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Probabilistic Programming A short recap of conditioning

Bayes’ rule
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Probabilistic Programming A short recap of conditioning

A loopy program
For 0 < p < 1 an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i++;
(c := false [p] c := true)

}
observe (odd(i))

The feasible program runs have a probability 8N'0 (1�p)2N �p = 1
2 � p

This program models the distribution:
Pr[i = 2N+1] = (1�p)2N � p � (2�p) for N ' 0

Pr[i = 2N] = 0

Joost-Pieter Katoen Probabilistic Programming 5/42
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Probabilistic Programming A short recap of conditioning

Divergence matters

diverge [0.5] {
x := 0 [0.5] x := 1;
y := 0 [0.5] y := 1;
observe (x = 0 || y = 0)

}

Q: What is the probability that y = 0 on termination?

A: 2
7 . Why?

Warning: This is a silly example. Typically divergence comes from loops.
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Probabilistic Programming Extending weakest pre-expectations

Possible outcomes of a cpGCL program
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Probabilistic Programming Extending weakest pre-expectations

Expectations

Expectations
A expectation1 (read: random variable) f maps program states onto
non-negative reals extended with infinity, i.e., f ⇥ S � R'0 < {ô }.
Let E denote the set of all expectations and let F be defined for f , g " E
by:

f F g if and only if f (s) & g (s) for all s " S.

(E,F) is a complete lattice.

1j expectations in probability theory.
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Probabilistic Programming Extending weakest pre-expectations

Weakest pre-expectations

Weakest precondition
For probabilistic program P and e, f " E, the expectation transformer
wp(P, �) ⇥ E � E is defined by wp(P, f ) = e i� e maps each (initial) state s

to the expected value of f after executing P on s.

The characterising equation of a weakest pre-expectation is given by:

wp(P, f ) = ⁄s.=
S

f dPs

where Ps is the distribution over the final states (reached on termination
of P) when executing P on the initial state s.
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Probabilistic Programming Extending weakest pre-expectations

Bounded expectations

Bounded expectations
The set of (one-)bounded expectations, denoted E&1 is defined as:

E&1 = { f " E ∂ f F 1 }

(E&1,F) is a complete lattice.

Proof.
Left as an exercise. The least element is ⁄s.0; the greatest element is ⁄s.1
and suprema are defined as for E.
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Probabilistic Programming Extending weakest pre-expectations

Weakest liberal pre-expectations

Weakest liberal pre-expectation
For probabilistic program P and e, f " E&1, the expectation transformer
wlp(P, �) ⇥ E&1 � E&1 is defined by wlp(P, f ) = e such that e equals the
expected value of f after executing P on s plus the probability that P

diverges on s.
The characterising equation of a weakest liberal pre-expectation is given
by:

wlp(P, f ) = ⁄s.=
S

f dPs + ⌅1 � =
S

1 dPs⌦
where Ps is the distribution over the final states when executing P

(reached on termination) on the initial state s.

Weakest liberal pre-expectation wlp(P, f ) = “wp(P, f ) + Pr[P diverges]¨¨.
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Probabilistic Programming Extending weakest pre-expectations

Extending wp with conditioning

Syntax

Z skip
Z diverge
Z x := E
Z observe (G)
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics wp(P, f )
Z f

Z 0
Z f [x ⇥= E ]
Z [G] � f
Z ⁄s.=

Q
(⁄v .f (s[x ⇥= v ])) dµs

Z wp(P1, wp(P2, f ))
Z [G] � wp(P1, f ) + [¬G] � wp(P2, f )
Z p � wp(P1, f ) + (1�p) � wp(P2, f )
Z lfp X . ([G] � wp(P, X ) + [¬G] � f )

The wlp-semantics of pGCL can be extended analogously.
Normalisation is to be next. It is not covered here.
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Probabilistic Programming Normalisation

Overview
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Probabilistic Programming Normalisation

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

Conditional expected reward of termination without violating any observe

ER[[P ]](‡I ,ÉÖsinkã ∂ ¬ÉÖ≤ã) = 1�1/2 + 0�1/4

1 � 1/4
=

1/2
3/4

= 2/3.
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Probabilistic Programming Normalisation

The piranha program – a wp perspective
f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

E(f1 = pir ∂ “feasible” run) = 1�1/2 + 0�1/4

1 � 1/4
=

1/2
3/4

= 2
3 .

Let cwp(P, f ) = wp(P, f )
wlp(P, 1) . In fact cwp(P, f ) = (wp(P, f ), wlp(P, 1)).

Note: wlp(P, 1) = 1 � Pr[P violates an observation]. This includes diverging runs.
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Probabilistic Programming Normalisation

Conditional expectations

Conditional expectations
A conditional expectation is a pair (f , g ) with expectation f " E and
bounded expectation g " E&1.
Let C = E ✓ E&1 denote the set of conditional expectations.

(f , g ) " C represents the fraction f
g .

Beware: (1, 1) j (1/2, 1/2), and (f , 0) is a well-defined conditional expectation.

(f , g ) is interpreted as ⁄s.

