: ranking) functions

4 Proving almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 9/33

Probabilistic Programming Variant (aka: ranking) functions

Well-founded relation
Well-founded relation
Let (D,D) be a strict partial order. The relation D is well-founded if there
is no infinite sequence d1, d2, d3, . . . with di " D such that di D di+1 for all
i " N.

Examples

Z (N,<)
Z (R+,<Á) for Á > 0 where x <Á y i� x & y�Á

Z (L,<) for lists L where ¸1 < ¸2 i� ∂¸1∂ < ∂¸2∂.
A relation D is Noetherian on D, if the converse relation E is well-founded on D.

A Noetherian relation is also called terminating.

Joost-Pieter Katoen Probabilistic Programming 10/33

Probabilistic Programming Variant (aka: ranking) functions

Variant functions

Variant function
A variant (aka: ranking) function V ⇥ S � R for GCL-loop while(G)P is a
function that satisfies for every s " S:

1. If s Ï G , then the execution of P on s terminates in a state t with:

V (t) & V (s) � Á for some fixed Á > 0, and

2. If V (s) & 0 then s /Ï G .

Joost-Pieter Katoen Probabilistic Programming 11/33

Probabilistic Programming Variant (aka: ranking) functions

Variant (aka: ranking) functions

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
• •

•
• •

•

V (s4)
V (s5)

V (s5) & V (s4) � Á

•

arrival at 0 guaranteed
by well–foundedness

Joost-Pieter Katoen Probabilistic Programming 12/33

I

(

(

(

(

'
;

I l

I l

l l
I l

I I

l I

I I
"

I
' !

I

• o

-
-

1st
3rd

loop Rectum loop

Probabilistic Programming Variant (aka: ranking) functions

Variant (aka: ranking) functions

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
• •

•
• •

•

V (s4)
V (s5)

V (s5) & V (s4) � Á

•

arrival at 0 guaranteed
by well–foundedness

Joost-Pieter Katoen Probabilistic Programming 12/33

:

;

: ;
f-

Probabilistic Programming Variant (aka: ranking) functions

Variant (aka: ranking) functions

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
• •

•
• •

•

V (s4)
V (s5)

V (s5) & V (s4) � Á

•

arrival at 0 guaranteed
by well–foundedness

Joost-Pieter Katoen Probabilistic Programming 12/33

Probabilistic Programming Variant (aka: ranking) functions

Termination

Every (universally) terminating loop while(G)P has a variant function.

Proof.
(Sketch.)

1. As V is a variant function, from every state s Ï G , the execution of the loop body
P reaches a state t whose ranking is at least by Á smaller than s’s ranking, and

2. ensures that if the ranking hits 0 or drops below, this falsifies the loop guard G
and thus causes the loop to terminate.

Therefore, from every state s, no infinite chain of successor states with ever decreasing
ranking can be formed by iterated execution of the loop body P without eventually
falsifying the loop guard G . Since the length of such a chain is bounded by *V (s)/Á0, this
ensures certain termination of the loop within at most *V (s)/Á0 loop iterations.

Joost-Pieter Katoen Probabilistic Programming 13/33

Probabilistic Programming Variant (aka: ranking) functions

Examples

while (x > 0) { x := x-1 }

Ranking function V = x .

x := ... ; y := ... // x and y are positive
while (x != y) {

if (x > y) { x := x-y } else { y := y-x }
}

Ranking function V = x + y .

Joost-Pieter Katoen Probabilistic Programming 14/33

McCarthy_gnf:

NEIN
> o

fan) =

{
f (f C ntn)) if he eoo

n - no if n) noo

f (gg) = fcf (no))

=
f Goo)

= f (f (nm))

= f Gon)

= gn

let

hCn7= { S ' if n Evo

n - no if n > too

claim : In :fkn.) =
has

.)

imperative
program

-

f- in) = g Cnn)

gcn ,
c) =

{
n if c- O

gcn - no
,

c- i) if CHO An > noo

gluten ,

Ctn) if CIO r n Frou

lexigraphy

well - founded order

:
let (D

, ,
E

,) (Dz
,

Ez) well -

founded

let E E (D

,xDD
x CPgxD

,)

(d
, .dz) E (e

, ,ez) iff

(Fie this - di Ei ein

ttjei . dj=ej)

Claim : (

roc
-

in
tgo ,

n) is a lexicographic
.

order for

Mgm program

(imperative)
Theorem

-

:

If a program
has a lexicographic order

,
then

it terminates f on all inputs) .

