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Probabilistic Programming A short recap of conditioning

Overview

@ A short recap of conditioning
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Probabilistic Programming A short recap of conditioning

Bayes’ rule
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Probabilistic Programming A short recap of conditioning

A loopy program

For 0 < p <1 an arbitrary probability:

00l c := true;
int i : = 0;
Geom(P} while (c) {
i++;

(c := false [p] c := true)
}
observe (odd(i))
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Probabilistic Programming

A loopy program

The feasible program runs have a probability ) ., (1-p

Joost-Pieter Katoen

A short recap of conditioning

For 0 < p <1 an arbitrary probability:

bool c :=

int 1 : =

while (c)
i++;

true;
0;
{

(c := false [p] c := true)

}

observe (odd(i))

)2N

This program models the distribution:

Pi=2N+1] =

Pi=2N]=0

Probabilistic Programming
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Probabilistic Programming A short recap of conditioning

Divergence matters 4 opHon?

—

@ [0.5] {
=0 [05 = ; ) L\ PQSSN“\%‘CJ

1 x ;
y :=0 [0.5] y : ;
observe (x = 0 |
}\_—W

< -

= 0)

ru\t on¥ dne

Q: What is the probability that y = 0 on termination?

A: 2. Why?

Warning: This is a silly example. Typically divergence comes from loops.
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Probabilistic Programming Extending weakest pre-expectations

Overview

© Extending weakest pre-expectations
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Probabilistic Programming

Extending weakest pre-expectations

Possible outcomes of a cpGCL program
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Expectations

Expectations

A expectation’ (read: random variable) f maps pregra

Let [E denote the set of all expectations and le : i g €E
by: <
fCg ifandonlyif f(s)<g(s) forallseS.

|
(E,E) is a complete lattice.

'+ expectations in probability theory.
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Weakest pre-expectations

Weakest precondition

For probabilistic program P and e, f € E, the expectation transformer
wp(P, -) is defined by wp(P, f) = e iff e maps each (initial) state s
to the expected value of f after executing P on s.
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Probabilistic Programming Extending weakest pre-expectations

Weakest pre-expectations

Weakest precondition

For probabilistic program P and e, f € E, the expectation transformer
wp(P, ) : E - E is defined by wp(P, f) = e iff e maps each (initial) state s
to the expected value of f after executing P on s.

The characterising equation of a weakest pre-expectation is given by:

e #peckd value
wp(P, f) = Ag of £ on bwe
Famel i3 diloAven
where P; is the distribution over the final states (reached on termination
of P) when executing P on the initial state s. of P hen

a»c,-\«b\\a K
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Probabilistic Programming e e e o
Bounded expectations

Bounded expectations

The set of (one-)bounded expectations, denoted E; is defined as:

Ey = {feE|fcl)

|
(E<1,E) is a complete lattice.

Proof.
Left as an exercise. The least element is As.0; the greatest element is As.1
and suprema are defined as for E. Ol
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Weakest liberal pre-expectations

Weakest liberal pre-expectation

For probabilistic program P and e, f € [E<1, the expectation transformer
wip(P, ) : E<; = E; is defined by wip(P, f) = e such that e equals the
expected value of f after executing P on s plus the probability that P
diverges on s.

The characterising equation of a weakest liberal pre-expectation is given

R T

where P; is the distribution over the final states when executing P
(reached on termination) on the injitial state s.

We (?)S}) + <4 - wp(T’.A))
‘a».\ox\\aek P .
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Weakest liberal pre-expectations

Weakest liberal pre-expectation

For probabilistic program P and e, f € [E<1, the expectation transformer
wip(P, ) : E<; = E; is defined by wip(P, f) = e such that e equals the
expected value of f after executing P on s plus the probability that P
diverges on s.

The characterising equation of a weakest liberal pre-expectation is given

by:
wip(P, f) = )\s/fdP +( —/1dPs)
S

where P; is the distribution over the final states when executing P
(reached on termination) on the initial state s.

