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Probabilistic Programming Motivation

Code-level reasoning

Proving properties of probabilistic programs: not by executing them,

but by reasoning at the syntax level of programs.

Compositionality: determine the correctness of composed program P
by reasoning about its parts in isolation and

then obtain P’s correctness result by combining those parts’ analyses.
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Probabilistic Programming The probabilistic guarded command language

Elementary pGCL ingredients

Z Program variables x " Vars whose values are fractional numbers

Z Arithmetic expressions E over the program variables

Z Boolean expressions G (guarding a choice or loop) over the program

variables

Z A distribution expression µ ⇥ � � Dist(Q)
Z A probability expression p ⇥ � � [0, 1] = Q
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Probabilistic Programming The probabilistic guarded command language

Probabilistic GCL: Syntax

Kozen McIver Morgan

Z skip empty statement

Z diverge divergence

Z x := E assignment

Z x :r= mu random assignment (x ⇥ ⌅µ)
Z prog1 ; prog2 sequential composition

Z if (G) prog1 else prog2 choice

Z prog1 [p] prog2 probabilistic choice

Z while (G) prog iteration

Conditioning will be treated later. For the moment: no conditioning.
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Probabilistic Programming The probabilistic guarded command language

Examples: Intuition

1. Let program P be:

x := 5 [4/5] x := 10

The expected value of x on P’s termination is:
4
5 �5 + 1

5 �10 = 6

2. Let program Q be:

x := x+5 [4/5] x := 10

The expected value of x on Q’s termination is:
4
5 �(x+5) + 1

5 �10 = 4x
5 + 6

3. The probability that x = 10 on Q’s termination is:

4

5
� [x+5 = 10] + 1

5
� 1 =

4 � [x = 5] + 1

5

Joost-Pieter Katoen Probabilistic Programming 8/37

✓
u II'sInns

a

x :  = 2 ; ( )

4 .  2

I
t b



Probabilistic Programming The probabilistic guarded command language

Examples: Intuition

1. Let program P be:

x := 5 [4/5] x := 10

The expected value of x on P’s termination is:
4
5 �5 + 1

5 �10 = 6

2. Let program Q be:

x := x+5 [4/5] x := 10

The expected value of x on Q’s termination is:
4
5 �(x+5) + 1

5 �10 = 4x
5 + 6

3. The probability that x = 10 on Q’s termination is:

4

5
� [x+5 = 10] + 1

5
� 1 =

4 � [x = 5] + 1

5

Joost-Pieter Katoen Probabilistic Programming 8/37

O

,
Ex = no ]

µ
Hero

](xi=
f

value
stating

① Q



Probabilistic Programming The probabilistic guarded command language

Expected values

A probability distribution µ on a countable set X is a function

µ ⇥ X � [0, 1] such that 8x"X µ(x ) = 1.

The expected value of random variable f ⇥ X � R under distribution µ is

defined by:

Eµ(f ) = 9
x"X

f (x ) � µ(x ) = =
X

f dµ
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Probabilistic Programming The probabilistic guarded command language

Expectations

Predicates

A predicate F maps program states onto Booleans, i.e., F ⇥ S � B.

Let P denote the set of all predicates and F F G if and only if F � G .

Expectations are the quantitative analogue of predicates.

Expectations

A expectation
1

(read: random variable) f maps program states onto

non-negative reals extended with infinity, i.e., f ⇥ S � R'0 < {ô }.
Let E denote the set of all expectations and let F be defined for f , g " E
by:

f F g if and only if f (s) & g (s) for all s " S.

1j expectations in probability theory.
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Probabilistic Programming The probabilistic guarded command language

Expectations

(E,F) is a complete lattice.

Proof.