Probabilistic Programming Variant (aka: ranking) functions

Ranking functions for probabilistic programs

while (x > 0) {
{ x := x-1 } [1/2] { skip

}
}

Ranking function V = x does not guarantee to decrease x .
But every loop iteration decreases x “in expectation”.

Joost-Pieter Katoen Probabilistic Programming 15/33

•

Ifbiased
+ s erectedrwi s

I I change of
expectedchatty

x is O

÷ . n - 3. y = -

I - I
4

' 2

Probabilistic Programming Variant (aka: ranking) functions

A proof rule for positive almost-sure termination

Proving positive almost-sure termination [Chakarov et al., 2013]

Let while(G)P be a loop where P terminates universally certainly (e.g., P

is loop-free), and let I " E be a ranking super-invariant of the loop w.r.t.
expectation 0, i.e., I & ô and for some constants Á and K with 0 < Á < K

it holds:

[¬G] � I & K and [G] � K & [G] � I + [¬G] and �(I) & [G] � (I � Á).

Then: while(G)P terminates universally positively almost surely.

Example
On the black board.

Joost-Pieter Katoen Probabilistic Programming 16/33

O

T I
loop iteration characteristic

terminates up - function of the loop

OICX) = EG] . up (P
,

X) t Eng . O

Probabilistic Programming Variant (aka: ranking) functions

A proof rule for positive almost-sure termination

Proving positive almost-sure termination [Chakarov et al., 2013]

Let while(G)P be a loop where P terminates universally certainly (e.g., P

is loop-free), and let I " E be a ranking super-invariant of the loop w.r.t.
expectation 0, i.e., I & ô and for some constants Á and K with 0 < Á < K

it holds:

[¬G] � I & K and [G] � K & [G] � I + [¬G] and �(I) & [G] � (I � Á).
Then: while(G)P terminates universally positively almost surely.

Example
On the black board.

Joost-Pieter Katoen Probabilistic Programming 16/33

8

- - -

① ② ③

Pi : while (x > o) { x -
- E 't] skip)

Io (X) = Ex 's o] . I (X C xix - a) TX)

Claim I
 = Ex3 - s] - X t t is a ranking

super invariant
.

Roofie

⑦ Eggo
] . I

 = Exe DCE> -Juxta)
choose e.g .

E y =
k Kei

② EG] . k E EGJ.IT EG] ?

⇒ [x > o] . n E Ex > o] (xtn)

+ Ex so]

⇐ , s Ex > o] (Ex > - D. x

ten)

+ Ex ED

⇒ = Ex 's D. It [x⇒

③ EOCI) E to .CI - e) ?

¥¥E
,g. ICICX x-D

= Cse I
 = Ex > - J - xtn t)

- - - -
. -

[xso] - (Ex > o] . xtn
- I)

=

It Is
[xso] . (I - E)

for E =L

Probabilistic Programming Proving almost-sure termination

Overview

1 Motivation

2 Proving termination of ordinary programs

3 Variant (aka: ranking) functions

4 Proving almost-sure termination

Joost-Pieter Katoen Probabilistic Programming 17/33

Probabilistic Programming Proving almost-sure termination

AST by weakest preconditions

Determine wp(P, 1) for program P and postcondition 1.

Dexter Kozen
A probabilistic PDL

1983

Joost-Pieter Katoen Probabilistic Programming 18/33

Probabilistic Programming Proving almost-sure termination

A zero-one law for termination

Zero-one law for probabilistic termination
Let I " P such that [I] is a wp-subinvariant of while(G)P with respect to
post-expectation [I]. Furthermore, let Á > 0 a constant such that:

‘ � [I] & wp(while(G)P, 1) .

Then: [I] & wp(while(G)P, (¬G 0 I)) .

Proof.
On the black board.

A special case is obtained for invariant I equals true.

Joost-Pieter Katoen Probabilistic Programming 19/33

Probabilistic Programming Proving almost-sure termination

A zero-one law for termination

Zero-one law for probabilistic termination
Let I " P such that [I] is a wp-subinvariant of while(G)P with respect to
post-expectation [I]. Furthermore, let Á > 0 a constant such that:

‘ � [I] & wp(while(G)P, 1) .

Then: [I] & wp(while(G)P, (¬G 0 I)) .

