Probabilistic Programming

Probabilistic Programming

Lecture #7: Probabilistic Weakest Preconditions

Joost-Pieter Katoen

: Software Modeling

‘ Bl and Verification Chair

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/37

Probabilistic Programming

Overview

@ Motivation

© The probabilistic guarded command language
e Weakest pre-expectations

@ Properties and compatibility results

e Bounded expectations and weakest liberal pre-expectations

Joost-Pieter Katoen Probabilistic Programming 2/37

Code-level reasoning

Proving properties of probabilistic programs: not by executing them,
but by reasoning at the syntax level of programs.

Compositionality: determine the correctness of composed program P
by reasoning about its parts in isolation and
then obtain P's correctness result by combining those parts’ analyses.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming The probabilistic guarded command language

Overview

© The probabilistic guarded command language

Joost-Pieter Katoen ilistic Programming

Probabilistic Programming The probabilistic guarded command language

Elementary pGCL ingredients

v

Program variables x € Vars whose values are fractional numbers

v

Arithmetic expressions E over the program variables

» Boolean expressions G (guarding a choice or loop) over the program

variables wnid To..]
K X=2
.S
» A distribution expression pu : X = Dist(Q) Y41
» A probability expression p: X - [0,1] n Q j

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming The probabilistic guarded command language

Probabilistic GCL: Syntax

vV V.V vV v v VY

Joost-Pieter Katoen Probabilistic Programming 7/37

Mclver

skip empty statement
diverge divergence
x :=E assignment
X :r= mu random assignment (x : =)
progl ; prog2 sequential composition
if (G) progl else prog2 choice
progl [p] prog2 probabilistic choice
while (G) prog iteration

Conditioning will be treated later. For the moment: no conditioning.

Probabilistic Programming The probabilistic guarded command language

Examples: Intuition

1. Let program P be:
x := 5 [4/5] x := 10

The expected value of x on P's termination is:

alls

2. Let program Q be: .o
Xi=2 3§ (x := x+5 [4/5] x := 10) ol

The expected value of x on Q's termination is: %-(x+5) +:10=3+6

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming The probabilistic guarded command language

Examples: Intuition

1. Let program P be:
x := 5 [4/5] x := 10

The expected value of x on P's termination is: §-5 + %-10 ;@

2. Let program Q be:
x := x+5 [4/5] x := 10

The expected value of x on Q's termination is: %-(x+5) + %-10

Cx=19) (=10 (x::ma
3. The probability that x = 10 on Q's terminatjef is: e o ¥
77 V°‘ whe~ MD

%'[x+5=10]+%-1=]

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

The probabilistic guarded command language

Expected values

A probability distribution ¢ on a countable set X is a function
p: X —>[0,1] such that) .y p(x) = 1.

The expected value of random variable f : X = R under distribution p is
defined by:

Ef) = Y x)-nbx) = [Fd

xeX
I x For J\cu)zﬁ(u);i
as 3% 3x\9s N
-@:5 s, 3% 3x\%s Eﬁ(@): Ao

S oMy AR

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming The probabilistic guarded command language

Expectations

Predicates

A predicate F maps program states onto Booleans, i.e., F: S - B.

Let P denote the set of all predicates and F E G if and only if F = G.

Expectations are the quantitative analogue of predicates.

Expectations

A expectation1 (read: random variable) f maps program states onto
non-negative reals extended with infinity, i.e., f : S > RyouU {00}

Let E denote the set of all expectations and let E be defined for f, g € E

by:
fCg ifandonlyif f(s)<g(s) forallseS.

1 . . e
expectations in probability theory.
Joost-Pieter Katoen Probabilistic Programming 10/37

Probabilistic Programming The probabilistic guarded command language

Expectations

(E,E) is a complete lattice.

Left as exercise. The least element of (E, E) is the constant function As.0, also
denoted as 0 defined by 0(s) = 0. The supremum of a subset S € E is constructed
point-wise by sup S = supys f. L]

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming The probabilistic guarded command language

Operations on expectations

» For k € Rygu {00}, let A\s.k denote the expectation that is constantly
k for all s

» For expression E, x € Vars and f € E,

_ ~ fly) ifx+y
fbe=EJs) = { [ETs otherwise
» For f € E and c € Ryq, (c- f)(s) = c- f(s)

» For f,g €, let (f + g)(s) = f(s) + g(s). Multiplication and
subtraction are defined analogously.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

Overview

© Weakest pre-expectations

Joost-Pieter Katoen istic Programmi

Expectation transformers

Predicate transformer

A predicate transformer @ is a total function between predicates, i.e.,
®:P->P.