~ÑÑÑÑÑÇÑÑÑÑÑÄ

f (s)
g (s) if g (s) j 0

undefined otherwise.
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Probabilistic Programming Normalisation

A partial order on conditional expectations

Let > N C ✓ C be defined by:

(f , g ) > (f ¨, g
¨) if and only if f & f

¨ and g ' g
¨
.

The “fractional interpretation”: (f , g ) > (f ¨, g
¨) implies f (s)

g (s) & f ¨(s)
g ¨(s) .

(C,>) is a complete lattice.

Proof.
Straightforward. The least element is (0, 1) and the greatest element is (ô, 0).
The supremum of a subset S in C is given point-wise by:

sup
>

S = ⌅sup
&
{ f ∂ (f , g ) " S }, inf

&
{ g ∂ (f , g ) " S }⌦ .
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Probabilistic Programming Normalisation

Operations on conditional expectations

Z For (f , g ) " C and c " R'0, let (c � (f , g ))(s) = (c � f (s), c � g (s))
Z For (f , g ), (f ¨, g

¨) " C, let (f , g ) + (f ¨, g
¨) = (f + f

¨, g + g
¨).

Z Multiplication and subtraction are defined analogously.

Z For (f , g ) " C, let fi1(f , g ) = f and fi2(f , g ) = g .

Joost-Pieter Katoen Probabilistic Programming 19/42



Probabilistic Programming Normalisation

Conditional weakest preconditions for cpGCL

Syntax

Z skip
Z diverge
Z x := E
Z observe (G)
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics cwp(P, f )
Z

Z

Z

Z

Z

Z

Z

Z

Z
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Probabilistic Programming Normalisation

Divergence matters

diverge [0.5] {
x := 0 [0.5] x := 1;
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Probabilistic Programming Normalisation

Observations inside loops
These programs are mostly not distinguished as wp(Pleft , 1) = wp(Pr ight , 1) = 0

int x := 1;
while (x = 1) {

x := 1
}

Z Certain divergence
Z (wp(Pleft , f ), wlp(Pleft , 1)) = (0, 1)
Z Conditional wp = 0

int x := 1;
while (x = 1) {

x := 1 [0.5] x := 0;
observe (x = 1)

}

Z Divergence with probability zero
Z �wp(Pr ight , f ), wlp(Pr ight , 1)⌥ = (0, 0)
Z Conditional wp = undefined

Our semantics do distinguish these programs.
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Probabilistic Programming Normalisation

Elementary properties of conditional wp

Z Continuity: cwp(P, z) is continuous on (C,>)
Z Monotonicity: z > z

¨ implies cwp(P, z) > cwp(P, z
¨)

Z Decoupling: cwp(P, (f , g )) = (wp(P, f ), wlp(P, g ))
Z Linearity: cwp(P, (r �f + g , g

¨)) = �r �wp(P, f ) + wp(P, g ), wlp(P, g
¨)⌥

Z Strictness: cwp(P, (0, 1)) = (0, g ) where g = wlp(P, 1)

Joost-Pieter Katoen Probabilistic Programming 24/42
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Probabilistic Programming Normalisation

Feasibility

Feasibility of conditional wp
For cpGCL program P, f " Ev and g " E&1, it holds:

ºs " S. g (s) > 0 � f (s)
g (s) and cwp(P, (f , g )) = (f ¨, g

¨)
implies �ºs " S. g

¨(s) = 0 � f
¨(s) = 0⌥.

Proof.
By structural induction on P. The non-trivial case is probabilistic
choice.
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Probabilistic Programming Normalisation

Contextual equivalence?
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Probabilistic Programming Normalisation

Contextual equivalence?

This all motivates that we deal with pairs rather than fractions.
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Probabilistic Programming Compatibility results

Backward compatibility

We have seen earlier:
McIver’s wp-semantics is a conservative extension of Dijkstra’s wp-semantics.
For any ordinary (aka: GCL) program P and predicate F :

[wp(P, [F ])]Õ“““““““““““““““““““““““““““““““““““—““““““““““““““““““““““““““““““““““““œ
McIver

= wp(P, F )Õ“““““““““““““““““““““““—“““““““““““““““““““““““œ
Dijkstra

The cwp-semantics is a conservative extension of McIver’s wp-semantics.
For any observe-free pGCL program P and expectation f :

cwp(P, (f , 1)) = �f ¨, g
¨⌥ implies f

¨

g
¨ = wp(P, f )

Joost-Pieter Katoen Probabilistic Programming 29/42
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Probabilistic Programming Compatibility results

Conditional wp = conditional expected rewards

Compatibility theorem for conditional wp
For program P, input s and expectation f :

wp(P, f )(s)
wlp(P, 1)(s) = ER

[[P ]]� s, �ÉÖsinkã ∂ ¬ÉÖ≤ã⌥ ⌥
The ratio of wp(P, f ) over wlp(P, 1) for input s equals2 the conditional expected
reward to reach the terminal state Ösinkã while satisfying all observations in P’s
MC when starting with s. (The rewards in MC [[P ]] are defined as before.)