Left as exercise. The least element of (E,F) is the constant function ⁄s.0, also

denoted as 0 defined by 0(s) = 0. The supremum of a subset S N E is constructed

point-wise by sup S = supf "S f .
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Probabilistic Programming The probabilistic guarded command language

Operations on expectations

Z For k " R'0 < {ô }, let ⁄s.k denote the expectation that is constantly

k for all s

Z For expression E , x " Vars and f " E,

f [x ⇥= E ](s) = w f (y ) if x j y
[[E ]]s otherwise

Z For f " E and c " R'0, (c � f )(s) = c � f (s)
Z For f , g " E, let (f + g )(s) = f (s) + g (s). Multiplication and

subtraction are defined analogously.
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Probabilistic Programming Weakest pre-expectations
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Probabilistic Programming Weakest pre-expectations

Expectation transformers

Predicate transformer

A predicate transformer � is a total function between predicates, i.e.,

� ⇥ P � P.

Expectation transformer

An expectation transformer � is a total function between expectations,

i.e., � ⇥ E � E.
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Probabilistic Programming Weakest pre-expectations

Weakest pre-expectations

Weakest precondition

For probabilistic program P and e, f " E, the expectation transformer

wp(P, �) ⇥ E � E is defined by wp(P, f ) = e i� e maps each (initial) state s
to the expected value of f after executing P on s.

The characterising equation of a weakest pre-expectation is given by:

wp(P, f ) = ⁄s.=
S

f dPs

where Ps is the distribution over the final states (reached on termination

of P) when executing P on the initial state s.

Examples.
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Probabilistic Programming Weakest pre-expectations

Reasoning about probabilities

An important special case is when the post-expectation is given as [F ]
with F " P. We then can consider F as an event and wp(P, [F ])(s) as the

probability that executing P on input s will terminate in a final state · Ï F .

Example

See the third example a few slides ago. More examples later.
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Probabilistic Programming Weakest pre-expectations
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Probabilistic Programming Weakest pre-expectations

Expectation transformer semantics of pGCL

Syntax

Z skip
Z diverge
Z x := E
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics wp(P, f )
Z f
Z 0

Z f [x ⇥= E ]
Z ⁄s.=

Q
(⁄v .f (s[x ⇥= v ])) dµs

Z wp(P1, wp(P2, f ))
Z [G] � wp(P1, f ) + [¬G] � wp(P2, f )
Z p � wp(P1, f ) + (1�p) � wp(P2, f )
Z lfp X . ([G] � wp(P, X ) + [¬G] � f )

lfp is the least fixed point operator wrt. the ordering F on expectations E.
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Probabilistic Programming Weakest pre-expectations
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Probabilistic Programming Weakest pre-expectations
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Probabilistic Programming Weakest pre-expectations

Examples

1. Let program P be:

x := 5 [4/5] x := 10

For f = x , we have

wp(P, x ) = 4
5 �wp(x ⇥= 5, x ) + 1

5 �wp(x ⇥= 10, x ) = 4
5 �5 + 1

5 �10 = 6

2. Let program P ¨
be:

x := x+5 [4/5] x := 10

For f = x , we have:

wp(P ¨
, x ) = 4

5 �wp(x + ⇥= 5, x ) + 1
5 �wp(x ⇥= 10, x ) = 4

5 �(x+5) + 1
5 �10 = 4x

5 + 6

3. For program P ¨
(again) and f = [x = 10], we have:

wp(P ¨
, [x=10]) = 4

5 � wp(x ⇥= x+5, [x=10]) + 1
5 � wp(x ⇥= 10, [x=10])

= 4
5 � [x+5 = 10] + 1

5 � [10 = 10]
= 4�[x=5]+1

5
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Probabilistic Programming Weakest pre-expectations
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Probabilistic Programming Weakest pre-expectations

x := 0 [1/2] x := 1; // command c1
y := 0 [1/3] y := 1; // command c2

wp(c1; c2, [x = y ])
=

wp(c1, wp(c2, [x = y ]))
=

wp(c1, 1/3�wp(y ⇥= 0, [x = y ]) + 2/3�wp(y ⇥= 1, [x = y ]))

=
wp(c1, 1/3�[x = 0] + 2/3�[x = 1])