Expectation transformer

An expectation transformer @ is a total function between expectations,
e, P:E->E.

Joost-Pieter Katoen Probabilistic Programming 14/37

Weakest pre-expectations

Weakest precondition

For probabilistic program P and e, f € E, the expectation transformer
wp(P,) : E - E is defined by wp(P, f) = e iff e maps each (initial) state s
to the expected value of f after executing P on s.

The characterising equation of a weakest pre-expectation is given by:
p(P,f) = As. / f dP;

where P; is the distribution over the final states (reached on termination
of P) when executing P on the initial state s.

’P
S= {X:’\O /_/-5\/\/'“\) (D\‘-‘sk <$>
¥=2

Joost-Pieter Katoen Probabilistic Programming

Weakest pre-expectations

Weakest precondition

For probabilistic program P and e, f € E, the expectation transformer
wp(P,+) : E - E is defined by wp(P, f) = e iff e maps each (initial) state s
to the expected value of f after executing P on s.

The characterising equation of a weakest pre-expectation is given by:
p(P,f) = As. / f dP;

where P; is the distribution over the final states (reached on termination
of P) when executing P on the initial state s.

|
Examples.

Joost-Pieter Katoen Probabilistic Programming

P < K=o \[\/2,] 7(::;’\} X) _

4 (7

(aes\t N

1=

P C oo {\11 <=1
R?’(Q) 15\6\\{35 Q\St\i KT =RAN
cr=s 03w

/
:Q—(Q))Z\)\c:p/g < \se é)ﬁf:x)f’\ﬁ

b

7{) Pl {ar__L
.

K51 pr‘,b]

)

x P

X ¥z o .

\) —+
f\—zx«%— :(%’ro +: (xwl) ele |

8) \AP<XS:D') Ci=0
Y (Q:Q> >' Ct=" E&p3 KT:X’})"S 5

%) . e
.

Probabilistic Programming Weakest pre-expectations

Reasoning about probabilities

t)(:‘\bj
——
I F
An important special case is when the post-expectation is given as [F]

with F € P. We then can consider F as an event and wp(P,[F])(s) as the
probability that executing P on input s will terminate in a final state 7 F F.

wp(®§)=

,‘:xz‘sj A+
£z [k} il =
~_—N

Pi xo=xas LY xizve

Probabilistic Programming

Joost-Pieter Katoen

Probabilistic Programmin Weakest pre-expectations
8! g P P

Reasoning about probabilities

An important special case is when the post-expectation is given as [F]
with F € P. We then can consider F as an event and wp(P, [F])(s) as the
probability that executing P on input s will terminate in a final state 7 F F.

See the third example a few slides ago. More examples later.

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

Expectation transformer semantics of pGCL
pecL \NPC?) '\:)

G feE

> skip ‘c

(@]
> diverge -
> x := E 'Q()('-=E)
> Xz wp (91) \,.»P(\’Z)Q))
> if (G)P1 else P2 P4 > z
> P1 [p] P2 w KJ

while (G)P
fc;] * \"f’(?-\, '&)

p-op(P,) 4+ [6]- we(%.5)

A (r-p)- ¥ (Pt.$7

Joost-Pieter Katoen Probabilistic Programming

Expectation transformer semantics of pGCL

SnaL e B

> skip > f P (P, Q): e GE
» 0

> diverge)\ (X

o %_- (X +2
S o > f[x:=E])

. Cx)=
> x iz > As. Q(/\v.f(s[x = v])) dus
T

> P1 ; P2 K=z
> if (G)P1 else P Y [a...<]
» P1 [p] P2 T
» while (G)P s(x) = A0

Ms = wn§ [r.ons]

Joost-Pieter Katoen Probabilistic Programming

Expectation transformer semantics of pGCL

SnaL e B

> skip -

> diverge -0

> - E > f[x:=E]

> x i > As./@(/\v.f(s[x = v])) dus

» P1 ; P2 > wp(Py, wp(Pa, f))

