
Probabilistic Programming

Probabilistic Programming
Lecture #11: Conditional Weakest Preconditions

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/42

Probabilistic Programming

Overview

1 A short recap of conditioning

2 Extending weakest pre-expectations

3 Normalisation

4 Compatibility results

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 2/42

Probabilistic Programming A short recap of conditioning

Overview

1 A short recap of conditioning

2 Extending weakest pre-expectations

3 Normalisation

4 Compatibility results

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 3/42

Probabilistic Programming A short recap of conditioning

Bayes’ rule

Joost-Pieter Katoen Probabilistic Programming 4/42

Probabilistic Programming A short recap of conditioning

A loopy program
For 0 < p < 1 an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i++;
(c := false [p] c := true)

}
observe (odd(i))

The feasible program runs have a probability 8N'0 (1�p)2N �p = 1
2 � p

This program models the distribution:
Pr[i = 2N+1] = (1�p)2N � p � (2�p) for N ' 0

Pr[i = 2N] = 0

Joost-Pieter Katoen Probabilistic Programming 5/42

Geom (p) {

H*e**

Probabilistic Programming A short recap of conditioning

A loopy program
For 0 < p < 1 an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i++;
(c := false [p] c := true)

}
observe (odd(i))

The feasible program runs have a probability 8N'0 (1�p)2N �p = 1
2 � p

This program models the distribution:
Pr[i = 2N+1] = (1�p)2N � p � (2�p) for N ' 0

Pr[i = 2N] = 0

Joost-Pieter Katoen Probabilistic Programming 5/42

I

00

Probabilistic Programming A short recap of conditioning

Divergence matters

diverge [0.5] {
x := 0 [0.5] x := 1;
y := 0 [0.5] y := 1;
observe (x = 0 || y = 0)

}

Q: What is the probability that y = 0 on termination?

A: 2
7 . Why?

Warning: This is a silly example. Typically divergence comes from loops.

Joost-Pieter Katoen Probabilistic Programming 6/42

4 opting
-

O
) a possibilities

-

rule out one

Probabilistic Programming Extending weakest pre-expectations

Overview

1 A short recap of conditioning

2 Extending weakest pre-expectations

3 Normalisation

4 Compatibility results

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 7/42

Probabilistic Programming Extending weakest pre-expectations

Possible outcomes of a cpGCL program

Joost-Pieter Katoen Probabilistic Programming 8/42

•
mm

> a

•

Mr
.

gym . # is

Probabilistic Programming Extending weakest pre-expectations

Expectations

Expectations
A expectation1 (read: random variable) f maps program states onto
non-negative reals extended with infinity, i.e., f ⇥ S � R'0 < {ô }.
Let E denote the set of all expectations and let F be defined for f , g " E
by:

f F g if and only if f (s) & g (s) for all s " S.

(E,F) is a complete lattice.

1j expectations in probability theory.
Joost-Pieter Katoen Probabilistic Programming 9/42

0
I

-

Probabilistic Programming Extending weakest pre-expectations

Weakest pre-expectations

Weakest precondition
For probabilistic program P and e, f " E, the expectation transformer
wp(P, �) ⇥ E � E is defined by wp(P, f) = e i� e maps each (initial) state s

to the expected value of f after executing P on s.

The characterising equation of a weakest pre-expectation is given by:

wp(P, f) = ⁄s.=
S

f dPs

where Ps is the distribution over the final states (reached on termination
of P) when executing P on the initial state s.

Joost-Pieter Katoen Probabilistic Programming 10/42

00
- - -

Probabilistic Programming Extending weakest pre-expectations

Weakest pre-expectations

Weakest precondition
For probabilistic program P and e, f " E, the expectation transformer
wp(P, �) ⇥ E � E is defined by wp(P, f) = e i� e maps each (initial) state s

to the expected value of f after executing P on s.
The characterising equation of a weakest pre-expectation is given by:

wp(P, f) = ⁄s.=
S

f dPs

where Ps is the distribution over the final states (reached on termination
of P) when executing P on the initial state s.

Joost-Pieter Katoen Probabilistic Programming 10/42

O e 's:*:

e

final distribution

of P when

stating in S

Probabilistic Programming Extending weakest pre-expectations

Bounded expectations

Bounded expectations
The set of (one-)bounded expectations, denoted E&1 is defined as:

E&1 = { f " E ∂ f F 1 }

(E&1,F) is a complete lattice.

