
Probabilistic Programming

Probabilistic Programming

Lecture #7: Probabilistic Weakest Preconditions

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/37

Probabilistic Programming

Overview

1 Motivation

2 The probabilistic guarded command language

3 Weakest pre-expectations

4 Properties and compatibility results

5 Bounded expectations and weakest liberal pre-expectations

Joost-Pieter Katoen Probabilistic Programming 2/37

Probabilistic Programming Motivation

Code-level reasoning

Proving properties of probabilistic programs: not by executing them,

but by reasoning at the syntax level of programs.

Compositionality: determine the correctness of composed program P
by reasoning about its parts in isolation and

then obtain P’s correctness result by combining those parts’ analyses.

Joost-Pieter Katoen Probabilistic Programming 4/37

Probabilistic Programming The probabilistic guarded command language

Overview

1 Motivation

2 The probabilistic guarded command language

3 Weakest pre-expectations

4 Properties and compatibility results

5 Bounded expectations and weakest liberal pre-expectations

Joost-Pieter Katoen Probabilistic Programming 5/37

Probabilistic Programming The probabilistic guarded command language

Elementary pGCL ingredients

Z Program variables x " Vars whose values are fractional numbers

Z Arithmetic expressions E over the program variables

Z Boolean expressions G (guarding a choice or loop) over the program

variables

Z A distribution expression µ ⇥ � � Dist(Q)
Z A probability expression p ⇥ � � [0, 1] = Q

Joost-Pieter Katoen Probabilistic Programming 6/37

p
unit To - . XT

X=2

±
Xfl

I

Probabilistic Programming The probabilistic guarded command language

Probabilistic GCL: Syntax

Kozen McIver Morgan

Z skip empty statement

Z diverge divergence

Z x := E assignment

Z x :r= mu random assignment (x ⇥ ⌅µ)
Z prog1 ; prog2 sequential composition

Z if (G) prog1 else prog2 choice

Z prog1 [p] prog2 probabilistic choice

Z while (G) prog iteration

Conditioning will be treated later. For the moment: no conditioning.

Joost-Pieter Katoen Probabilistic Programming 7/37

Probabilistic Programming The probabilistic guarded command language

Examples: Intuition

1. Let program P be:

x := 5 [4/5] x := 10

The expected value of x on P’s termination is:
4
5 �5 + 1

5 �10 = 6

2. Let program Q be:

x := x+5 [4/5] x := 10

The expected value of x on Q’s termination is:
4
5 �(x+5) + 1

5 �10 = 4x
5 + 6

3. The probability that x = 10 on Q’s termination is:

4

5
� [x+5 = 10] + 1

5
� 1 =

4 � [x = 5] + 1

5

Joost-Pieter Katoen Probabilistic Programming 8/37

✓
u II'sInns

a

x : = 2 ; ()

4 . 2

I
t b

Probabilistic Programming The probabilistic guarded command language

Examples: Intuition

1. Let program P be:

x := 5 [4/5] x := 10

The expected value of x on P’s termination is:
4
5 �5 + 1

5 �10 = 6

2. Let program Q be:

x := x+5 [4/5] x := 10

The expected value of x on Q’s termination is:
4
5 �(x+5) + 1

5 �10 = 4x
5 + 6

3. The probability that x = 10 on Q’s termination is:

4

5
� [x+5 = 10] + 1

5
� 1 =

4 � [x = 5] + 1

5

Joost-Pieter Katoen Probabilistic Programming 8/37

O

,
Ex = no]

µ
Hero

](xi=
f

value
stating

① Q

Probabilistic Programming The probabilistic guarded command language

Expected values

A probability distribution µ on a countable set X is a function

µ ⇥ X � [0, 1] such that 8x"X µ(x) = 1.

The expected value of random variable f ⇥ X � R under distribution µ is

defined by:

Eµ(f) = 9
x"X

f (x) � µ(x) = =
X

f dµ

Joost-Pieter Katoen Probabilistic Programming 9/37

3xfaia.is mad)=mCtD={

f={ I
,

' !!31¥ Eyak ns.tpt.s . ft
o ,

otherwise O . ¥

Probabilistic Programming The probabilistic guarded command language

Expectations

Predicates

A predicate F maps program states onto Booleans, i.e., F ⇥ S � B.

Let P denote the set of all predicates and F F G if and only if F � G .

Expectations are the quantitative analogue of predicates.

Expectations

A expectation
1

(read: random variable) f maps program states onto

non-negative reals extended with infinity, i.e., f ⇥ S � R'0 < {ô }.
Let E denote the set of all expectations and let F be defined for f , g " E
by:

f F g if and only if f (s) & g (s) for all s " S.

1j expectations in probability theory.
Joost-Pieter Katoen Probabilistic Programming 10/37

Probabilistic Programming The probabilistic guarded command language

Expectations

(E,F) is a complete lattice.