» if (G)P1 else P2 > [G]- wp(Py, f) +[~G]- wp(Ps, f)

» P1 [p] P2 » p-wp(Py, f)+ (1-p) - wp(P5, f)
» while (G)P Ifp X. ([G]- wp(P, X) +[=G]-f)

v

Ifp is the least fixed point operator wrt. the ordering € on expectations E.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

Examples

1. Let program P be:
x :=5 [4/5] x := 10

For f = x, we have

_ 4 . 1 . _ 4 110 _
= 2wp(x :=5,x) + swp(x :=10,x) = z-5+ £-10 =6

1 J 1
dzg. bg' dcg . OQ
P ‘CD('P, [P3 @L

wp(P, x)

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

Examples

1. Let program P be:
x :=5 [4/5] x := 10
For f = x, we have
wp(P, x) = %'WP(X =5 x)+ %'WP(X :=10,x) = %-5 +:10=6
2. Let program P' be:
x := x+5 [4/5] x := 10

For f = x, we have:
wp(P', x) = %'WP(X+Z= 5 x)+ %~Wp(x :=10,x) = %~(x+5) + %-10 = %X +6
e f;n(
Te)

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

Examples

1. Let program P be:
x :=5 [4/5] x := 10

For f = x, we have
wp(P, x) = %'WP(X =5 x)+ %'WP(X :=10,x) = 2.5+ £10=6
2. Let program P' be:
x := x+5 [4/5] x := 10

For f = x, we have:

wp(P', x) = -wp(x +:= 5, x) + %~Wp(x :=10,x) = %~(x+5) + %-10 = %X +6

5
3. For program P' (again) and f =[x = 10], we have:

wp(P', [x=10]) = Z-wp(x :=x+5,[x=10]) + % - wp(x = 10, [x=10])
-[x+5 = 10]+ ¢ - [10 = 10]

Deslil L —_

5 [)(:51 =\

S ald ald

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

x :=0 [1/2] x :=1; // command ci

=0 [1/3] y := 1; // command c2

<
i

wp(cy; &, [x = y])

wp(cy, wpl(e, [x = 1)

OO ol = 07 = 1)4 SEEz 7 = Tl = 7]

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

x :=0 [1/2] x :=

=1; // command cl
=0 [1/3] y := 1;

<
|

// command c2

wp(cy; &, [x = y])

wp(cr, wp(c, [x = y]))

wolcy, Ywply = 0, [x = y]) + 2awply = 1, [x = y])

wp(cy, Yf3[x = 0] +2/3[x = 1])

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

x := 0 [1/2] x :=
=0 [1/3] y :

1; // command c1
1; // command c2

<
i

wp(cy; &, [x = y])

wp(cr, wp(c, [x = y]))

wolcy, Ywply = 0, [x = y]) + 2rwply = 1, [x = y])
welc, alx = 0] + 2fax = 1]

Yawp(x := 0,Ys[x = 0] + %/3[x = 1]) + H/2wp(x := 1,Y/3[x = 0] + /3-[x = 1])

N N

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

x :=0 [1/2] x :=1; // command ci
:= 0 [1/3] y := 1; // command c2

<
i

wp(cy; &, [x = y])

wp(cr, wp(c, [x = y]))

wolcy, Ywply = 0, [x = y]) + 2rwply = 1, [x = y])

wp(cy, Yf3[x = 0] +2/3[x = 1])

Yawp(x i= 0,Y3[x = 0] + %/3[x = 1]) + Y2 wp(x := 1,Y/3[x = 0] + /3:[x = 1])

Y2 (4/3[0 = 0] +2/3[0 = 1]) ;1/2'(1/3'[1 =0]+2/3[1=1])

—_ e —_— —_—
=\ -~
= zo =0 = |

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

0 [1/2] x :
0 [1/3] y :

1; // command c1
1; // command c2

<
0o

wp(cy; &, [x = y])

wp(cr, wp(c, [x = y]))

walcy, Ywply = 0, [x = y]) + 2zwply = 1, [x = y])

wp(cy, Yf3[x = 0] +2/3[x = 1])

Yorwplx = 0, Ya[x = 0] + 2fax = 1) + Yawplx 1= 1,33 x = 0]+ 5]x = 1))
Yo (500 = 0] + 250 = 1)) + Y- (571 = 0] + %71 = 1)
o 0L +2/50) + - (450 + 951
o 0+ 2
N