=
1/2�wp(x ⇥= 0, 1/3�[x = 0] + 2/3�[x = 1]) + 1/2�wp(x ⇥= 1, 1/3�[x = 0] + 2/3�[x = 1])

=
1/2� (1/3�[0 = 0] + 2/3�[0 = 1]) + 1/2� (1/3�[1 = 0] + 2/3�[1 = 1])

=
1/2� (1/3�1 + 2/3�0) + 1/2� (1/3�0 + 2/3�1)

=
1/2� (1/3 + 2/3)

=
1/2
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Probabilistic Programming Weakest pre-expectations
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Probabilistic Programming Weakest pre-expectations
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Probabilistic Programming Weakest pre-expectations
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Probabilistic Programming Weakest pre-expectations

A simple slot machine

void flip {
d1 := µ [1/2] ≥;
d2 := µ [1/2] ≥;
d3 := µ [1/2] ≥;

}

Example weakest pre-expectations

Let all(x ) � (x = d1 = d2 = d3).
Z If f = [all(µ)], then wp(flip, f ) = 1

8 .

Z If g = 10 � [all(µ)] + 5 � [all(≥)], then:

wp(flip, g ) = 15

8
= 6 �

1

8
� 0 + 1 �

1

8
� 10 + 1 �

1

8
� 5

So the least fraction of the jackpot the gamer can expect to win is
15
8 .
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Probabilistic Programming Weakest pre-expectations

Loops

wp(while (G){P }, f ) = lfp X . ([G] � wp(P, X ) + [¬G] � f )Õ“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““— “““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““œ
�(X )

Scott continuity of �

The function � ⇥ E � E (defined as above) is continuous on (E,F).
Proof.

Left as an exercise. By structural induction on pGCL programs.

Corollary

By Kleene’s fixpoint theorem, it follows lfp � = supn"N �
n(0).

�
n(0) is the expected value over the final states of running while (G){P }

exactly n times when starting with the constant expectation 0.
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Probabilistic Programming Weakest pre-expectations

A simple loopy program

x := 0;
while (c) {

{ c := 0 } [0.5] { x++ }
}

What is the expected value of x on termination?
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Probabilistic Programming Weakest pre-expectations

Approximating while-loops

Let:

while
0(G){P }) = diverge

while
n+1(G){P }) = if (G) then P; while

n(G){P }) else skip

Let �(X ) = ([G] � wp(P, X ) + [¬G] � f ). Then for all n " N it holds:

�
n(0) = wp(while

n(G){P }, f )
Proof.

By induction on n using the inductive definition of wp.
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Probabilistic Programming Weakest pre-expectations
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Probabilistic Programming Properties and compatibility results

Properties of weakest pre-expectations

For all pGCL programs P and expectations f , g it holds:

Z Continuity: wp(P, �) is continuous on (E,F).

Z Monotonicity: f & g implies wp(P, f ) & wp(P, g )
Z Feasibility: f & k implies wp(P, f ) & k

Z Linearity: wp(P, r �f + g ) = r �wp(P, f ) + wp(P, g ) for every r " R'0

Z Strictness: wp(P, 0) = 0

It is good to know: wp(P, 1) = termination probability of program P
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Probabilistic Programming Properties and compatibility results

Backward compatibility

The wp-semantics of pGCL is a conservative extension of Dijkstra’s wp-semantics.

For any ordinary GCL program P and predicate F " P:

wp(P, [F ])Õ“““““““““““““““““““““““““““““—“““““““““““““““““““““““““““““œ
pGCL

= wp(P, F )Õ“““““““““““““““““““““““—“““““““““““““““““““““““œ
Dijkstra
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Probabilistic Programming Properties and compatibility results

Recall: operational semantics of pGCL
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Probabilistic Programming Properties and compatibility results

Weakest pre-expectations = expected rewards

Compatibility theorem

For every pGCL program P, input s and expectation f :

wp(P, f )(s) = ER [[P ]]� s,Ésink ⌥
In words: the wp(P, f ) for input s equals the expected reward to reach final state

sink in MC [[P ]] where reward function r in [[P ]] is defined by: r (Ö⇤, s ¨ã) = f (s ¨)
and r (�) = 0 otherwise.

