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Probabilistic Programming Motivation

What we all know about termination

The halting problem

— does a program P terminate on a given input state s? —

is semi-decidable.

The universal halting problem

— does a program P terminate on all input states? —

is undecidable.

Alan Mathison Turing

On computable numbers,

with an application to the Entscheidungsproblem

1937
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Probabilistic Programming Motivation

Complexity jump for termination
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Probabilistic Programming Motivation

What if programs roll dice?
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Probabilistic Programming Motivation

A radical change

Z A program either terminates or not (on a given input)

Z Terminating programs have a finite run time

Z Terminating in finite time is a compositional property

All these facts do not hold for probabilistic programs!
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Probabilistic Programming Nuances of termination

Certain termination

i := 100; while (i > 0) { i-- }

This program certainly terminates.
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Probabilistic Programming Nuances of termination

Almost-sure termination

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i := 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program does not always terminate. It almost surely terminates.
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Probabilistic Programming Nuances of termination

Almost-sure termination

Do the following programs almost surely terminate?

P := (skip [0.5] call P)

P := (skip [0.5] call P; call P)

P := (skip [0.5] call P; call P; call P)
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Probabilistic Programming Nuances of termination

Positive almost-sure termination

For 0 < p < 1 an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i++;
(c := false [p] c := true)

}

This program almost surely terminates. In finite expected time.

Despite its possibility of divergence.
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Probabilistic Programming Nuances of termination

Null almost-sure termination

Consider the one-dimensional (symmetric) random walk:

int x := 10; while (x > 0) { x-- [1/2] x++ }

This program almost surely terminates

but requires an infinite expected time to do so.
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Probabilistic Programming Nuances of termination

Compositionality

Consider the two probabilistic programs:

int x := 1;
bool c := true;
while (c) {

c := false [0.5] c := true;
x := 2*x

}

Finite expected termination time

while (x > 0) {
x--

}

Finite termination time

Running the right after the left program

yields an infinite expected termination time
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Probabilistic Programming Nuances of termination

Nuances of termination Olivier Bournez Florent Garnier

. . . . . . certain termination

. . . . . . termination with probability one

º almost-sure termination

. . . . . . in an expected finite number of steps

º “positive” almost-sure termination

. . . . . . in an expected infinite number of steps

º “null” almost-sure termination
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Probabilistic Programming Hardness of almost-sure termination

Computable approximations of such distributions

1. The (sub-)distribution [[P ]]=k
s of pGCL program P over final states on

input s after exactly k computation steps is defined by:

[[P ]]=k
s (t) = 9

‡"�

q with � = {‡ = Ö⇤, t, k, ◊, qã ∂ ÖP, s, 0, Á, 1ã �ò
‡ }

2. The k-the approximation of the weakest pre-expectation wp(P, f ) is

defined by:

wp(P, f )=k (s) = 9
t"�P

[[P ]]=k
s (t) � f (t)

3. The computable weakest pre-expectations are defined by:

wp(P, f )(s) =
ô

9
k=0

wp(P, f )=k (s)
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Probabilistic Programming Hardness of almost-sure termination

Almost-sure termination

Similar to the halting H and the universal halting problem UH,

we define the decision problems AST and UAST

The decision problems AST and UAST
Let P be a pGCL program, s " S a variable valuation. Then:

(P, s) " AST i� wp(P, 1)(s) = 1
P " UAST i� ºs " S. (P, s) " AST

Examples
The geometric distribution program " UAST , one-dimensional symmetric random

walk " UAST , one-dimensional asymmetric random walk /" UAST , but for input

0 is in AST .
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Probabilistic Programming Hardness of almost-sure termination

Hardness of almost-sure termination

The decision problems AST and UAST
Let P be a pGCL program, s " S a variable valuation. Then:

(P, s) " AST i� wp(P, 1)(s) = 1
P " UAST i� ºs " S. (P, s) " AST

Hardness of almost-sure termination
AST and UAST are both �2-complete.