Proof.
Left as an exercise. The least element is ⁄s.0; the greatest element is ⁄s.1
and suprema are defined as for E.

Joost-Pieter Katoen Probabilistic Programming 11/42

Probabilistic Programming Extending weakest pre-expectations

Weakest liberal pre-expectations

Weakest liberal pre-expectation
For probabilistic program P and e, f " E&1, the expectation transformer
wlp(P, �) ⇥ E&1 � E&1 is defined by wlp(P, f) = e such that e equals the
expected value of f after executing P on s plus the probability that P

diverges on s.
The characterising equation of a weakest liberal pre-expectation is given
by:

wlp(P, f) = ⁄s.=
S

f dPs + ⌅1 � =
S

1 dPs⌦
where Ps is the distribution over the final states when executing P

(reached on termination) on the initial state s.

Weakest liberal pre-expectation wlp(P, f) = “wp(P, f) + Pr[P diverges]¨¨.

Joost-Pieter Katoen Probabilistic Programming 12/42

1717- -

wptp
,

f) t (' -Wj?¥
. p tem .

Probabilistic Programming Extending weakest pre-expectations

Weakest liberal pre-expectations

Weakest liberal pre-expectation
For probabilistic program P and e, f " E&1, the expectation transformer
wlp(P, �) ⇥ E&1 � E&1 is defined by wlp(P, f) = e such that e equals the
expected value of f after executing P on s plus the probability that P

diverges on s.
The characterising equation of a weakest liberal pre-expectation is given
by:

wlp(P, f) = ⁄s.=
S

f dPs + ⌅1 � =
S

1 dPs⌦
where Ps is the distribution over the final states when executing P

(reached on termination) on the initial state s.

Weakest liberal pre-expectation wlp(P, f) = “wp(P, f) + Pr[P diverges]¨¨.
Joost-Pieter Katoen Probabilistic Programming 12/42

Probabilistic Programming Extending weakest pre-expectations

Extending wp with conditioning

Syntax

Z skip
Z diverge
Z x := E
Z observe (G)
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics wp(P, f)
Z f

Z 0
Z f [x ⇥= E]
Z [G] � f
Z ⁄s.=

Q
(⁄v .f (s[x ⇥= v])) dµs

Z wp(P1, wp(P2, f))
Z [G] � wp(P1, f) + [¬G] � wp(P2, f)
Z p � wp(P1, f) + (1�p) � wp(P2, f)
Z lfp X . ([G] � wp(P, X) + [¬G] � f)

The wlp-semantics of pGCL can be extended analogously.
Normalisation is to be next. It is not covered here.

Joost-Pieter Katoen Probabilistic Programming 13/42

-
- -

Probabilistic Programming Normalisation

Overview

1 A short recap of conditioning

2 Extending weakest pre-expectations

3 Normalisation

4 Compatibility results

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 14/42

Probabilistic Programming Normalisation

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

Conditional expected reward of termination without violating any observe

ER[[P]](‡I ,ÉÖsinkã ∂ ¬ÉÖ≤ã) = 1�1/2 + 0�1/4

1 � 1/4
=

1/2
3/4

= 2/3.

Joost-Pieter Katoen Probabilistic Programming 15/42

Probabilistic Programming Normalisation

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?
Conditional expected reward of termination without violating any observe

ER[[P]](‡I ,ÉÖsinkã ∂ ¬ÉÖ≤ã) = 1�1/2 + 0�1/4

1 � 1/4
=

1/2
3/4

= 2/3.

Joost-Pieter Katoen Probabilistic Programming 15/42

Probabilistic Programming Normalisation

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?
Conditional expected reward of termination without violating any observe

ER[[P]](‡I ,ÉÖsinkã ∂ ¬ÉÖ≤ã) = 1�1/2 + 0�1/4

1 � 1/4
=

1/2
3/4

= 2/3.

Joost-Pieter Katoen Probabilistic Programming 15/42

X to

. O

Probabilistic Programming Normalisation

The piranha program – a wp perspective
f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

E(f1 = pir ∂ “feasible” run) = 1�1/2 + 0�1/4

1 � 1/4
=

1/2
3/4

= 2
3 .