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

A simple slot machine

void flip {
di := Q [1/2] ©;
d2 := Q [1/2] ©;
d3 := Q [1/2] ©;
}

Example weakest pre-expectations

Let all[x) = (x =d; = db = d3).
> If £ =[all()], then wp(flip, f) = %
» If g=10-[all(®)]+5-[all(<¢)], then:
. 15 1 1 1
wp(flip, g) = 5 6-§-O+1-§-10+1-§-5

So the least fraction of the jackpot the gamer can expect to win is %.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Weakest pre-expectations

wplwhile (G){ P}, f) = IfpX. ([G]- wp(P, X) + [~G]-)

. J

v(X)

Scott continuity of W

The function W : E - E (defined as above) is continuous on (E, E).

[]

Left as an exercise. By structural induction on pGCL programs.

Corollary

By Kleene's fixpoint theorem, it follows Ifp W = sup ey V" (0).

W "(0) is the expected value over the final states of running while (G){ P}
exactly n times when starting with the constant expectation 0.

Joost-Pieter Katoen Probabilistic Programming

A simple loopy program

x := 0;
while (c) {

{c:=013%[0.5] { x++}
}

What is the expected value of x on termination?

Joost-Pieter Katoen Probabilistic Programming

Lo (\..)\r\?\\{ (<) \&csz [“L} 7<+F}PS ; X)

Y(x) = TeaJ wp Carzo (3 % X) 4 Tedd] - %
— ... cdNcl\ew .. _
= ©=) (3% () v) X (imxn))
+ Ted1] - %
keedly s W(0) =0
¥'(2) = [edr]-x
¥* () = Y (Ced)-»)
_ T (L Teigen (o) 3 Ced o)
o Let] o
- =) (3ox v 0] () « Cedi]-x
= Te= -3 % + Leda)-%

¥ (0) = ¥ (Temd %<~ Led o)

Nt (3x+ 2 Gen) o Tedil

V)=] D () (oa) 4 Tedi) x

o<igN

wop (u\a\\e (<) \{Q'»:D CV'—} ><<:><—h’g > se}

I\
(-/',
f
i
at)

v Mg
N
NI
N

Co
~

R
PO
4
—/
+
—
&
L
= 4
cJ
X

) _ : i
K =0
\pp (X7=0) \co?>
= :
= tC:B Z Q) < =\
L=
i 2
oo Z \9‘9(\“—-—\ :—/P foc \‘o\</\
V= @»P)z

Approximating while-loops N
Q) YW(¥k))
Let:

while®(G){ P})
while™ (G){ P})

diverge

if (G) then P;while"(G){ P}) else skip

Joost-Pieter Katoen Probabilistic Programming

Approximating while-loops

Let:
while®(G){ P})
while™(G){ P})

diverge

if (G) then P;while"(G){ P}) else skip

|
Let W(X) = ([G]- wp(P, X) + [~G]-f). Then for all n € N it holds:

v"(0) = wp(while"(G){ P},)

Joost-Pieter Katoen Probabilistic Programming

Approximating while-loops

Let:
while®(G){ P})
while™(G){ P})

diverge

if (G) then P;while"(G){ P}) else skip

|
Let W(X) = ([G]- wp(P, X) + [~G]-). Then for all n € N it holds:

v"(0) = wp(while"(G){ P},)

By induction on n using the inductive definition of wp. [

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Properties and compatibility results

Overview

@ Properties and compatibility results

Joost-Pieter Katoen ilistic Programming

Properties of weakest pre-expectations
For all pGCL programs P and expectations f, g it holds:

» Continuity: wp(P,) is continuous on (E, E).

Joost-Pieter Katoen Probabilistic Programming

Properties of weakest pre-expectations
For all pGCL programs P and expectations f, g it holds:

» Continuity: wp(P,) is continuous on (E, E).