Proof.

Left as exercise. The least element of (E,F) is the constant function ⁄s.0, also

denoted as 0 defined by 0(s) = 0. The supremum of a subset S N E is constructed

point-wise by sup S = supf "S f .

Joost-Pieter Katoen Probabilistic Programming 11/37

Probabilistic Programming The probabilistic guarded command language

Operations on expectations

Z For k " R'0 < {ô }, let ⁄s.k denote the expectation that is constantly

k for all s

Z For expression E , x " Vars and f " E,

f [x ⇥= E](s) = w f (y) if x j y
[[E]]s otherwise

Z For f " E and c " R'0, (c � f)(s) = c � f (s)
Z For f , g " E, let (f + g)(s) = f (s) + g (s). Multiplication and

subtraction are defined analogously.

Joost-Pieter Katoen Probabilistic Programming 12/37

Probabilistic Programming Weakest pre-expectations

Overview

1 Motivation

2 The probabilistic guarded command language

3 Weakest pre-expectations

4 Properties and compatibility results

5 Bounded expectations and weakest liberal pre-expectations

Joost-Pieter Katoen Probabilistic Programming 13/37

Probabilistic Programming Weakest pre-expectations

Expectation transformers

Predicate transformer

A predicate transformer � is a total function between predicates, i.e.,

� ⇥ P � P.

Expectation transformer

An expectation transformer � is a total function between expectations,

i.e., � ⇥ E � E.

Joost-Pieter Katoen Probabilistic Programming 14/37

Probabilistic Programming Weakest pre-expectations

Weakest pre-expectations

Weakest precondition

For probabilistic program P and e, f " E, the expectation transformer

wp(P, �) ⇥ E � E is defined by wp(P, f) = e i� e maps each (initial) state s
to the expected value of f after executing P on s.

The characterising equation of a weakest pre-expectation is given by:

wp(P, f) = ⁄s.=
S

f dPs

where Ps is the distribution over the final states (reached on termination

of P) when executing P on the initial state s.

Examples.

Joost-Pieter Katoen Probabilistic Programming 15/37

s -
- { III → Dist Csi)

Probabilistic Programming Weakest pre-expectations

Weakest pre-expectations

Weakest precondition

For probabilistic program P and e, f " E, the expectation transformer

wp(P, �) ⇥ E � E is defined by wp(P, f) = e i� e maps each (initial) state s
to the expected value of f after executing P on s.

The characterising equation of a weakest pre-expectation is given by:

wp(P, f) = ⁄s.=
S

f dPs

where Ps is the distribution over the final states (reached on termination

of P) when executing P on the initial state s.

Examples.

Joost-Pieter Katoen Probabilistic Programming 15/37

up (x :-O

.

E' k] x : - n
,

x) =
t
Z

T
post dr. v

"

up (c :-O E 's] area ;

if Cc) { skip) else I x
.

- =xtn ;

Ciro EZ] cures ;

if (c) 2 ship } else { xr=xtD

I ,

⇒

f::::
'

÷
Xtz pre }

I x t I C x ti) t I Cxtz) =
- - .

.

3) up (x : so ; c : = o ;

while (⇐ o) Z Cien Ep] text , }
,

×) = I
P

Probabilistic Programming Weakest pre-expectations

Reasoning about probabilities

An important special case is when the post-expectation is given as [F]
with F " P. We then can consider F as an event and wp(P, [F])(s) as the

probability that executing P on input s will terminate in a final state · Ï F .

Example

See the third example a few slides ago. More examples later.

Joost-Pieter Katoen Probabilistic Programming 16/37

¥03
f F

-

Pii x Xts [45] Xi -
- no up CB f) =

f = Exeio] } 4.4=53+75
-

Probabilistic Programming Weakest pre-expectations

Reasoning about probabilities

An important special case is when the post-expectation is given as [F]
with F " P. We then can consider F as an event and wp(P, [F])(s) as the

probability that executing P on input s will terminate in a final state · Ï F .

Example

See the third example a few slides ago. More examples later.

Joost-Pieter Katoen Probabilistic Programming 16/37

Probabilistic Programming Weakest pre-expectations

Expectation transformer semantics of pGCL

Syntax

Z skip
Z diverge
Z x := E
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics wp(P, f)
Z f
Z 0

Z f [x ⇥= E]
Z ⁄s.=

Q
(⁄v .f (s[x ⇥= v])) dµs

Z wp(P1, wp(P2, f))
Z [G] � wp(P1, f) + [¬G] � wp(P2, f)
Z p � wp(P1, f) + (1�p) � wp(P2, f)
Z lfp X . ([G] � wp(P, X) + [¬G] � f)

lfp is the least fixed point operator wrt. the ordering F on expectations E.