Let cwp(P, f) = wp(P, f)
wlp(P, 1) . In fact cwp(P, f) = (wp(P, f), wlp(P, 1)).

Note: wlp(P, 1) = 1 � Pr[P violates an observation]. This includes diverging runs.

Joost-Pieter Katoen Probabilistic Programming 16/42

Probabilistic Programming Normalisation

Conditional expectations

Conditional expectations
A conditional expectation is a pair (f , g) with expectation f " E and
bounded expectation g " E&1.
Let C = E ✓ E&1 denote the set of conditional expectations.

(f , g) " C represents the fraction f
g .

Beware: (1, 1) j (1/2, 1/2), and (f , 0) is a well-defined conditional expectation.

(f , g) is interpreted as ⁄s.

~ÑÑÑÑÑÇÑÑÑÑÑÄ

f (s)
g (s) if g (s) j 0

undefined otherwise.

Joost-Pieter Katoen Probabilistic Programming 17/42

Probabilistic Programming Normalisation

A partial order on conditional expectations

Let > N C ✓ C be defined by:

(f , g) > (f ¨, g
¨) if and only if f & f

¨ and g ' g
¨
.

The “fractional interpretation”: (f , g) > (f ¨, g
¨) implies f (s)

g (s) & f ¨(s)
g ¨(s) .

(C,>) is a complete lattice.

Proof.
Straightforward. The least element is (0, 1) and the greatest element is (ô, 0).
The supremum of a subset S in C is given point-wise by:

sup
>

S = ⌅sup
&
{ f ∂ (f , g) " S }, inf

&
{ g ∂ (f , g) " S }⌦ .

Joost-Pieter Katoen Probabilistic Programming 18/42

Probabilistic Programming Normalisation

Operations on conditional expectations

Z For (f , g) " C and c " R'0, let (c � (f , g))(s) = (c � f (s), c � g (s))
Z For (f , g), (f ¨, g

¨) " C, let (f , g) + (f ¨, g
¨) = (f + f

¨, g + g
¨).

Z Multiplication and subtraction are defined analogously.

Z For (f , g) " C, let fi1(f , g) = f and fi2(f , g) = g .

Joost-Pieter Katoen Probabilistic Programming 19/42

Probabilistic Programming Normalisation

Conditional weakest preconditions for cpGCL

Syntax

Z skip
Z diverge
Z x := E
Z observe (G)
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics cwp(P, f)
Z

Z

Z

Z

Z

Z

Z

Z

Z

Joost-Pieter Katoen Probabilistic Programming 20/42

Cwp (P
,

Cf , g))

#g) Cf, g) Q Cf '
, g

')

(on) if r f E f '

(f
, g) (Xie E) = (f Cai -

-
E)

, g Cx : =ED
[G) . f f. g)

(t s . fo
,

Iv
.

f (scx v)) dms
,

. - . - g)

Cup IR
, Cup C Pa ,

Cf , g)))

EG] . Cup (Pg
,

Cf , g)) t fG) cup CPe
,

f fig))

P tip)

↳ ¥p(X, Y) . Er G] - Cfg) t EG] cup C P
,

C X. YD

^ : fr : = par Plz] ffa ⇐ gf ;
program

2 : f 2 : = pit

÷. %'s:{ftp.p.fg ;) Pash

post espe etalon f = [fr = pin]

We derive i ✓ Cup (P
,

f)
,

wlp C Pin))

Cup EPfish ,
(fin))

=

cup (pish
,

Cup (observe (Sept)
, ffn)))

-

= Es = pir] . (f. y)

= Cup ftp.jh,
Cup (s : = fr I 'lz] fz

, Es=pir] (f. a)))
-

= I . Cup (s .

-

= fr
,

[s=pir] - f f. n))
+ I cup (s : = f 2

,
Espoir] - (f. n))

-

= I E fr = pir] f f
, n) t

'

z E fz=pir] C f. a)

= Cup (Pg.

, ,
Cup (f 2 :=pir , I [fn=pir] (fin) t I C fzpir] (f.D)

-

= I Efn = pir] (f. n) t {Ep,r=
pir] (f. n)

-
-

f= Efi = pir] (Efi = pir]
,

[fr =p ;D) fEh - pir]
,

s)

[63.563--16] g#g

Cup (fr : = pir Et] gf , tz (E ftp.r]
,

E ftp.sr]) ttz (Efi -

- pir ,

=

cup If pir EI] g
f

,
(Cfn = pir]

, I Cfnepir) the))
-

=
= (g. h)

I Cup (Ai
=p ir

, Cg ,
h)) t I cup (fr

.