Weakest liberal pre-expectation wip(P, f) = “wp(P, f) + P{P diverges]".
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Extending wp with conditioning

SR

skip > f

diverge >0

L > f[x:= E]
» [G]-f

observe (G)

v

e /@ Dl = vl
wp(P1, wp(P», f))

[G]- wp(Py, f) +[=G] - wp(P,, f)
p - wp(Py, f)+(1-p) - wp(Py, f)
ifp X. ([G]- wp(P, X) +[~G]- )

P1 ; P2
if (G)P1 else P2
P1 [p] P2

>
| 2
>
>
> X[
>
>
»
» while (G)P

vV v v Vv

The wlp-semantics of pGCL can be extended analogously.
Normalisation is to be next. It is not covered here.
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Probabilistic Programming Normalisation

Overview

© Normalisation




Probabilistic Programming Normalisation

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;

s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?
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Probabilistic Programming Normalisation

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;

s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

Conditional expected reward of termination without violating any observe
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Probabilistic Programming Normalisation

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;

s := f1 [0.5] s :=
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

Conditional expected reward of termination without violating any observe

1-1/2+01/a 12

EREP]](U/,<><5ink> | ~o(2)) = T—U: s

2/3.
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Probabilistic Programming Normalisation

The piranha program — a wp perspective

f1 := gf [0.5] f1 := pir;
f2 := pir;

s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

112+01/a 12 2

E(f1 = pir | “feasible” run) = 1—1a = 3a -3

wp(P, f)

Let cwp(P, f) = m In fact cwp(P, f) = (wp(P, ), wip(P, 1)).

Note: wip(P,1) =1 — PP violates an observation]. This includes diverging runs.
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Probabilistic Programming Normalisation

Conditional expectations

Conditional expectations

A conditional expectation is a pair (f, g) with expectation f € E and
bounded expectation g € E.;.

Let C = E x E.; denote the set of conditional expectations.

(f, g) € C represents the fraction é.
Beware: (1, 1) # (1/2,1/2), and (f, 0) is a well-defined conditional expectation.

f
fle) if g(s)#0
(f, g) is interpreted as \s. g(s)

undefined otherwise.

Joost-Pieter Katoen
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Probabilistic Programming Normalisation

A partial order on conditional expectations

|
Let @ € C x C be defined by:

(f.g) 2(f',g)ifand onlyif f < f and g = g".

The “fractional interpretation”: (f,g) <(f', g') implies % < ;EZ))

(C, 9) is a complete lattice.

Proof.
Straightforward. The least element is (0, 1) and the greatest element is (o0, 0).
The supremum of a subset S in C is given point-wise by:

sup s = (s:p{f |(f.g) € Shinf(g | (f.g)eS}).

Probabilistic Programming
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Operations on conditional expectations

v

For (f,g) € C and c € Ry, let (c - (f, g))(s) = (c- f(s), c- g(s))

v

For (f,g),(f.g)eC, let (f.g)+(f.g)=(F+f . g+g").

v

Multiplication and subtraction are defined analogously.

v

For (f,g) € C, let mi(f,g) =f and my(f, g) = g.
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Probabilistic Programming Normalisation

Conditional weakest preconditions for cpGCL
cwp (P, (43))

*y) G5 (S'g")
Syntax <!
‘Q ~EE

(01)
» skip ' 9
> diverge (+9) (x:=€) = (‘:—(K'\-—E) B 3(#.:€
TEE (6} (%.3)
» observe (G)
»X:z,uf (AS f \V.‘C(S(\(":\l)‘)dﬁ_‘)’_".a)
> P1; P2 Q cup (5. cop C?L,(‘*x:)))>
> if (G)P1 else P2 -
» P1 [p] P2 EG’.‘ cwp (%, Cs'bﬂ + t-\C‘JQVVC(,q(Q\:Q/
» while (G)P e (PYY)