Joost-Pieter Katoen Probabilistic Programming 17/37

PGCL Wpc P
,

f)
↳ FEE

f
O

f-C x .

- =E)

up (Py
,

up (Pz
,

f))

Pa ; Pz f

- u

(EG] . wpcpn
,

f)§
. up C Ps

,
f)

+ GG] . up (Pz ,
f)

+ a - p) . up C Pz ,

f)

Probabilistic Programming Weakest pre-expectations

Expectation transformer semantics of pGCL

Syntax

Z skip
Z diverge
Z x := E
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics wp(P, f)
Z f
Z 0

Z f [x ⇥= E]
Z ⁄s.=

Q
(⁄v .f (s[x ⇥= v])) dµs

Z wp(P1, wp(P2, f))
Z [G] � wp(P1, f) + [¬G] � wp(P2, f)
Z p � wp(P1, f) + (1�p) � wp(P2, f)
Z lfp X . ([G] � wp(P, X) + [¬G] � f)

lfp is the least fixed point operator wrt. the ordering F on expectations E.

Joost-Pieter Katoen Probabilistic Programming 17/37

up C P
,

f) = e EE

Xx
. Catz)
f- Cx)

-42+2
\

uni f En . . . x]

T
s Cx) = no

use unit Es - -
no]

Probabilistic Programming Weakest pre-expectations

Expectation transformer semantics of pGCL

Syntax

Z skip
Z diverge
Z x := E
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics wp(P, f)
Z f
Z 0

Z f [x ⇥= E]
Z ⁄s.=

Q
(⁄v .f (s[x ⇥= v])) dµs

Z wp(P1, wp(P2, f))
Z [G] � wp(P1, f) + [¬G] � wp(P2, f)
Z p � wp(P1, f) + (1�p) � wp(P2, f)
Z lfp X . ([G] � wp(P, X) + [¬G] � f)

lfp is the least fixed point operator wrt. the ordering F on expectations E.

Joost-Pieter Katoen Probabilistic Programming 17/37

Probabilistic Programming Weakest pre-expectations

Examples

1. Let program P be:

x := 5 [4/5] x := 10

For f = x , we have

wp(P, x) = 4
5 �wp(x ⇥= 5, x) + 1

5 �wp(x ⇥= 10, x) = 4
5 �5 + 1

5 �10 = 6

2. Let program P ¨
be:

x := x+5 [4/5] x := 10

For f = x , we have:

wp(P ¨
, x) = 4

5 �wp(x + ⇥= 5, x) + 1
5 �wp(x ⇥= 10, x) = 4

5 �(x+5) + 1
5 �10 = 4x

5 + 6

3. For program P ¨
(again) and f = [x = 10], we have:

wp(P ¨
, [x=10]) = 4

5 � wp(x ⇥= x+5, [x=10]) + 1
5 � wp(x ⇥= 10, [x=10])

= 4
5 � [x+5 = 10] + 1

5 � [10 = 10]
= 4�[x=5]+1

5

Joost-Pieter Katoen Probabilistic Programming 18/37

p To
-

p
def . of def

. of

up for P
, Ep] Pz

up .

for assignment

Probabilistic Programming Weakest pre-expectations

Examples

1. Let program P be:

x := 5 [4/5] x := 10

For f = x , we have

wp(P, x) = 4
5 �wp(x ⇥= 5, x) + 1

5 �wp(x ⇥= 10, x) = 4
5 �5 + 1

5 �10 = 6

2. Let program P ¨
be:

x := x+5 [4/5] x := 10

For f = x , we have:

wp(P ¨
, x) = 4

5 �wp(x + ⇥= 5, x) + 1
5 �wp(x ⇥= 10, x) = 4

5 �(x+5) + 1
5 �10 = 4x

5 + 6

3. For program P ¨
(again) and f = [x = 10], we have:

wp(P ¨
, [x=10]) = 4

5 � wp(x ⇥= x+5, [x=10]) + 1
5 � wp(x ⇥= 10, [x=10])

= 4
5 � [x+5 = 10] + 1

5 � [10 = 10]
= 4�[x=5]+1

5

Joost-Pieter Katoen Probabilistic Programming 18/37

-

T

up
for

Ep)

Probabilistic Programming Weakest pre-expectations

Examples

1. Let program P be:

x := 5 [4/5] x := 10

For f = x , we have

wp(P, x) = 4
5 �wp(x ⇥= 5, x) + 1

5 �wp(x ⇥= 10, x) = 4
5 �5 + 1

5 �10 = 6

2. Let program P ¨
be:

x := x+5 [4/5] x := 10

For f = x , we have:

wp(P ¨
, x) = 4

5 �wp(x + ⇥= 5, x) + 1
5 �wp(x ⇥= 10, x) = 4

5 �(x+5) + 1
5 �10 = 4x

5 + 6

3. For program P ¨
(again) and f = [x = 10], we have:

wp(P ¨
, [x=10]) = 4

5 � wp(x ⇥= x+5, [x=10]) + 1
5 � wp(x ⇥= 10, [x=10])