- =gf ,
C g. h))

=

I (g. h) (fr pit) t { (g. h) (fr gf)

=

I (Cpirepir] , I [pie pir] tf)

+ I (Egf = pir] , I Eg ftp.r] tf)

=

'
z (r

,
n) t

'

z I o
, I) = Ct

, I) DX

-

Thus Cup (P fish ,
Efe pit]) = IF = }

Cup , g → a

①

Probabilistic Programming Normalisation

Divergence matters

diverge [0.5] {
x := 0 [0.5] x := 1;
y := 0 [0.5] y := 1;
observe (x = 0 || y = 0)

}

Q: What is the probability that y = 0 on termination?

A: 2
7 . Why?

Warning: This is a silly example. Typically divergence comes from loops.

Joost-Pieter Katoen Probabilistic Programming 22/42

O

diverge C 's] (x : -0 E 's] n ;
"

3 ⇒ ,
} Pai

f = Ey =D
g = y

Cwp (Pair , (Ey -

- o]
,
a))

= I Cup Idiverge ,
(Ey -03

,
n))

+ I Cup (x .

-

⇒ ; observe (- - -)
,

(Ey -03
,

n))

= Iz (o ,
n) t

'

z Cup (Xiao
. . . ; y is o . . .

, Cup (observe
,

- . . .))
-

= (o , I) t

a
① Ex - o Vy -0] . (Ey -07

,
a)

② Cup Ig: -0 Etz] n
,

(Ey -03
,

Exo Vy -03))
= { ([0--0] ,

Ex -0 V 0 -0])

t '

z
(En -07

,
Exes V n =D)

=
'
z (n

,
r) t } (o

,
Ex -03)

③

= (I , I t I Ex -

-

o)) - I (n
,

ate

I
cup (x : so CI] i

, I (n
,

at Ex -03))2

= Iz It. I (n
,

at E 0=03) t '
z

- I (n
,

n ten -03))

= I. (C 's , 's) tf I . I))

= I CE , E),

Total : (o , I) t I (I , I)

= (I , I)

Cup (Paw , Ey -03) = ¥ = ¥2 = Zz DX

Probabilistic Programming Normalisation

Observations inside loops
These programs are mostly not distinguished as wp(Pleft , 1) = wp(Pr ight , 1) = 0

int x := 1;
while (x = 1) {

x := 1
}

Z Certain divergence
Z (wp(Pleft , f), wlp(Pleft , 1)) = (0, 1)
Z Conditional wp = 0

int x := 1;
while (x = 1) {

x := 1 [0.5] x := 0;
observe (x = 1)

}

Z Divergence with probability zero
Z �wp(Pr ight , f), wlp(Pr ight , 1)⌥ = (0, 0)
Z Conditional wp = undefined

Our semantics do distinguish these programs.

Joost-Pieter Katoen Probabilistic Programming 23/42

Probabilistic Programming Normalisation

Elementary properties of conditional wp

Z Continuity: cwp(P, z) is continuous on (C,>)
Z Monotonicity: z > z

¨ implies cwp(P, z) > cwp(P, z
¨)

Z Decoupling: cwp(P, (f , g)) = (wp(P, f), wlp(P, g))
Z Linearity: cwp(P, (r �f + g , g

¨)) = �r �wp(P, f) + wp(P, g), wlp(P, g
¨)⌥

Z Strictness: cwp(P, (0, 1)) = (0, g) where g = wlp(P, 1)

Joost-Pieter Katoen Probabilistic Programming 24/42

#
Cf , g) Ef

Probabilistic Programming Normalisation

Feasibility

Feasibility of conditional wp
For cpGCL program P, f " Ev and g " E&1, it holds:

ºs " S. g (s) > 0 � f (s)
g (s) and cwp(P, (f , g)) = (f ¨, g

¨)
implies �ºs " S. g

¨(s) = 0 � f
¨(s) = 0⌥.

Proof.
By structural induction on P. The non-trivial case is probabilistic
choice.