Proof.
For AST on the black board. UAST : straightforward from the definition

of UAST and the fact that AST is �2-complete.
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Probabilistic Programming Hardness of almost-sure termination

Interpreting this hardness result

Deciding almost-sure termination of a probabilistic program

for a single input

is as hard as

deciding termination of an ordinary program for all inputs

is as hard as

deciding almost-sure termination of a probabilistic program

for all inputs.
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Probabilistic Programming Hardness of positive almost-sure termination
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Probabilistic Programming Hardness of positive almost-sure termination

The expected run-time of a program

The expected run-time of a program
The expected run-time of pGCL program P on input state s is defined by:

ert(P, s) =
ô

9
k=1

�1 � 9
Ö⇤,...,qã"C<k

q⌥
where C<k

is the set of final configurations that can be reached in less

than k steps by running P on input state s:

C<k = {‡ = Ö⇤, t, n, ◊, qã ∂ ÖP, s, 0, Á, 1ã �ò
‡ and n < k }
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Probabilistic Programming Hardness of positive almost-sure termination

Computable approximations of expected run-times
The expected run-time of a program in k steps
The expected run-time of pGCL program P running on input state s for at

most m steps is defined by:

ert&m(P, s) =
m
9
k=1

�1 � 9
Ö⇤,...,qã"C<k

q⌥
where C<k

is the set of final configurations that can be reached in less

than k steps by running P on input state s.

It follows that ert&m(P, s) is computable
1

Moreover, we have: ert(P, s) = supm"N ert&m(P, s)

1
due to the Kleene Normal Form Theorem.
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Probabilistic Programming Hardness of positive almost-sure termination

Positive almost-sure termination

The decision problems PAST and UPAST
Let P be a pGCL program, s " S a variable valuation. Then:

(P, s) " PAST i� ert(P, s) < ô

P " UPAST i� ºs " S. (P, s) " PAST

It follows that PAST ‡ AST and UPAST ‡ UAST .
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Probabilistic Programming Hardness of positive almost-sure termination

Positive almost-sure termination

Hardness of positive almost-sure termination

1. PAST is �2-complete.

2. UPAST is �3-complete.

Proof.

1. PAST " �2: on black board; �2-hardness: sketch on next slides.

2. See the lecture notes (on the web page).
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Probabilistic Programming Hardness of positive almost-sure termination

Proof idea: hardness of positive as-termination

Reduction from the complement of the universal halting problem
For an ordinary program Q, provide a probabilistic program P (depending on Q)

and an input s, such that

P terminates in a finite expected number of steps on s
if and only if

Q does not terminate on some input
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-

Ez - hard

Correctness :

r .

. Utt 1-3 past QE Utt

- Iff

Ez - complete
r f Q ) E PAST



PAST E Zz

( P
,

s ) c- PAST

Tff

ert ( P
, s ) c is

jff

Fcs ert CP
, s ) a c

Tff

F.c :sup ertsm Cp ,
s ) ⇐ C

M

Tff

Fc
.

He ertslcp
,

s ) < c

-

Ez - formula
.

DX
,



Probabilistic Programming Hardness of positive almost-sure termination

Let’s start simple
bool c := true;
int nrflips := 0;
while (c) {

nrflips++;
(c := false [0.5] c := true);

}

Expected runtime (integral over the bars):

1

The nrflips-th iteration takes place with probability 1/2
nrflips.
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Probabilistic Programming Hardness of positive almost-sure termination

Reducing an ordinary program to a probabilistic one

Assume an enumeration of all inputs for Q is given

bool c := true;
int nrflips := 0;
int i := 0;
while (c) {

// simulate Q for one (further) step on its i-th input
if (Q terminates on its i-th input) {

cheer; // take 2
nrflips effectless steps

i++;
// reset simulation of program Q

}
nrflips++;
(c := false [0.5] c := true);

}

P looses interest in further simulating Q by a coin flip to decide for termination.
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Probabilistic Programming Hardness of positive almost-sure termination

Q does not always halt
Let i be the first input for which Q does not terminate.

Expected runtime of P (integral over the bars):

1

cheering on termination on (i�1)-th input

Finite cheering — finite expected runtime
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Probabilistic Programming Hardness of positive almost-sure termination

Q terminates on all inputs

Expected runtime of P (integral over the bars):

⇧

1

Infinite cheering — infinite expected runtime
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Probabilistic Programming Hardness of positive almost-sure termination

Hardness of almost sure termination

�1 �1

�1

�2 �2

�2

�3 �3

�3

⌃

H H

UH UH

COF COF

PAST
AST

UAST

UPAST
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Probabilistic Programming Hardness of positive almost-sure termination

Complexity landscape
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Probabilistic Programming Hardness of positive almost-sure termination

Interpretation of these results

There is a complexity gap

between termination on one or all inputs

but not

between almost-sure termination on one or all inputs

but again

between positive almost-sure termination on one or all inputs
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