= 4
5 � [x+5 = 10] + 1

5 � [10 = 10]
= 4�[x=5]+1

5

Joost-Pieter Katoen Probabilistic Programming 18/37

2 IT
[⇐ s]

Probabilistic Programming Weakest pre-expectations

x := 0 [1/2] x := 1; // command c1
y := 0 [1/3] y := 1; // command c2

wp(c1; c2, [x = y])
=

wp(c1, wp(c2, [x = y]))
=

wp(c1, 1/3�wp(y ⇥= 0, [x = y]) + 2/3�wp(y ⇥= 1, [x = y]))

=
wp(c1, 1/3�[x = 0] + 2/3�[x = 1])

=
1/2�wp(x ⇥= 0, 1/3�[x = 0] + 2/3�[x = 1]) + 1/2�wp(x ⇥= 1, 1/3�[x = 0] + 2/3�[x = 1])

=
1/2� (1/3�[0 = 0] + 2/3�[0 = 1]) + 1/2� (1/3�[1 = 0] + 2/3�[1 = 1])

=
1/2� (1/3�1 + 2/3�0) + 1/2� (1/3�0 + 2/3�1)

=
1/2� (1/3 + 2/3)

=
1/2

Joost-Pieter Katoen Probabilistic Programming 19/37

Probabilistic Programming Weakest pre-expectations

x := 0 [1/2] x := 1; // command c1
y := 0 [1/3] y := 1; // command c2

wp(c1; c2, [x = y])
=

wp(c1, wp(c2, [x = y]))
=

wp(c1, 1/3�wp(y ⇥= 0, [x = y]) + 2/3�wp(y ⇥= 1, [x = y]))
=

wp(c1, 1/3�[x = 0] + 2/3�[x = 1])

=
1/2�wp(x ⇥= 0, 1/3�[x = 0] + 2/3�[x = 1]) + 1/2�wp(x ⇥= 1, 1/3�[x = 0] + 2/3�[x = 1])

=
1/2� (1/3�[0 = 0] + 2/3�[0 = 1]) + 1/2� (1/3�[1 = 0] + 2/3�[1 = 1])

=
1/2� (1/3�1 + 2/3�0) + 1/2� (1/3�0 + 2/3�1)

=
1/2� (1/3 + 2/3)

=
1/2

Joost-Pieter Katoen Probabilistic Programming 19/37

Probabilistic Programming Weakest pre-expectations

x := 0 [1/2] x := 1; // command c1
y := 0 [1/3] y := 1; // command c2

wp(c1; c2, [x = y])
=

wp(c1, wp(c2, [x = y]))
=

wp(c1, 1/3�wp(y ⇥= 0, [x = y]) + 2/3�wp(y ⇥= 1, [x = y]))
=

wp(c1, 1/3�[x = 0] + 2/3�[x = 1])
=

1/2�wp(x ⇥= 0, 1/3�[x = 0] + 2/3�[x = 1]) + 1/2�wp(x ⇥= 1, 1/3�[x = 0] + 2/3�[x = 1])

=
1/2� (1/3�[0 = 0] + 2/3�[0 = 1]) + 1/2� (1/3�[1 = 0] + 2/3�[1 = 1])

=
1/2� (1/3�1 + 2/3�0) + 1/2� (1/3�0 + 2/3�1)

=
1/2� (1/3 + 2/3)

=
1/2

Joost-Pieter Katoen Probabilistic Programming 19/37

w U

Probabilistic Programming Weakest pre-expectations

x := 0 [1/2] x := 1; // command c1
y := 0 [1/3] y := 1; // command c2

wp(c1; c2, [x = y])
=

wp(c1, wp(c2, [x = y]))
=

wp(c1, 1/3�wp(y ⇥= 0, [x = y]) + 2/3�wp(y ⇥= 1, [x = y]))
=

wp(c1, 1/3�[x = 0] + 2/3�[x = 1])
=

1/2�wp(x ⇥= 0, 1/3�[x = 0] + 2/3�[x = 1]) + 1/2�wp(x ⇥= 1, 1/3�[x = 0] + 2/3�[x = 1])
=

1/2� (1/3�[0 = 0] + 2/3�[0 = 1]) + 1/2� (1/3�[1 = 0] + 2/3�[1 = 1])

=
1/2� (1/3�1 + 2/3�0) + 1/2� (1/3�0 + 2/3�1)

=
1/2� (1/3 + 2/3)