Proof.
On the black board.

A special case is obtained for invariant I equals true.

Joost-Pieter Katoen Probabilistic Programming 19/33

✓
FIT E ICED

I

E
-

termination probability
of while (G) P

Probabilistic Programming Proving almost-sure termination

A zero-one law for termination

Zero-one law for probabilistic termination
Let I " P such that [I] is a wp-subinvariant of while(G)P with respect to
post-expectation [I]. Furthermore, let Á > 0 a constant such that:

‘ � [I] & wp(while(G)P, 1) .

Then: [I] & wp(while(G)P, (¬G 0 I)) .

Proof.
On the black board.

A special case is obtained for invariant I equals true.

Joost-Pieter Katoen Probabilistic Programming 19/33

E

Probabilistic Programming Proving almost-sure termination

A zero-one law for termination

Zero-one law for probabilistic termination
Let I " P such that [I] is a wp-subinvariant of while(G)P with respect to
post-expectation [I]. Furthermore, let Á > 0 a constant such that:

‘ � [I] & wp(while(G)P, 1) .

Then: [I] & wp(while(G)P, (¬G 0 I)) .

Proof.
On the black board.

A special case is obtained for invariant I equals true.

Joost-Pieter Katoen Probabilistic Programming 19/33

[related to
'

total correctness rule
"

in lecture Stg

Slide 2n
,

Iec Ptg !

-

Let FEE with f Ek for some KEIN

JEE ,
k - bounded

I
 = FGI - f t EG] .]

and I is a up - subihvan.at of while (G) p

w . ht
.

f

then

E . I E up (while (G) Pm) for some E > o

⇒ I S up (while (G.) P
,

f)

-

proofofo-nlaofortominehfinsta.tn
' ate the theorem above with :

f = Encore]

2- EI]

then ErG) sf t EG] . EI] is a

up - svbinvcniat of while (G) Pwrtf
.

Probabilistic Programming Proving almost-sure termination

A zero-one law for termination

Zero-one law for probabilistic termination
Let I " P such that [I] is a wp-subinvariant of while(G)P with respect to
post-expectation [I]. Furthermore, let Á > 0 a constant such that:

‘ � [I] & wp(while(G)P, 1) .

Then: [I] & wp(while(G)P, (¬G 0 I)) .

Proof.
On the black board.

A special case is obtained for invariant I equals true.

Joost-Pieter Katoen Probabilistic Programming 19/33

X
- hog. 'T find

termination 's
z

1 X
=

og probability
~

Probabilistic Programming Proving almost-sure termination

A large body of existing works

Hart/Sharir/Pnueli: Termination of Probabilistic Concurrent Programs. POPL 1982

Bournez/Garnier: Proving Positive Almost-Sure Termination. RTA 2005

McIver/Morgan: Abstraction, Refinement and Proof for Probabilistic Systems. 2005

Esparza et al.: Proving Termination of Probabilistic Programs Using Patterns. CAV 2012

Chakarov/Sankaranarayanan: Probabilistic Program Analysis w. Martingales. CAV 2013

Fioriti/Hermanns: Probabilistic Termination: Soundness, Completeness, and
Compositionality. POPL 2015

Chatterjee et al.: Algorithmic Termination of A�ne Probabilistic Programs. POPL 2016

Agrawal/Chatterjee/Novotn˝: Lexicographic Ranking Supermartingales. POPL 2018

.

Key ingredient: super- (or some form of) martingales

Joost-Pieter Katoen Probabilistic Programming 20/33

Probabilistic Programming Proving almost-sure termination

A large body of existing works

Hart/Sharir/Pnueli: Termination of Probabilistic Concurrent Programs. POPL 1982

Bournez/Garnier: Proving Positive Almost-Sure Termination. RTA 2005

McIver/Morgan: Abstraction, Refinement and Proof for Probabilistic Systems. 2005

Esparza et al.: Proving Termination of Probabilistic Programs Using Patterns. CAV 2012

Chakarov/Sankaranarayanan: Probabilistic Program Analysis w. Martingales. CAV 2013

Fioriti/Hermanns: Probabilistic Termination: Soundness, Completeness, and
Compositionality. POPL 2015

Chatterjee et al.: Algorithmic Termination of A�ne Probabilistic Programs. POPL 2016

Agrawal/Chatterjee/Novotn˝: Lexicographic Ranking Supermartingales. POPL 2018

.