\‘:P()(;\‘) . [.-'_\ G](%D) > [.GB wa(")) ()(){))

Joost-Pieter Katoen Probabilistic Programming



AL ‘C’\ = P E“z} £ .= 3_? ; Py
2- Fo: —pr ?¥3M
3: s:= ¥$ C%l £9

4q° oo Sense ( S = P's(‘>

Pos\: expe c oo~ ‘? = [ £ = P?«-l

\Je denie : / Cwp (3,8), wlp (?m)}

C\Jp (Pgs\ ) <g‘/\>>

C\uJp ( P}\—Si - C\-JP (Q\QSQNE. (Sz‘o\\f‘s) (‘Q\'\\)>

~ —
= [Os=pr]-(F1)
-2
= cuwp <‘P$§>\‘ . Ccup <5:=c1 I‘(zl P2, Us=picl (Q/\B))

~———

—
—

—

. C\JP ( S.’:g’\) [S:P'\Y}’('?‘.’\’)>
Qwyp ( S :_:P7,7 {S:—‘\o\'r] 2 (QmX)

\/_\/_\/

= '32'_ [ 1 =pic) ('C‘/\} A 12 {92_—9&-3 (Q.*\)

—
—3

- V)

+

= Owp (P%s\:\"‘ 7 GNETe (QZ::PK‘ , lz ‘:Q«:Pirj (9\'\3—} 32"[‘91:\3“-3 (&’\3)

A\

T~

—

= —\i (g’\ = ?\'r] ('Q‘(\) ¥ "\L C\(;{(: Pk‘l (‘Q\’\}

~—
\/_N

Pl Th=gid] (Th=escd, Th ~eic]) (Thr=pscd, 1)

(6)-rey = le]  s=m



I

I\

cwe ( Frzpir G g, 1 (Etupw],wwﬂ)»flz((m:P;r,{\)

oy <$’\‘.=P§r [:lzfl Ss) ( [i’\zp§t‘1> 32-, (g'\-.—‘ﬁr:} ‘\'%_\>

lz cwp ((Frvi=pic (3,\3\ + 1 cwp (Srizgt, %”5

1 (38 (Fr=py) 3 (90 (5 7=39r)

—
—

L ( Cpirepd L3 Cpice o] 51 )

v ( Cgbepd o5 Dafeprd 43 )

= '\2 (4)’\) ’\"; (O)‘:‘,B = (_!L; %S @
. L
Thas  Cup (Pryy,, Chepr]) /= | - ;
3
L‘

T T 6—96\-



Probabilistic Programming Normalisation

Divergence matters

diverge [0.5] {
x := 0 [0.5] x :
y := 0 [0.5] y :
observe (x = 0 |

< -

}

Q: What is the probability that y = 0 on termination?

hy?

Warning: This is a silly example. Typically divergence comes from loops.

Probabilistic Programming
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Probabilistic Programming Normalisation

Observations inside loops

These programs are mostly not distinguished as wp(Pjet, 1) = wp(Pyighe, 1) = 0

int x := 1; int x := 1;
while (x = 1) { while (x = 1) {
x :=1 x :=1 [0.5] x := 0
} observe (x = 1)
}

» Certain divergence
> (wp(Piese, f), wip(Prest, 1)) = (0, 1)

» Conditional wp = 0

» Divergence with probability zero
> (Wp(Prightr f)r W/p(Prightv 1)) = (01 0)

» Conditional wp = undefined

Our semantics do distinguish these programs.