=
1/2

Joost-Pieter Katoen Probabilistic Programming 19/37

I = . I I

Probabilistic Programming Weakest pre-expectations

x := 0 [1/2] x := 1; // command c1
y := 0 [1/3] y := 1; // command c2

wp(c1; c2, [x = y])
=

wp(c1, wp(c2, [x = y]))
=

wp(c1, 1/3�wp(y ⇥= 0, [x = y]) + 2/3�wp(y ⇥= 1, [x = y]))
=

wp(c1, 1/3�[x = 0] + 2/3�[x = 1])
=

1/2�wp(x ⇥= 0, 1/3�[x = 0] + 2/3�[x = 1]) + 1/2�wp(x ⇥= 1, 1/3�[x = 0] + 2/3�[x = 1])
=

1/2� (1/3�[0 = 0] + 2/3�[0 = 1]) + 1/2� (1/3�[1 = 0] + 2/3�[1 = 1])
=

1/2� (1/3�1 + 2/3�0) + 1/2� (1/3�0 + 2/3�1)
=

1/2� (1/3 + 2/3)
=

1/2

Joost-Pieter Katoen Probabilistic Programming 19/37

Probabilistic Programming Weakest pre-expectations

A simple slot machine

void flip {
d1 := µ [1/2] ≥;
d2 := µ [1/2] ≥;
d3 := µ [1/2] ≥;

}

Example weakest pre-expectations

Let all(x) � (x = d1 = d2 = d3).
Z If f = [all(µ)], then wp(flip, f) = 1

8 .

Z If g = 10 � [all(µ)] + 5 � [all(≥)], then:

wp(flip, g) = 15

8
= 6 �

1

8
� 0 + 1 �

1

8
� 10 + 1 �

1

8
� 5

So the least fraction of the jackpot the gamer can expect to win is
15
8 .

Joost-Pieter Katoen Probabilistic Programming 20/37

Probabilistic Programming Weakest pre-expectations

Loops

wp(while (G){P }, f) = lfp X . ([G] � wp(P, X) + [¬G] � f)Õ“““— “““œ
�(X)

Scott continuity of �

The function � ⇥ E � E (defined as above) is continuous on (E,F).
Proof.

Left as an exercise. By structural induction on pGCL programs.

Corollary

By Kleene’s fixpoint theorem, it follows lfp � = supn"N �
n(0).

�
n(0) is the expected value over the final states of running while (G){P }

exactly n times when starting with the constant expectation 0.

Joost-Pieter Katoen Probabilistic Programming 21/37

HO

Probabilistic Programming Weakest pre-expectations

A simple loopy program

x := 0;
while (c) {

{ c := 0 } [0.5] { x++ }
}

What is the expected value of x on termination?

Joost-Pieter Katoen Probabilistic Programming 22/37

Wp (while Cc) I c : -0 E' he) xtt }
,

X)

4 CX) = Ee IT up C c
.

-

-0 C 's] xtt
,

X) t Ceti - x

= -
. . .

calculate . - - -

= ⇐D (I - X (ceo) t
'

z
X (x xti))

+ left] . x

iterating i 4°C E) = e

Tye) = Ceti . x

42 (e) = 4 (fetid . x)

= EED (I . Echo] . x (ceo) t
'
z ftp.xcxts-I

+ E eh] - x

= Ect] (I . X t I Cato] (xti)) t Eats] - X

= TED - { x t Ect a] - x

4 '

le) = Y (Ceo] Zxt Eat Be . x)

claim

= E- Do Itxt I C xn)) tea # D. x

YTet-ee-I.of.sn⇐ Texter) tectrix

Wp (while (c) Ici -0 CYD texts }
, ×)

-=/⇒ IF ⇐ I

Cftc
.

- o) t K¥03 . x

TX -0

Wp (X O ; loop)

A

= ee is E ⇐ ICED
its

0

know : E pic i - D= for Ip) - s

5=1 kn- p)
Z

. ÷÷÷÷÷±.

Probabilistic Programming Weakest pre-expectations

Approximating while-loops

Let:

while
0(G){P }) = diverge

while
n+1(G){P }) = if (G) then P; while

n(G){P }) else skip

Let �(X) = ([G] � wp(P, X) + [¬G] � f). Then for all n " N it holds:

�
n(0) = wp(while

n(G){P }, f)
Proof.

By induction on n using the inductive definition of wp.

Joost-Pieter Katoen Probabilistic Programming 23/37

49 e) 401Gt)

Probabilistic Programming Weakest pre-expectations

Approximating while-loops

Let:

while
0(G){P }) = diverge

while
n+1(G){P }) = if (G) then P; while

n(G){P }) else skip

Let �(X) = ([G] � wp(P, X) + [¬G] � f). Then for all n " N it holds:

�
n(0) = wp(while

n(G){P }, f)

Proof.

By induction on n using the inductive definition of wp.