Key ingredient: super- (or some form of) martingales

Joost-Pieter Katoen Probabilistic Programming 20/33

Probabilistic Programming Proving almost-sure termination

On super-martingales

A stochastic process X1, X2, . . . is a martingale whenever:

E(Xn+1 ∂ X1, . . . , Xn) = Xn

It is a super-martingale whenever:

E(Xn+1 ∂ X1, . . . , Xn) & Xn

Joost-Pieter Katoen Probabilistic Programming 21/33

while { × - - FIT xtt)
C x > o)

ranking function I

Vex Is
xxxxx

(is a random 0 ←
I

variable !)

X
, , A. B . - . . 1 I I to ¥ 's - -

.

Probabilistic Programming Proving almost-sure termination

A historical perspective

A countable Markov process is “non-dissipative”
if almost every infinite path eventually enters

— and remains in — positive recurrent states.

A su�cient condition for being non-dissipative is:

9
j'0

j � pij & i for all states i

Frederic Gordon Foster
Marko� chains with an enumerable number of states

and a class of cascade processes
1951

Joost-Pieter Katoen Probabilistic Programming 22/33

Probabilistic Programming Proving almost-sure termination

Kendall’s variation

A Markov process is non-dissipative if for some function V ⇥ � � R:

9
j'0

V (j) � pij & V (i) for all states i

and for each r there are finitely many states i with V (i) & r

David George Kendall
On non-dissipative Marko� chains

with an enumerable infinity of states
1951

Joost-Pieter Katoen Probabilistic Programming 23/33

Probabilistic Programming Proving almost-sure termination

On positive recurrence

Every irreducible positive recurrent Markov chain is non-dissipative.

A Markov process is positive recurrent i� there is a Lyapunov function
V ⇥ � � R'0 with for finite F N � and Á > 0:

8j V (j) � pij < ô for i " F , and
8j V (j) � pij < V (j) � Á for i /" F .

Pierre Brémaud 1999

Frederic Gordon Foster
On the stochastic matrices associated

with certain queuing processes
1953

Joost-Pieter Katoen Probabilistic Programming 24/33

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

The symmetric random walk:

while (x > 0) { x := x-1 [0.5] x := x+1 }

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2

This observation is enough to witness almost-sure termination!

Joost-Pieter Katoen Probabilistic Programming 25/33

variant function

✓ ,
$ → IT

> o

V = X

I I

4 22.
random variable

o ITI I
2 2

expected decrease

of V on each iteration E (SV) = I - - a t I . a

= O

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

The symmetric random walk:

while (x > 0) { x := x-1 [0.5] x := x+1 }

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2

This observation is enough to witness almost-sure termination!

Joost-Pieter Katoen Probabilistic Programming 25/33

in
- -

decrease

V = n

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

The symmetric random walk:

while (x > 0) { x := x-1 [0.5] x := x+1 }

Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2

This observation is enough to witness almost-sure termination!

Joost-Pieter Katoen Probabilistic Programming 25/33

r ::: :* !! ;; ↳sings

Probabilistic Programming Proving almost-sure termination

Do these programs almost surely terminate?

while (x > 0) {
p := 1/(x+1);
x := 0 [p] x++}

while (x > 0) {
p:= x/(2*x+1);
x-- [p] x++}

Joost-Pieter Katoen Probabilistic Programming 26/33

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

Goal: prove a.s.–termination of while(G) P

Ingredients:
Z A supermartingale V mapping states onto non-negative reals

Z E {V (sn+1) ∂ V (s0), . . . , V (sn)} & V (sn)
Z Running body P on state s Ï G does not increase E(V (s))
Z Loop iteration ceases if V (s) = 0

Z and a progress condition: on each loop iteration in s
i

Z V (s i) = v decreases by ' d(v) with probability ' p(v)
Z with antitone p (“probability”) and d (“decrease”) on V ’s values

Then: while(G) P a.s.-terminates on every input

Joost-Pieter Katoen Probabilistic Programming 27/33

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

Goal: prove a.s.–termination of while(G) P

Ingredients:
Z A supermartingale V mapping states onto non-negative reals

Z E {V (sn+1) ∂ V (s0), . . . , V (sn)} & V (sn)
Z Running body P on state s Ï G does not increase E(V (s))
Z Loop iteration ceases if V (s) = 0

Z and a progress condition: on each loop iteration in s
i

Z V (s i) = v decreases by ' d(v) with probability ' p(v)
Z with antitone p (“probability”) and d (“decrease”) on V ’s values

Then: while(G) P a.s.-terminates on every input

Joost-Pieter Katoen Probabilistic Programming 27/33

I
V is a random variable

$ → IR
> o

super martingale

T
.