» Monotonicity: f < g implies wp(P, f) < wp(P, g)
() s 36)

Joost-Pieter Katoen Probabilistic Programming

Properties of weakest pre-expectations
For all pGCL programs P and expectations f, g it holds:

» Continuity: wp(P,) is continuous on (E, E).
» Monotonicity: f < g implies wp(P, f) < wp(P, g)

» Feasibility: f <k implies wp(P, f) <k

—c\ S— (2>°+°“

Vs fN =k

Joost-Pieter Katoen Probabilistic Programming

Properties of weakest pre-expectations
For all pGCL programs P and expectations f, g it holds:

» Continuity: wp(P,) is continuous on (E, E).
» Monotonicity: f < g implies wp(P, f) < wp(P, g)
» Feasibility: f <k implies wp(P, f) <k

» Linearity: wp(P,r-f +g) = r-wp(P,)+ wp(P, g) for every r € Ryg

e <?/ . ?) = . (?'S;>

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Properties and compatibility results

Properties of weakest pre-expectations
For all pGCL programs P and expectations f, g it holds:

» Continuity: wp(P,) is continuous on (E, E).

» Monotonicity: f < g implies wp(P, f) < wp(P, g)

» Feasibility: f <k implies wp(P, f) < k

» Linearity: wp(P,r-f +g) = r-wp(P,)+ wp(P, g) for every r € Ryg
» Strictness: wp(P,0)=0

It is good to know: wp(P, 1) = termination probability of program P

Joost-Pieter Katoen

Probabilistic Programming

Backward compatibility

|
The wp-semantics of pGCL is a conservative extension of Dijkstra's wp-semantics.

For any ordinary GCL program P and predicate F € P:

[wolP.[F))] = wolP.F)
pGCL Dijkstra

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Properties and compatibility results

Recall: operational semantics of pGCL
\"Q\JQ(‘A

PGCL progren Makov <hae

. Te]

o

7 L
C/// @
we (?)’Q>

‘:—(.s")

Joost-Pieter Katoen Probabilistic Programming

Weakest pre-expectations = expected rewards

Compatibility theorem

For every pGCL program P, input s and expectation f:

wp(P,f)(s) = ERLPI(s osink)

In words: the wp(P, f) for input s equals the expected reward to reach final state
sink in MC [[P] where reward function r in [P]| is defined by: r({{,s)) = f(s')
and r(-) = 0 otherwise.

For finite-state programs, wp-reasoning can be done
with model checkers such as PRISM and Storm (www.stormchecker.org).

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programm Properties and compat

Example

ieter Katoen

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Overview

© Bounded expectations and weakest liberal pre-expectations

Joost-Pieter Katoen ilistic Programming

A more tricky loopy program

c :=1;
while (¢ = 1) {
O\\\,,,:, { abort } [0.5] { x++ };
{ skip } [0.5] { ¢c :=0}
}

What is the probability that
either x is even on termination, or the program diverges?

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Bounded expectations £ 5o R, 4w

Bounded expectations

The set of (one-)bounded expectations, denoted E; is defined as:

Joost-Pieter Katoen Probabilistic Programming

_Probabilistic Programming _______________________MEdliceclespectanonaandivearedlibe e Ipiserpecration R
Bounded expectations

Bounded expectations

The set of (one-)bounded expectations, denoted E; is defined as:

Ey = {feE|fcl)

|
(E<1,E) is a complete lattice.

Proof.
Left as an exercise. The least element is As.0; the greatest element is As.1
and suprema are defined as for E. Ol

Joost-Pieter Katoen Probabilistic Programming

Weakest liberal pre-expectations

Weakest liberal pre-expectation

For probabilistic program P and e, f € [E<1, the expectation transformer
wip(P,+) : E<; = E< is defined by wip(P,) = e such that e equals the
expected value of 7 after executing P on s plus the probability that P
diverges on s. — wr ")

The characterising equation of a weakest lib€ral pre-expectation is given
by:

-

wip(P,) =)\s/fdP +(—/SldPs) s wp(®)

where P; is the distribution over tfe final states when executing P
(reached on termination) on the initial state s.

we(B8) =< W (P = we (RO
wp (P1) = prob. o P demninay

Joost-Pieter Katoen Probabilistic Programming

Weakest liberal pre-expectations

Weakest liberal pre-expectation

For probabilistic program P and e, f € [E<1, the expectation transformer
wip(P,+) : E<; = E< is defined by wip(P,) = e such that e equals the
expected value of 7 after executing P on s plus the probability that P
diverges on s.

The characterising equation of a weakest liberal pre-expectation is given

by:
wip(P, f) =)\s./fdPs+(1 —/ldPs)
S S

where P; is the distribution over the final states when executing P
(reached on termination) on the initial state s.

|
Examples.