Joost-Pieter Katoen Probabilistic Programming 23/37

Probabilistic Programming Weakest pre-expectations

Approximating while-loops

Let:

while
0(G){P }) = diverge

while
n+1(G){P }) = if (G) then P; while

n(G){P }) else skip

Let �(X) = ([G] � wp(P, X) + [¬G] � f). Then for all n " N it holds:

�
n(0) = wp(while

n(G){P }, f)
Proof.

By induction on n using the inductive definition of wp.

Joost-Pieter Katoen Probabilistic Programming 23/37

Probabilistic Programming Properties and compatibility results

Overview

1 Motivation

2 The probabilistic guarded command language

3 Weakest pre-expectations

4 Properties and compatibility results

5 Bounded expectations and weakest liberal pre-expectations

Joost-Pieter Katoen Probabilistic Programming 24/37

Probabilistic Programming Properties and compatibility results

Properties of weakest pre-expectations

For all pGCL programs P and expectations f , g it holds:

Z Continuity: wp(P, �) is continuous on (E,F).

Z Monotonicity: f & g implies wp(P, f) & wp(P, g)
Z Feasibility: f & k implies wp(P, f) & k

Z Linearity: wp(P, r �f + g) = r �wp(P, f) + wp(P, g) for every r " R'0

Z Strictness: wp(P, 0) = 0

It is good to know: wp(P, 1) = termination probability of program P

Joost-Pieter Katoen Probabilistic Programming 25/37

Probabilistic Programming Properties and compatibility results

Properties of weakest pre-expectations

For all pGCL programs P and expectations f , g it holds:

Z Continuity: wp(P, �) is continuous on (E,F).
Z Monotonicity: f & g implies wp(P, f) & wp(P, g)

Z Feasibility: f & k implies wp(P, f) & k

Z Linearity: wp(P, r �f + g) = r �wp(P, f) + wp(P, g) for every r " R'0

Z Strictness: wp(P, 0) = 0

It is good to know: wp(P, 1) = termination probability of program P

Joost-Pieter Katoen Probabilistic Programming 25/37

/

ffs) E g Cs)

Probabilistic Programming Properties and compatibility results

Properties of weakest pre-expectations

For all pGCL programs P and expectations f , g it holds:

Z Continuity: wp(P, �) is continuous on (E,F).
Z Monotonicity: f & g implies wp(P, f) & wp(P, g)
Z Feasibility: f & k implies wp(P, f) & k

Z Linearity: wp(P, r �f + g) = r �wp(P, f) + wp(P, g) for every r " R'0

Z Strictness: wp(P, 0) = 0

It is good to know: wp(P, 1) = termination probability of program P

Joost-Pieter Katoen Probabilistic Programming 25/37

(
=

f : $ → Kyoto

Is
.

ffs) s k

Probabilistic Programming Properties and compatibility results

Properties of weakest pre-expectations

For all pGCL programs P and expectations f , g it holds:

Z Continuity: wp(P, �) is continuous on (E,F).
Z Monotonicity: f & g implies wp(P, f) & wp(P, g)
Z Feasibility: f & k implies wp(P, f) & k

Z Linearity: wp(P, r �f + g) = r �wp(P, f) + wp(P, g) for every r " R'0

Z Strictness: wp(P, 0) = 0

It is good to know: wp(P, 1) = termination probability of program P

Joost-Pieter Katoen Probabilistic Programming 25/37

Wp (P
,

r . f) = r . up CP
,

f)

Probabilistic Programming Properties and compatibility results

Properties of weakest pre-expectations

For all pGCL programs P and expectations f , g it holds:

Z Continuity: wp(P, �) is continuous on (E,F).
Z Monotonicity: f & g implies wp(P, f) & wp(P, g)
Z Feasibility: f & k implies wp(P, f) & k

Z Linearity: wp(P, r �f + g) = r �wp(P, f) + wp(P, g) for every r " R'0

Z Strictness: wp(P, 0) = 0

It is good to know: wp(P, 1) = termination probability of program P

Joost-Pieter Katoen Probabilistic Programming 25/37

Probabilistic Programming Properties and compatibility results

Backward compatibility

The wp-semantics of pGCL is a conservative extension of Dijkstra’s wp-semantics.

For any ordinary GCL program P and predicate F " P:

wp(P, [F])Õ“““““““““““““““““““““““““““““—“““““““““““““““““““““““““““““œ
pGCL

= wp(P, F)Õ“““““““““““““““““““““““—“““““““““““““““““““““““œ
Dijkstra

Joost-Pieter Katoen Probabilistic Programming 26/37

[I

Probabilistic Programming Properties and compatibility results

Recall: operational semantics of pGCL

Joost-Pieter Katoen Probabilistic Programming 27/37

reward

Markov chain
PGCL program →

EPD
p

a7 .