Probabilistic Programming
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Probabilistic Programming Normalisation

Elementary properties of conditional wp
(2-\3) cC

v

Continuity: ewp(P, z) is continuous on (C, Q)

v

Monotonicity: z < z' implies cwp(P, z) 2 cwp(P, z')

v

Decoupling: cwp(P, (f,g)) = (wp(P, f), wip(P, g))

v

Linearity: cwp(P, (r-f +g.g')) = (r~Wp(P, )+ wp(P, g), W/p(P,g'))

v
wn
(=3
=,
a
—
=
®
(2]
0
S
BN
T
=
=
1

(0, g) where g = wip(P,1)
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Feasibility

Feasibility of conditional wp

For cpGCL program P, f € E and g € E.4, it holds:

VseS.g(s)>0 = % and cwp(P,(f,g)) = (f', &)

implies (Vs €S.g'(s)=0 = f'(s) =0).

By structural induction on P. The non-trivial case is probabilistic
choice. ]
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Probabilistic Programming Normalisation

Contextual equivalence? Wy ao Seedas
»Q,QN. e s\ .

P: {x =0} [1/2] {x =1}, observe(x =1)
Q: {x = 0; observe(x = 1)} [}/2] {x =1, observe(x = 1)}

l Of course
wplPx = 1)) _ wp(QIx=1)) Y2 _
(15?2/0\%2) wh(PT)  wh(@1) i
© @
4
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Probabilistic Programming Normalisation

Contextual equivalence?

P: {x =0} [1/2] {x =1}, observe(x =1)

Q: {x = 0; observe(x = 1)} [/2] {x :=1; observe(x = 1)}
Q Q2
l Of course

~

wp(P, [x = 1]) =
1/2/% 2 wip(P. 1) wip(Q, 1)

but we cannot decompose =06

wp(Qubx = 1)), | s Wh(Qu bx = 1)), o wp(Qa[x = 1])

wWp(Q 1) ) T Q1) T Wik @ 1)

O—0

!

This all motivates that we deal with pairs rather than fractions.
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Probabilistic Programming Compatibility results

Overview

@ Compatibility results
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Backward compatibility

We have seen earlier:

Mclver's wp-semantics is a conservative extension of Dijkstra’s wp-semantics.

For any ordinary (aka: GCL) program P and predicate F:

wp(P.[F]) = (wp(P.F)]
Mclver Dijkstra

|
The cwp-semantics is a conservative extension of Mclver's wp-semantics.

For any observe-free pGCL program P and expectation f:

1

cwp(P, (f, 1)) = (f,g) impliesé = wp(P, f)
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Probabilistic Programming Compatibility results

Conditional wp = conditional expected rewards

Compatibility theorem for conditional wp

For program P, input s and expectation f:

wp(P, f)(s)

_ [PI :
P ERY"(s, (O(sink) | =<(4)) )

The ratio of wp(P, f) over wip(P, 1) for input s equals’ the conditional expected
reward to reach the terminal state (sink) while satisfying all observations in P’s
MC when starting with s. (The rewards in MC [ P ] are defined as before.)

For finite-state programs, conditional wp-reasoning can be done

with model checkers such as PRISM and Storm (www.stormchecker.org).

%Either both sides are equal or both sides are undefined.
Joost-Pieter Katoen
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Probabilistic Programming Program transformations

Overview

© Program transformations
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Why formal semantics matters

» Unambiguous meaning to all programs

» Basis for proving correctness
» of programs
of program transformations
of program equivalence
of static analysis
of compilers

vV v vy
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Probabilistic Programming Program transformations

Program transformation to remove conditioning

HAC  SemenD
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Program transformation to remove conditioning

» ldea: restart an infeasible run until all observe-statements are passed

» For program variable x use auxiliary variable sx

» store initial value of x into sx
» on each new loop-iteration restore x to sx

» Use auxiliary variable flag to signal observation violation:

flag := true; while(flag) { flag := false; mprog }

» Change prog into mprog by:

» observe(G) ~»  flag := I1G || flag
> abert dNtye ~ww  if(!flag) abert AwWrsR
» while(G) prog ~~» while(G && 'flag) prog
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Resulting program
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Removal of conditioning

the transformation in action:

sx, sy := x, y; flag := true;
while(flag) {

x :=0 [p] x :=1; X, y := sx, sy; flag := false;
y =0 [pl y :=1; x =0 [p]l x := 1;
observe(x != y) y :=0 [ply:=1;

flag := (x = y)

}

a simple data-flow analysis yields:

repeat {
x :=0 [p] x :=1;
y:=01[ply:=1

} until(x != y)
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Removal of conditioning

Correctness of transformation

For cpGCL program P that has at least one feasible run and expectation f:
ewp(P, (f,1)) = wp(P, f).

where P is the result of removing conditioning from P.
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Remark

Due to this result, observe-statements are equivalent to loops.
They are thus syntactic sugar.
But: they are practically very handy and

do not require loop invariants or fixed points.
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A dual program transformation

repeat

a0 := 0 [0.5] a0 := 1 a0 := 0 [0.5] a0 := 1;
al := 0 [0.5] a1l :=1; al := 0 [0.5] a1 :=1;
a2 = 0 [0.5] a2 := 1. 2?2 := 0 [0.5] a2 := 1;
i i= 4%a2 + 2%al + a0 + 1 1i=4%a2 + 2%al + a0 + 1

untll (1 <= i <= 6) observe (1 <=1 <= 6)

Loop-by-observe replacement if there is “no data flow" between loop iterations
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Independent and identically distributed loops

Loop while (G)P is iid if and only if for any expectation f:
wp(P,[G]-wp(P,f)) = wp(P,[G])- wp(P,f)

Event that G holds after P is independent of the expected value of f after P.

For iid-loop repeat P until (G) and expectations f, g we have:

cwp(repeat P until (G),(f,g)) = cwp(P ; observe (G),(f,g))
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Independent and identically distributed loops

Loop while (G)P is iid if and only if for any expectation f:
wp(P,[G]-wp(P,f)) = wp(P,[G])- wp(P,f)

Event that G holds after P is independent of the expected value of f after P.

Correctness of transformation

For iid-loop repeat P until (G) and expectations f, g we have:

cwp(repeat P until (G),(f,g)) = cwp(P ; observe (G),(f,g))

Loop-free programs are easier to reason about — no loop invariants.

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming Program transformations

A third program transformation: Hoisting

/’\,_§
) -.:39 CS] Saz=pic

Caiopir

—

S:] :_—_39 C\lz:} Tz
b= pe s
s =™ f-;} s:=%2, - s:=51 Up)) s:=Fe,

sk

S

AZ«' [Q’\:P‘Y’}

- — e

Y (h=pr]s 3 Themdd

chdene (s —-?\r‘)

- £ (i)
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Probabilistic Programming Program transformations

Hoisting

T(skip, f)
T(diverge, f)
T(x:=E, f)
T(observe(G), f)
T(Py; Py, f)

T(if (G)P; else P,,f)
T(P[p]P>, f)

T(while(G)P, 1)

[Nori et al., 2014]

Q1; @, h) where (Q,, g) = T(Py, f)
and (Qy, h) = T(Py, g)

(if (G)Qq else @,,[G]g+[~G]-h) where
(Q1.g) = T(Py,f) and (@2, h) = T(Py, f)

(Qi[q]@2, p-g + (1-p)-h) where (@1, g) =

and (Q,, h) = T(P>,f) and g = p.g+'("1g_p),h

T(Py, f)

(while(G)Q, g) where g = gfp H with
H(h) = [G]{m © T)(P, h) + [-G]-f
and (Q,-)=T(P, g)

Joost-Pieter Katoen
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Probabilistic Programming Program transformations

Correctness of hoisting

Correctness of hoisting

For any cpGCL program P with at least one feasible run and f € E:
ewp(P,(f,1)) = (Q,f) with T(P,1)=(Q,h).

The component h represents the probability that P satisfies all its
observe-statements.
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