Weakest liberal pre-expectation wip(P, f) = “wp(P, f) + P{P diverges]".

Joost-Pieter Katoen Probabilistic Programming 33/37

= e (xi=10,--)
i Sl (d.\wse> [x:\Q) Jr%[«i:/@

—

—
C—

A\

— 1

—

\
A

Bounded expectation transformer semantics of pGCL

e (2.5

: :li{\lr:rge -'_‘\:_ = 5‘“‘“& > (Es"E
> x :=E -;(%::E)

> oxim

» P1 ; P2 e (\’.\\0\9(";,9\)

» if (G)P1 else P2

» P1 [p] P2

» while (G)P

\'J\'P (P)) E$1 — ES'\

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Bounded expectation transformer semantics of pGCL

S

> f

> skip
¢
- > f[x = E]

> x :=E

N > Xs. /@ Dvrnlilie = vl i

> Pl P2 > wip(Py, wip(P,, f))

> if (OP1 else P2\ 1G] wip(Py, f) +[-G]- wip(Py, f)
> PL [p] P2 > p-wip(Py, f) + (1-p) - wip(P, f)
> while (G)P > gfp X. ([G]- wip(P, X) +[~G]-)

gfp is the greatest fixed point operator wrt. the ordering E on bounded
expectations Eq.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

wip(while (G){ P}, f) = gfp X. ([G]- wip(P, X) + [=G]-f)

\)

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

wip(while (G){ P}, f) = gfp X. ([G]- wip(P,)'() + [=G]- 1)

\

Scott continuity of W

£
x

The function W : E.; - E.; (defined as above) is continuous on (Eg, E).

Left as an exercise. OJ

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

wip(while (G){ P}, f) = gfp X. ([G] -wlp(P, X) + [~G]- f)}
W(X)

Scott continuity of W

The function W : E.; - E.; (defined as above) is continuous on (Eg, E).

Left as an exercise.

Corollary

By Kleene's fixpoint theorem, it follows gfp W = sup ey V" (1).

®"(1) denotes the expected value over the final states of running
while (G){ P} exactly n times for the constant expectation 1.

Joost-Pieter Katoen Probabilistic Programming

A more tricky loopy program

c :=1;

while (c = 1) {
{ abort } [0.5] { x++ };
{ skip } [0.5] { ¢c :=0}

What is the probability that
either x is even on termination, or the program diverges?

Joost-Pieter Katoen Probabilistic Programming

ci=1y e ()) av GG] xar 5 sk G QT:O’\S

= [« s egen |
Y (x) = {ed) -« mj + (=1l (é_’+X(><:=u+\3-\—X§j§
L —
Y @) = Ted] - Tx eel + o)
Y1) = Tedq)- [« w] A+ e=t) <— + CKQCM]>
L

+ et <M b o] Bm@

‘3 —
V) S 4 *\5+‘1/

¢

s b\\e.\a\s e ‘(OQ‘T\QN\E

V()2 Ceday Ix w}

LT PRATRERN
4 [o=n) (2

+'\ +Z X e zzségcka

'2,((—\—\)
(=0 &

\~‘}° (w\n:\e . [x Qr-ﬂ-ﬁj> = S;{;\\Q

[Cz(\j ~{)< M.ci—] A EC""] (_é' +L\ CXOC"A} N Cx {Nﬁv:‘>

1S A
LY
QB' Z Z(HO = (\ = i
{=o 4 (=0 1_-5 s
4 Uxe 0&&] &)
e e T) G

Probabilistic Programming Bounded expectations and weakest liberal pre-expectations

Properties of weakest liberal pre-expectations
For all pGCL programs P and bounded expectations f, g it holds:

» Continuity: wip(P,-) is continuous on (E<q, E)
» Monotonicity: f < g implies wip(P,) < wip(P, g)

» Superlinearity: r-wip(P, f)+ wip(P, g) < wip(P, r-f + g) for every
r € Ryg

» Duality: wip(P,f) = wp(P, f)+ (1 - wp(P,1))
wp(P, 1) = termination probability of program P

> Coincidence:(wilp(P, f) = wp(P, f)|for a.s.-terminating P

|
wp(P9) =9

» Co-strictness: wip(P,1)=1

Joost-Pieter Katoen Probabilistic Programming