Joost-Pieter Katoen Probabilistic Programming 25/42

am

Probabilistic Programming Normalisation

Contextual equivalence?

Joost-Pieter Katoen Probabilistic Programming 26/42

Why no fractions

from the stat ?

Probabilistic Programming Normalisation

Contextual equivalence?

This all motivates that we deal with pairs rather than fractions.

Joost-Pieter Katoen Probabilistic Programming 27/42

FE

Probabilistic Programming Compatibility results

Overview

1 A short recap of conditioning

2 Extending weakest pre-expectations

3 Normalisation

4 Compatibility results

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 28/42

Probabilistic Programming Compatibility results

Backward compatibility

We have seen earlier:
McIver’s wp-semantics is a conservative extension of Dijkstra’s wp-semantics.
For any ordinary (aka: GCL) program P and predicate F :

[wp(P, [F])]Õ“““““““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““““““““œ
McIver

= wp(P, F)Õ“““““““““““““““““““““““—“““““““““““““““““““““““œ
Dijkstra

The cwp-semantics is a conservative extension of McIver’s wp-semantics.
For any observe-free pGCL program P and expectation f :

cwp(P, (f , 1)) = �f ¨, g
¨⌥ implies f

¨

g
¨ = wp(P, f)

Joost-Pieter Katoen Probabilistic Programming 29/42

are a C I

Probabilistic Programming Compatibility results

Conditional wp = conditional expected rewards

Compatibility theorem for conditional wp
For program P, input s and expectation f :

wp(P, f)(s)
wlp(P, 1)(s) = ER

[[P]]� s, �ÉÖsinkã ∂ ¬ÉÖ≤ã⌥ ⌥
The ratio of wp(P, f) over wlp(P, 1) for input s equals2 the conditional expected
reward to reach the terminal state Ösinkã while satisfying all observations in P’s
MC when starting with s. (The rewards in MC [[P]] are defined as before.)

For finite-state programs, conditional wp-reasoning can be done
with model checkers such as PRISM and Storm (www.stormchecker.org).

2Either both sides are equal or both sides are undefined.
Joost-Pieter Katoen Probabilistic Programming 30/42

Probabilistic Programming Program transformations

Overview

1 A short recap of conditioning

2 Extending weakest pre-expectations

3 Normalisation

4 Compatibility results

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 31/42

Probabilistic Programming Program transformations

Why formal semantics matters

Z Unambiguous meaning to all programs

Z Basis for proving correctness
Z of programs
Z of program transformations
Z of program equivalence
Z of static analysis
Z of compilers
Z

Joost-Pieter Katoen Probabilistic Programming 32/42

Probabilistic Programming Program transformations

Program transformation to remove conditioning

Z Idea: restart an infeasible run until all observe-statements are passed

Z For program variable x use auxiliary variable sx
Z store initial value of x into sx
Z on each new loop-iteration restore x to sx

Z Use auxiliary variable flag to signal observation violation:

flag := true; while(flag) { flag := false; mprog }

Z Change prog into mprog by:

Z observe(G) ƒ flag := !G || flag
Z abort ƒ if(!flag) abort
Z while(G) prog ƒ while(G && !flag) prog

Joost-Pieter Katoen Probabilistic Programming 33/42

MC

semanticsa

Probabilistic Programming Program transformations

Program transformation to remove conditioning
Z Idea: restart an infeasible run until all observe-statements are passed

Z For program variable x use auxiliary variable sx
Z store initial value of x into sx
Z on each new loop-iteration restore x to sx

Z Use auxiliary variable flag to signal observation violation:

flag := true; while(flag) { flag := false; mprog }

Z Change prog into mprog by:

Z observe(G) ƒ flag := !G || flag
Z abort ƒ if(!flag) abort
Z while(G) prog ƒ while(G && !flag) prog

Joost-Pieter Katoen Probabilistic Programming 33/42

✓ diverge - diverge

Probabilistic Programming Program transformations

Resulting program

sx1,...,sxn := x1,...,xn; flag := true;
while(flag) {

flag := false;
x1,...,xn := sx1,...,sxn;
modprog

}

In machine learning, this is known as rejection sampling.