.
.

. V Csn)

✓
•

'

• Vlsnn)
-

-

-↳
.

So S
,

Sz

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

Goal: prove a.s.–termination of while(G) P

Ingredients:
Z A supermartingale V mapping states onto non-negative reals

Z E {V (sn+1) ∂ V (s0), . . . , V (sn)} & V (sn)
Z Running body P on state s Ï G does not increase E(V (s))
Z Loop iteration ceases if V (s) = 0

Z and a progress condition: on each loop iteration in s
i

Z V (s i) = v decreases by ' d(v) with probability ' p(v)
Z with antitone p (“probability”) and d (“decrease”) on V ’s values

Then: while(G) P a.s.-terminates on every input

Joost-Pieter Katoen Probabilistic Programming 27/33

two
ingredients

,
(on]

P ! →
tho

(d u

-

✓ s w implies p Cw) E pcv)

I
dfw) E da)

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

Goal: prove a.s.–termination of while(G) P

Ingredients:
Z A supermartingale V mapping states onto non-negative reals

Z E {V (sn+1) ∂ V (s0), . . . , V (sn)} & V (sn)
Z Running body P on state s Ï G does not increase E(V (s))
Z Loop iteration ceases if V (s) = 0

Z and a progress condition: on each loop iteration in s
i

Z V (s i) = v decreases by ' d(v) with probability ' p(v)
Z with antitone p (“probability”) and d (“decrease”) on V ’s values

Then: while(G) P a.s.-terminates on every input

Joost-Pieter Katoen Probabilistic Programming 27/33

d : IR
> o

→ R > o

V : $ → IR
70

pi IR > o
→

-

Coin]

monotone X Ey → fcx) E fly)

anti tone x Ey → f Cx) > fly)

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
•

•

•

•

V (s1)
V (s2)

d⇤V (s1)

with prob. ' p⇤V (s1)

V (s4)
V (s5)

d⇤V (s4)
with prob. ' p⇤V (s4)

d (V 1) & d (V 4)
by antitone d

p(V 1) & p(V 4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programming 28/33

T

hope
.

.

.

.

op

~ o
n

i
. -

-

start lap loop
of loop

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
•

•

•

•

V (s1)
V (s2)

d⇤V (s1)

with prob. ' p⇤V (s1)

V (s4)
V (s5)

d⇤V (s4)
with prob. ' p⇤V (s4)

d (V 1) & d (V 4)
by antitone d

p(V 1) & p(V 4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programming 28/33

•

:

:
I ,

I
,

""
g-

-

2nd loop

iteration

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
•

•

•

•

V (s1)
V (s2)

d⇤V (s1)

with prob. ' p⇤V (s1)

V (s4)
V (s5)

d⇤V (s4)
with prob. ' p⇤V (s4)

d (V 1) & d (V 4)
by antitone d

p(V 1) & p(V 4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programming 28/33

random walk

=
I

- 2

•

•

=p lower bound on the decrease of
-

• Us ')

f-

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
•

•

•

•

V (s1)
V (s2)

d⇤V (s1)

with prob. ' p⇤V (s1)

V (s4)
V (s5)

d⇤V (s4)
with prob. ' p⇤V (s4)

d (V 1) & d (V 4)
by antitone d

p(V 1) & p(V 4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programming 28/33

••
-

•

:i

,

I i

,
A -

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
•

•

•

•

V (s1)
V (s2)

d⇤V (s1)

with prob. ' p⇤V (s1)

V (s4)
V (s5)

d⇤V (s4)
with prob. ' p⇤V (s4)

d (V 1) & d (V 4)
by antitone d

p(V 1) & p(V 4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programming 28/33

-

•

• To
-

• a

-

•

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
•

•

•

•

V (s1)
V (s2)

d⇤V (s1)

with prob. ' p⇤V (s1)

V (s4)
V (s5)

d⇤V (s4)
with prob. ' p⇤V (s4)

d (V 1) & d (V 4)
by antitone d

p(V 1) & p(V 4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programming 28/33

random walk

=
t

- 2

•

• = a

~•
=L

•

•
= 1

•

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
•

•

•

•

V (s1)
V (s2)

d⇤V (s1)

with prob. ' p⇤V (s1)