- t
°

,

-

'

⑤I
⇐

.@sfh.wp(P
,

f)
f Is ")

I. s
")

v

ffs ') C I
,

so > /
tsy④@ a

Probabilistic Programming Properties and compatibility results

Weakest pre-expectations = expected rewards

Compatibility theorem

For every pGCL program P, input s and expectation f :

wp(P, f)(s) = ER [[P]]� s,Ésink ⌥
In words: the wp(P, f) for input s equals the expected reward to reach final state

sink in MC [[P]] where reward function r in [[P]] is defined by: r (Ö⇤, s ¨ã) = f (s ¨)
and r (�) = 0 otherwise.

For finite-state programs, wp-reasoning can be done
with model checkers such as PRISM and Storm (www.stormchecker.org).

Joost-Pieter Katoen Probabilistic Programming 28/37

Probabilistic Programming Properties and compatibility results

Example

Joost-Pieter Katoen Probabilistic Programming 29/37

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Overview

1 Motivation

2 The probabilistic guarded command language

3 Weakest pre-expectations

4 Properties and compatibility results

5 Bounded expectations and weakest liberal pre-expectations

Joost-Pieter Katoen Probabilistic Programming 30/37

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

A more tricky loopy program

c := 1;
while (c = 1) {

{ abort } [0.5] { x++ };
{ skip } [0.5] { c := 0 }

}

What is the probability that

either x is even on termination, or the program diverges?

Joost-Pieter Katoen Probabilistic Programming 31/37

diverge -

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Bounded expectations

Bounded expectations

The set of (one-)bounded expectations, denoted E&1 is defined as:

E&1 = { f " E ∂ f F 1 }

(E&1,F) is a complete lattice.

Proof.

Left as an exercise. The least element is ⁄s.0; the greatest element is ⁄s.1
and suprema are defined as for E.

Joost-Pieter Katoen Probabilistic Programming 32/37

✓
f :

$ → Kyoto

/ \
us) = n Vs

E

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Bounded expectations

Bounded expectations

The set of (one-)bounded expectations, denoted E&1 is defined as:

E&1 = { f " E ∂ f F 1 }

(E&1,F) is a complete lattice.

Proof.

Left as an exercise. The least element is ⁄s.0; the greatest element is ⁄s.1
and suprema are defined as for E.

Joost-Pieter Katoen Probabilistic Programming 32/37

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Weakest liberal pre-expectations

Weakest liberal pre-expectation

For probabilistic program P and e, f " E&1, the expectation transformer

wlp(P, �) ⇥ E&1 � E&1 is defined by wlp(P, f) = e such that e equals the

expected value of f after executing P on s plus the probability that P
diverges on s.

The characterising equation of a weakest liberal pre-expectation is given

by:

wlp(P, f) = ⁄s.=
S

f dPs + ⌅1 � =
S

1 dPs⌦
where Ps is the distribution over the final states when executing P
(reached on termination) on the initial state s.

Examples.

Weakest liberal pre-expectation wlp(P, f) = “wp(P, f) + Pr[P diverges]¨¨.

Joost-Pieter Katoen Probabilistic Programming 33/37

#
= Wp C P , f)

-
-2

=

^ up (Pin)
-

Wp (P
,

f) = e wlp C P
,

f) = up (P ,
f)

Wp (PM) = prob .

of P terminating

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Weakest liberal pre-expectations

Weakest liberal pre-expectation

For probabilistic program P and e, f " E&1, the expectation transformer

wlp(P, �) ⇥ E&1 � E&1 is defined by wlp(P, f) = e such that e equals the

expected value of f after executing P on s plus the probability that P
diverges on s.

The characterising equation of a weakest liberal pre-expectation is given

by:

wlp(P, f) = ⁄s.=
S

f dPs + ⌅1 � =
S

1 dPs⌦
where Ps is the distribution over the final states when executing P
(reached on termination) on the initial state s.

Examples.

Weakest liberal pre-expectation wlp(P, f) = “wp(P, f) + Pr[P diverges]¨¨.
Joost-Pieter Katoen Probabilistic Programming 33/37

Pii diverge E I] Xiao

f- = Ex= no]

wlp CP
,

f) = I - Whp (diverge ,Ex⇒oD

+ § wlp (x .=w
,

Exton)
-

= up (xiao
,

- - -)

= I . wlp (diverge ,
Ex -703) t } .Ew]

-
=L

=
7

= I

Pi

:ca ; while (c) { diverge Et] xtt ;

skip E 's] o_0)
f = Ex is even]

wlp (P
, Ex is even]) =

It 4-Edd]
+ Key]

75

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Bounded expectation transformer semantics of pGCL

Syntax

Z skip
Z diverge
Z x := E
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics wlp(P, f)
Z f
Z 1

Z f [x ⇥= E]
Z ⁄s.=

Q
(⁄v .f (s[x ⇥= v])) dµs

Z wlp(P1, wlp(P2, f))
Z [G] � wlp(P1, f) + [¬G] � wlp(P2, f)
Z p � wlp(P1, f) + (1�p) � wlp(P2, f)
Z gfp X . ([G] � wlp(P, X) + [¬G] � f)

gfp is the greatest fixed point operator wrt. the ordering F on bounded

expectations E&1.