For finite-state programs, conditional wp-reasoning can be done
with model checkers such as PRISM and Storm (www.stormchecker.org).

2Either both sides are equal or both sides are undefined.
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Probabilistic Programming Program transformations

Overview
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Probabilistic Programming Program transformations

Why formal semantics matters

Z Unambiguous meaning to all programs

Z Basis for proving correctness
Z of programs
Z of program transformations
Z of program equivalence
Z of static analysis
Z of compilers
Z . . . . . .
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Probabilistic Programming Program transformations

Program transformation to remove conditioning

Z Idea: restart an infeasible run until all observe-statements are passed

Z For program variable x use auxiliary variable sx
Z store initial value of x into sx
Z on each new loop-iteration restore x to sx

Z Use auxiliary variable flag to signal observation violation:

flag := true; while(flag) { flag := false; mprog }

Z Change prog into mprog by:

Z observe(G) ƒ flag := !G || flag
Z abort ƒ if(!flag) abort
Z while(G) prog ƒ while(G && !flag) prog

Joost-Pieter Katoen Probabilistic Programming 33/42
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Probabilistic Programming Program transformations
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Probabilistic Programming Program transformations

Resulting program

sx1,...,sxn := x1,...,xn; flag := true;
while(flag) {

flag := false;
x1,...,xn := sx1,...,sxn;
modprog

}

In machine learning, this is known as rejection sampling.
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Probabilistic Programming Program transformations

Removal of conditioning
the transformation in action:

x := 0 [p] x := 1;
y := 0 [p] y := 1;
observe(x != y)

sx, sy := x, y; flag := true;
while(flag) {

x, y := sx, sy; flag := false;
x := 0 [p] x := 1;
y := 0 [p] y := 1;
flag := (x = y)

}

a simple data-flow analysis yields:

repeat {
x := 0 [p] x := 1;
y := 0 [p] y := 1

} until(x != y)
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Probabilistic Programming Program transformations

Removal of conditioning

Correctness of transformation
For cpGCL program P that has at least one feasible run and expectation f :

cwp(P, (f , 1)) = wp( rP, f ).
where rP is the result of removing conditioning from P.
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Probabilistic Programming Program transformations

Remark

Due to this result, observe-statements are equivalent to loops.
They are thus syntactic sugar.

But: they are practically very handy and
do not require loop invariants or fixed points.
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Probabilistic Programming Program transformations

A dual program transformation

repeat
a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a2 + 2*a1 + a0 + 1

until (1 <= i <= 6)

a0 := 0 [0.5] a0 := 1;
a1 := 0 [0.5] a1 := 1;
a2 := 0 [0.5] a2 := 1;
i := 4*a2 + 2*a1 + a0 + 1
observe (1 <= i <= 6)

Loop-by-observe replacement if there is “no data flow” between loop iterations
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Probabilistic Programming Program transformations

Independent and identically distributed loops
iid-Loop
Loop while (G)P is iid if and only if for any expectation f :

wp(P, [G] � wp(P, f )) = wp(P, [G]) � wp(P, f )
Event that G holds after P is independent of the expected value of f after P.

Correctness of transformation
For iid-loop repeat P until (G) and expectations f , g we have:

cwp(repeat P until (G), (f , g )) = cwp(P ; observe (G), (f , g ))

Loop-free programs are easier to reason about — no loop invariants.
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Independent and identically distributed loops
iid-Loop
Loop while (G)P is iid if and only if for any expectation f :

wp(P, [G] � wp(P, f )) = wp(P, [G]) � wp(P, f )
Event that G holds after P is independent of the expected value of f after P.

Correctness of transformation
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Probabilistic Programming Program transformations

A third program transformation: Hoisting
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Probabilistic Programming Program transformations

Hoisting [Nori et al., 2014]

T (skip, f ) = (skip, f )
T (diverge, f ) = (diverge, 1)

T (x ⇥= E , f ) = (x ⇥= E , f [x ⇥= E ])
T (observe(G), f ) = (skip, [G] � f )

T (P1; P2, f ) = (Q1; Q2, h) where (Q2, g ) = T (P2, f )
and (Q1, h) = T (P1, g )

T (if (G)P1 else P2, f ) = (if (G)Q1 else Q2, [G]�g + [¬G]�h) where(Q1, g ) = T (P1, f ) and (Q2, h) = T (P2, f )
T (P1[p]P2, f ) = (Q1[q]Q2, p�g + (1�p)�h) where (Q1, g ) = T (P1, f )

and (Q2, h) = T (P2, f ) and q = p�g
p�g+(1�p)�h

T (while(G)P, f ) = (while(G)Q, g ) where g = gfp H with
H(h) = [G]�(fi2 j T )(P, h) + [¬G]�f
and (Q,�) = T (P, g )
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Probabilistic Programming Program transformations

Correctness of hoisting

Correctness of hoisting
For any cpGCL program P with at least one feasible run and f " E:

cwp(P, (f , 1)) = (Q, f ) with T (P, 1) = (Q, h).
The component h represents the probability that P satisfies all its
observe-statements.
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