V (s4)
V (s5)

d⇤V (s4)
with prob. ' p⇤V (s4)

d (V 1) & d (V 4)
by antitone d

p(V 1) & p(V 4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programming 28/33

• •

•

•

•

•

•

• a

•

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
•

•

•

•

V (s1)
V (s2)

d⇤V (s1)

with prob. ' p⇤V (s1)

V (s4)
V (s5)

d⇤V (s4)
with prob. ' p⇤V (s4)

d (V 1) & d (V 4)
by antitone d

p(V 1) & p(V 4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programming 28/33

Probabilistic Programming Proving almost-sure termination

Proving almost-sure termination

� loop iterations
s

0
s

1
s

2
s

3
s

4
s

5
s

6
s

7
s

8
s

9

V (s i)

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

•
•

•
•

•

•

•

V (s1)
V (s2)

d⇤V (s1)

with prob. ' p⇤V (s1)

V (s4)
V (s5)

d⇤V (s4)
with prob. ' p⇤V (s4)

d (V 1) & d (V 4)
by antitone d

p(V 1) & p(V 4)
by antitone p

•

a.s. arrival at 0 guaranteed
by our proof rule

The closer to termination, the more V decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programming 28/33

f
s

!

Probabilistic Programming Proving almost-sure termination

The formal proof rule for almost-sure termination
Proof rule for almost-sure termination [McIver et al., 2018]

Let I " P, (variant) function V ⇥ S � R'0, (probability) function
p ⇥ R'0 � (0, 1] be antitone, (decrease) function d ⇥ R'0 � R>0 be
antitone. If:

1. [I] is a wp-subinvariant of while(G)P w.r.t. [I]
2. V = 0 indicates termination, i.e. [¬G] = [V = 0]
3. V is a super-invariant of while(G)P w.r.t. V

4. V satisfies the progress condition:

p ` (V � [G] � [I]) & ⁄s. wp(P, ◆V & V (s) � d (V (s))⇡)(s)
Then: the loop while(G)P terminates from any state s satisfying the
invariant I, i.e., [I] & wp(while(G)P, 1) .

Joost-Pieter Katoen Probabilistic Programming 29/33

I
E- the

up -

characteristic
function of

[the loop

f
stat state of p

IT (V) s ✓

• @

function (al) .

A
compost

if I = true IT

Probabilistic Programming Proving almost-sure termination

The symmetric random walk

Z Recall:

while (x > 0) { x := x-1 [0.5] x := x+1 }

Z Witnesses of almost-sure termination:
Z V = x

Z p(v) = 1/2 and d(v) = 1

That’s all you need to prove almost-sure termination!

Joost-Pieter Katoen Probabilistic Programming 30/33

Probabilistic Programming Proving almost-sure termination

The symmetric random walk

Z Recall:

while (x > 0) { x := x-1 [0.5] x := x+1 }

Z Witnesses of almost-sure termination:
Z V = x

Z p(v) = 1/2 and d(v) = 1

That’s all you need to prove almost-sure termination!

Joost-Pieter Katoen Probabilistic Programming 30/33

I
 e-

true

Probabilistic Programming Proving almost-sure termination

The symmetric random walk

Z Recall:

while (x > 0) { x := x-1 [0.5] x := x+1 }

Z Witnesses of almost-sure termination:
Z V = x

Z p(v) = 1/2 and d(v) = 1

That’s all you need to prove almost-sure termination!

Joost-Pieter Katoen Probabilistic Programming 30/33

I = true Vex p = I D= 1

while C x > o) { x - - EI] xtt)

⑥ p and d are anti tone
.

Thiel
.

① I is a up - subinvaiat
.

Trivial .

② EG] = E V=o] tnviel
.

③ OICV) EV ? it x

✓

Tff

Ex so] .
#Ex > o] . up C body ,

EX

iff

Ex Eo] - x t Ex > o] . I (x - t texts) s X

iff

EXEO] ox t Ex > o] x S X
- -

Tff
X E x

.

True
.