Joost-Pieter Katoen Probabilistic Programming 34/37

wlp (P
,

f)

f

⑦

= greatest est (Is , E)

f C x E)

Wfp(P , ,
Wlp (Pz

,

f))⑤

wlp (P
,

.) : Es ,
→ Ee ,

up CP ,
.) : TE → E

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Bounded expectation transformer semantics of pGCL

Syntax

Z skip
Z diverge
Z x := E
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics wlp(P, f)
Z f
Z 1

Z f [x ⇥= E]
Z ⁄s.=

Q
(⁄v .f (s[x ⇥= v])) dµs

Z wlp(P1, wlp(P2, f))
Z [G] � wlp(P1, f) + [¬G] � wlp(P2, f)
Z p � wlp(P1, f) + (1�p) � wlp(P2, f)
Z gfp X . ([G] � wlp(P, X) + [¬G] � f)

gfp is the greatest fixed point operator wrt. the ordering F on bounded

expectations E&1.

Joost-Pieter Katoen Probabilistic Programming 34/37

0 O

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Loops

wlp(while (G){P }, f) = gfp X . ([G] � wlp(P, X) + [¬G] � f)Õ“““—“““œ
�(X)

Scott continuity of �

The function � ⇥ E&1 � E&1 (defined as above) is continuous on (E&1,F).
Proof.

Left as an exercise.

Corollary

By Kleene’s fixpoint theorem, it follows gfp � = supn"N �
n(1).

�
n(1) denotes the expected value over the final states of running

while (G){P } exactly n times for the constant expectation 1.

Joost-Pieter Katoen Probabilistic Programming 35/37

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Loops

wlp(while (G){P }, f) = gfp X . ([G] � wlp(P, X) + [¬G] � f)Õ“““—“““œ
�(X)

Scott continuity of �

The function � ⇥ E&1 � E&1 (defined as above) is continuous on (E&1,F).
Proof.

Left as an exercise.

Corollary

By Kleene’s fixpoint theorem, it follows gfp � = supn"N �
n(1).

�
n(1) denotes the expected value over the final states of running

while (G){P } exactly n times for the constant expectation 1.

Joost-Pieter Katoen Probabilistic Programming 35/37

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Loops

wlp(while (G){P }, f) = gfp X . ([G] � wlp(P, X) + [¬G] � f)Õ“““—“““œ
�(X)

Scott continuity of �

The function � ⇥ E&1 � E&1 (defined as above) is continuous on (E&1,F).
Proof.

Left as an exercise.

Corollary

By Kleene’s fixpoint theorem, it follows gfp � = supn"N �
n(1).

�
n(1) denotes the expected value over the final states of running

while (G){P } exactly n times for the constant expectation 1.

Joost-Pieter Katoen Probabilistic Programming 35/37

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

A more tricky loopy program

c := 1;
while (c = 1) {

{ abort } [0.5] { x++ };
{ skip } [0.5] { c := 0 }

}

What is the probability that

either x is even on termination, or the program diverges?

Joost-Pieter Katoen Probabilistic Programming 36/37

c I ; while (c) { div CI) xtt ; skip EE] are o)
f = Ex is even]

Y cx) = KID . Ex even] t [⇐ ig (¥ +

* (⇐ ⇒ tilt
-

a-

4G) = Ect D - Ex even] t Ee]

447 = Ceti - [x een] t E e- D (Z t CIII)
434) =

a s
t eat) (I t⇐ef7⇐dI

this yields the pattern :

4h47 = Ect if - Ex een)

+ ⇐y÷÷:

wks
(while

. . . .

,
Ex even]) =

snipe
, ,y

Ceti - Ex wed t Cei (ft 4cdd3 + KIT)
es . EI ÷ . -

- t.IE -

- I . ÷ = #

wlp (program , Ex even]) = It ¥edd]
+

fed
15

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Properties of weakest liberal pre-expectations

For all pGCL programs P and bounded expectations f , g it holds:

Z Continuity: wlp(P, �) is continuous on (E&1,F)
Z Monotonicity: f & g implies wlp(P, f) & wlp(P, g)
Z Superlinearity: r �wlp(P, f) + wlp(P, g) & wlp(P, r �f + g) for every

r " R'0

Z Duality: wlp(P, f) = wp(P, f) + (1 � wp(P, 1))
wp(P, 1) = termination probability of program P

Z Coincidence: wlp(P, f) = wp(P, f) for a.s.-terminating P

Z Co-strictness: wlp(P, 1) = 1

Joost-Pieter Katoen Probabilistic Programming 37/37

M
-

wt CP , D = i