For finite-state programs, wp-reasoning can be done
with model checkers such as PRISM and Storm (www.stormchecker.org).
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Probabilistic Programming Properties and compatibility results

Example
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Probabilistic Programming Bounded expectations and weakest liberal pre-expectations
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Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

A more tricky loopy program

c := 1;
while (c = 1) {

{ abort } [0.5] { x++ };
{ skip } [0.5] { c := 0 }

}

What is the probability that

either x is even on termination, or the program diverges?
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Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Bounded expectations

Bounded expectations

The set of (one-)bounded expectations, denoted E&1 is defined as:

E&1 = { f " E ∂ f F 1 }

(E&1,F) is a complete lattice.

Proof.

Left as an exercise. The least element is ⁄s.0; the greatest element is ⁄s.1
and suprema are defined as for E.
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Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Weakest liberal pre-expectations

Weakest liberal pre-expectation

For probabilistic program P and e, f " E&1, the expectation transformer

wlp(P, �) ⇥ E&1 � E&1 is defined by wlp(P, f ) = e such that e equals the

expected value of f after executing P on s plus the probability that P
diverges on s.

The characterising equation of a weakest liberal pre-expectation is given

by:

wlp(P, f ) = ⁄s.=
S

f dPs + ⌅1 � =
S

1 dPs⌦
where Ps is the distribution over the final states when executing P
(reached on termination) on the initial state s.

Examples.

Weakest liberal pre-expectation wlp(P, f ) = “wp(P, f ) + Pr[P diverges]¨¨.
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Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Bounded expectation transformer semantics of pGCL

Syntax

Z skip
Z diverge
Z x := E
Z x ⇥⌅ µ

Z P1 ; P2
Z if (G) P1 else P2
Z P1 [p] P2
Z while (G)P

Semantics wlp(P, f )
Z f
Z 1

Z f [x ⇥= E ]
Z ⁄s.=

Q
(⁄v .f (s[x ⇥= v ])) dµs

Z wlp(P1, wlp(P2, f ))
Z [G] � wlp(P1, f ) + [¬G] � wlp(P2, f )
Z p � wlp(P1, f ) + (1�p) � wlp(P2, f )
Z gfp X . ([G] � wlp(P, X ) + [¬G] � f )

gfp is the greatest fixed point operator wrt. the ordering F on bounded

expectations E&1.
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Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Bounded expectation transformer semantics of pGCL
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Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Loops

wlp(while (G){P }, f ) = gfp X . ([G] � wlp(P, X ) + [¬G] � f )Õ“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““—“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““œ
�(X )

Scott continuity of �

The function � ⇥ E&1 � E&1 (defined as above) is continuous on (E&1,F).
Proof.

Left as an exercise.

Corollary

By Kleene’s fixpoint theorem, it follows gfp � = supn"N �
n(1).

�
n(1) denotes the expected value over the final states of running

while (G){P } exactly n times for the constant expectation 1.
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Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

A more tricky loopy program

c := 1;
while (c = 1) {

{ abort } [0.5] { x++ };
{ skip } [0.5] { c := 0 }

}

What is the probability that

either x is even on termination, or the program diverges?
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Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Properties of weakest liberal pre-expectations

For all pGCL programs P and bounded expectations f , g it holds:

Z Continuity: wlp(P, �) is continuous on (E&1,F)
Z Monotonicity: f & g implies wlp(P, f ) & wlp(P, g )
Z Superlinearity: r �wlp(P, f ) + wlp(P, g ) & wlp(P, r �f + g ) for every

r " R'0

Z Duality: wlp(P, f ) = wp(P, f ) + (1 � wp(P, 1))
wp(P, 1) = termination probability of program P

Z Coincidence: wlp(P, f ) = wp(P, f ) for a.s.-terminating P

Z Co-strictness: wlp(P, 1) = 1
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