④ (p o
V)

.
EG] E Is

. up (body , [Vs VCs) -

DIED
])

⇒

⇐ox:).Ex
> o

?
n

-

=L x Is
. up C body ,

[x s xfs) - D) (s)

⇒

¥
. Ex > o] E

× ex

a r
bs

. (I - (Ex - n E xls) - a] t [xtr s as) - i)) (s)

⇒ E.Ex , D s ECT ' Ite 3)

⇒
n o

{
.

Ex > D E { (n to)

⇒

¥

.
Ex > o] s I .

Probabilistic Programming Proving almost-sure termination

The escaping spline

Z Consider the program:

while (x > 0) { p := 1/(x+1); x := 0 [p] x++}

Z Witnesses of almost-sure termination:
Z V = x

Z p(v) = 1
v+1 and d(v) = 1

Joost-Pieter Katoen Probabilistic Programming 31/33

'

Probabilistic Programming Proving almost-sure termination

The escaping spline

Z Consider the program:

while (x > 0) { p := 1/(x+1); x := 0 [p] x++}

Z Witnesses of almost-sure termination:
Z V = x

Z p(v) = 1
v+1 and d(v) = 1

Joost-Pieter Katoen Probabilistic Programming 31/33

Probabilistic Programming Proving almost-sure termination

A symmetric-in-the-limit random walk

Z Consider the program:

while (x > 0) { p := x/(2*x+1) ; x-- [p] x++ }

Z Witnesses of almost-sure termination:
Z V = Hx , where Hx is x -th Harmonic number 1 + 1/2 + . . . + 1/x

Z p(v) = 1/3 and d(v) = w 1/x if v > 0 and Hx�1 < v & Hx

1 if v = 0

Joost-Pieter Katoen Probabilistic Programming 32/33

Is true Vex do)=n pcu) =

Vtr

⑥ p
and d are ontitone

.

Third
while

① the is up - sub .in
.

Third
⇐> 0) I

Xiao ED

② ErG] = E V=o] .

Third ✓ Xtt

⑦ Ecu) EV I
Xtr

⇐ Exeo] . x t [x > o) up (body
,

x) E A

÷

⇒ Exes . x t Ex > o] .(¥
,

. o t (a - ¥) C xn))
-

"

escape
"

I X

, / r - . S
.

X Ex

④ progress condition

(p o

VI.
To] E Is

. up (body , [v sus) - dark))] Is)

⇒

(du
. ¥

,

o x). so] E

- . -

=P =✓ G- X

←
Is

.
(body

,
I V E Vls) - r]) (s)

⇒ ¥
,

. Ex > o] E

t.sc ¥ Cos Hs) - r] t.IT [xtn Exes) - if) (s)

⇒

In . Ex so) s . To ex - It - Extra ex - D
- -

X > o = O

-

= O

⇒ Exo] ⇐¥
,

Ex > o] .
True .

Probabilistic Programming Proving almost-sure termination

A symmetric-in-the-limit random walk

Z Consider the program:

while (x > 0) { p := x/(2*x+1) ; x-- [p] x++ }

Z Witnesses of almost-sure termination:
Z V = Hx , where Hx is x -th Harmonic number 1 + 1/2 + . . . + 1/x

Z p(v) = 1/3 and d(v) = w 1/x if v > 0 and Hx�1 < v & Hx

1 if v = 0

Joost-Pieter Katoen Probabilistic Programming 32/33

51g 64 ,

P :c while C x > o) Ix - - [II
,

] xtt }

I -_ the
,

Ve Hx d Cu) = f I if v > o and V C-

{ C the
, ,

Hx]
P 1 if v=o

⑤ p ,
d are oilstone

.

Third .

① I
.

Trial

① [Vs O] = Exso] .

Third
.

③ ITCH) E V

⇐ Ex so] . H
,

t [x > o] . up (body
,

Hx) E Hx
End

⇐ I Exeo] . Hx t Exo] - (In - H← ,

+ G - In) . Ha
,)

⇒ Execs - text Cao] . (II. (Hx - f) tf - - .) . (Hxt¥)
Etta

- - - i s

⇒ Exeo] . Ha t Ex > 03 - Ha E H
,

-

= Ha

④ (p o V) . EG] Eds
. -

. . Ev sus) -

DIED(Io Hx) . Ex > o) s Is
. up C body

t

Hus)

Probabilistic Programming Proving almost-sure termination

Expressiveness

This proof rule covers many a.s.-terminating programs
that are out-of-reach for almost all existing proof rules

Joost-Pieter Katoen Probabilistic Programming 33/33