Joost-Pieter Katoen Probabilistic Programming 34/42

Probabilistic Programming Program transformations

Removal of conditioning
the transformation in action:

x := 0 [p] x := 1;
y := 0 [p] y := 1;
observe(x != y)

sx, sy := x, y; flag := true;
while(flag) {

x, y := sx, sy; flag := false;
x := 0 [p] x := 1;
y := 0 [p] y := 1;
flag := (x = y)

}

a simple data-flow analysis yields:

repeat {
x := 0 [p] x := 1;
y := 0 [p] y := 1

} until(x != y)

Joost-Pieter Katoen Probabilistic Programming 35/42

Probabilistic Programming Program transformations

Removal of conditioning

Correctness of transformation
For cpGCL program P that has at least one feasible run and expectation f :

cwp(P, (f , 1)) = wp(rP, f).
where rP is the result of removing conditioning from P.

Joost-Pieter Katoen Probabilistic Programming 36/42

Probabilistic Programming Program transformations

Remark

Due to this result, observe-statements are equivalent to loops.
They are thus syntactic sugar.

But: they are practically very handy and
do not require loop invariants or fixed points.

Joost-Pieter Katoen Probabilistic Programming 37/42

Probabilistic Programming Program transformations

A dual program transformation

repeat
a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a2 + 2*a1 + a0 + 1

until (1 <= i <= 6)

a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a2 + 2*a1 + a0 + 1
observe (1 <= i <= 6)

Loop-by-observe replacement if there is “no data flow” between loop iterations

Joost-Pieter Katoen Probabilistic Programming 38/42

Probabilistic Programming Program transformations

Independent and identically distributed loops
iid-Loop
Loop while (G)P is iid if and only if for any expectation f :

wp(P, [G] � wp(P, f)) = wp(P, [G]) � wp(P, f)
Event that G holds after P is independent of the expected value of f after P.

Correctness of transformation
For iid-loop repeat P until (G) and expectations f , g we have:

cwp(repeat P until (G), (f , g)) = cwp(P ; observe (G), (f , g))

Loop-free programs are easier to reason about — no loop invariants.

Joost-Pieter Katoen Probabilistic Programming 39/42

Probabilistic Programming Program transformations

Independent and identically distributed loops
iid-Loop
Loop while (G)P is iid if and only if for any expectation f :

wp(P, [G] � wp(P, f)) = wp(P, [G]) � wp(P, f)
Event that G holds after P is independent of the expected value of f after P.

Correctness of transformation
For iid-loop repeat P until (G) and expectations f , g we have:

cwp(repeat P until (G), (f , g)) = cwp(P ; observe (G), (f , g))

Loop-free programs are easier to reason about — no loop invariants.

Joost-Pieter Katoen Probabilistic Programming 39/42

Probabilistic Programming Program transformations

A third program transformation: Hoisting

Joost-Pieter Katoen Probabilistic Programming 40/42

-

fi ie g
f E Yz) fr : =p ir ;

i:÷÷÷÷÷÷÷i÷÷÷÷÷i÷

Probabilistic Programming Program transformations

Hoisting [Nori et al., 2014]

T (skip, f) = (skip, f)
T (diverge, f) = (diverge, 1)

T (x ⇥= E , f) = (x ⇥= E , f [x ⇥= E])
T (observe(G), f) = (skip, [G] � f)

T (P1; P2, f) = (Q1; Q2, h) where (Q2, g) = T (P2, f)
and (Q1, h) = T (P1, g)

T (if (G)P1 else P2, f) = (if (G)Q1 else Q2, [G]�g + [¬G]�h) where(Q1, g) = T (P1, f) and (Q2, h) = T (P2, f)
T (P1[p]P2, f) = (Q1[q]Q2, p�g + (1�p)�h) where (Q1, g) = T (P1, f)

and (Q2, h) = T (P2, f) and q = p�g
p�g+(1�p)�h

T (while(G)P, f) = (while(G)Q, g) where g = gfp H with
H(h) = [G]�(fi2 j T)(P, h) + [¬G]�f
and (Q,�) = T (P, g)

Joost-Pieter Katoen Probabilistic Programming 41/42

Probabilistic Programming Program transformations

Correctness of hoisting

Correctness of hoisting
For any cpGCL program P with at least one feasible run and f " E:

cwp(P, (f , 1)) = (Q, f) with T (P, 1) = (Q, h).
The component h represents the probability that P satisfies all its
observe-statements.

Joost-Pieter Katoen Probabilistic Programming 42/42

