Probabilistic Programming Lecture #13: Hardness of Almost-Sure Termination

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Overview



Overview

- 2 Nuances of termination
- 3 Hardness of almost-sure termination
- 4 Hardness of positive almost-sure termination

What we all know about termination

The halting problem — does a program *P* terminate on a given input state *s*? is semi-decidable.

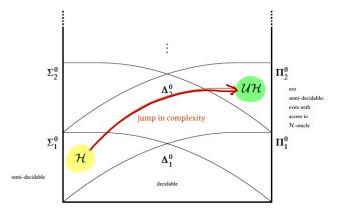
The universal halting problem — does a program *P* terminate on all input states? is undecidable.

Alan Mathison Turing

On computable numbers, with an application to the Entscheidungsproblem

1937

Complexity jump for termination



What if programs roll dice?

A radical change

- A program either terminates or not (on a given input)
- Terminating programs have a finite run time
- Terminating in finite time is a compositional property

A radical change

- A program either terminates or not (on a given input)
- Terminating programs have a finite run time
- Terminating in finite time is a compositional property

All these facts do not hold for probabilistic programs!

Overview



- 3 Hardness of almost-sure termination
- 4 Hardness of positive almost-sure termination

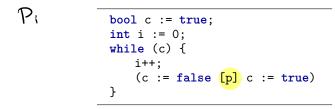
Certain termination

i := 100; while (i > 0) { i-- }

This program certainly terminates.

P∉H

For 0 an arbitrary probability:



This program does not always terminate. It almost surely terminates.

Do the following programs almost surely terminate?

(2)

$$\begin{array}{c}
P := (skip [0.5] call P; call P) \\
\hline
t p = \frac{1}{2} \cdot 1 + \frac{1}{2} t_{p} t_{p} = b_{p} = \frac{1}{2} + \frac{1}{2} t_{p}^{2} \\
\end{array}$$
(3)

$$\begin{array}{c}
P := (skip [0.5] call P; call P; call P) \\
\hline
t p = \frac{1}{2} \cdot 1 + \frac{1}{2} t_{p}^{2} \longrightarrow b_{p} = \frac{1 - \sqrt{5}}{2} \\
\end{array}$$

Positive almost-sure termination

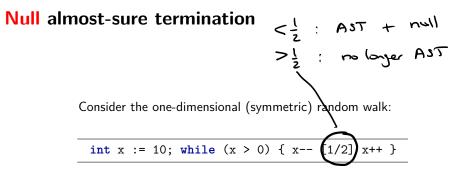
$$\mathcal{P}$$
:: For $0 an arbitrary probability:$

Geom (p)
$$\begin{cases} bool c := true; \\ int i := 0; \\ while (c) { i++; \\ (c := false [p] c := true) } \\ \end{cases}$$

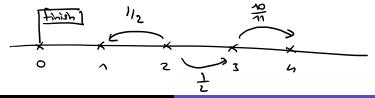
This program almost surely terminates. In finite expected time. Despite its possibility of divergence. \searrow $_$

$$\operatorname{ert}(\mathsf{P}) = 2 + \frac{3}{\mathsf{P}} < \infty$$

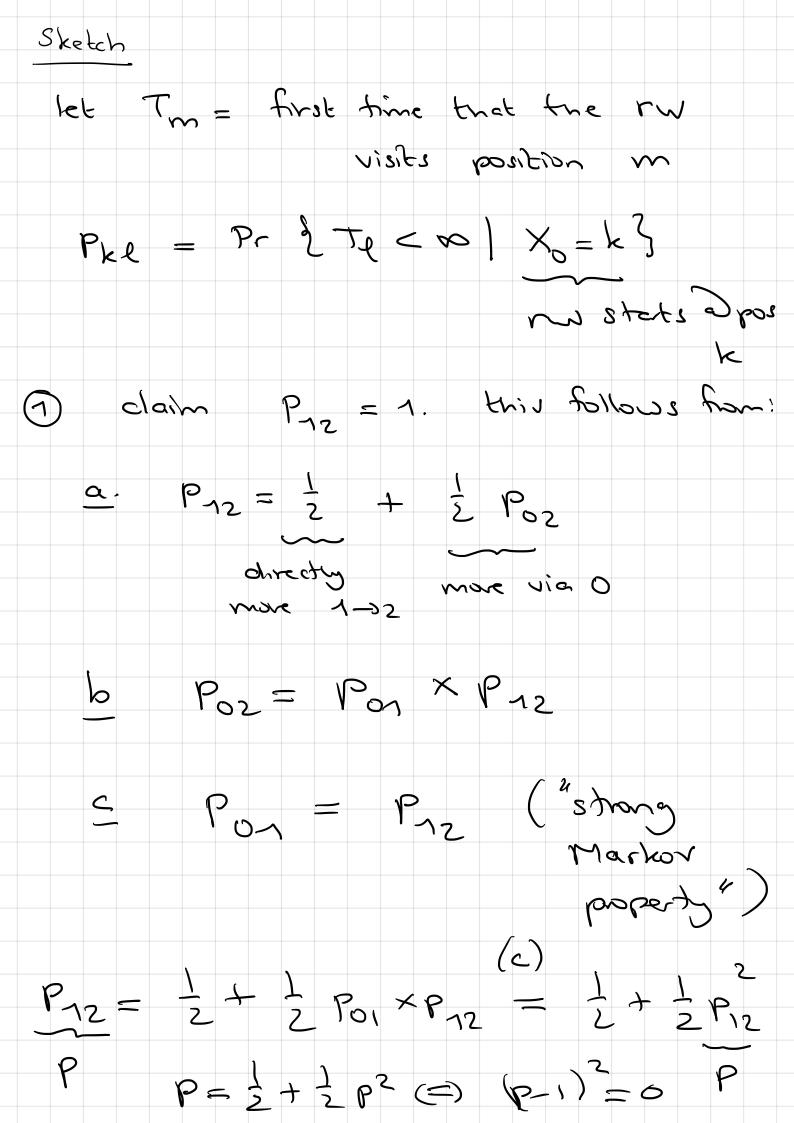
p

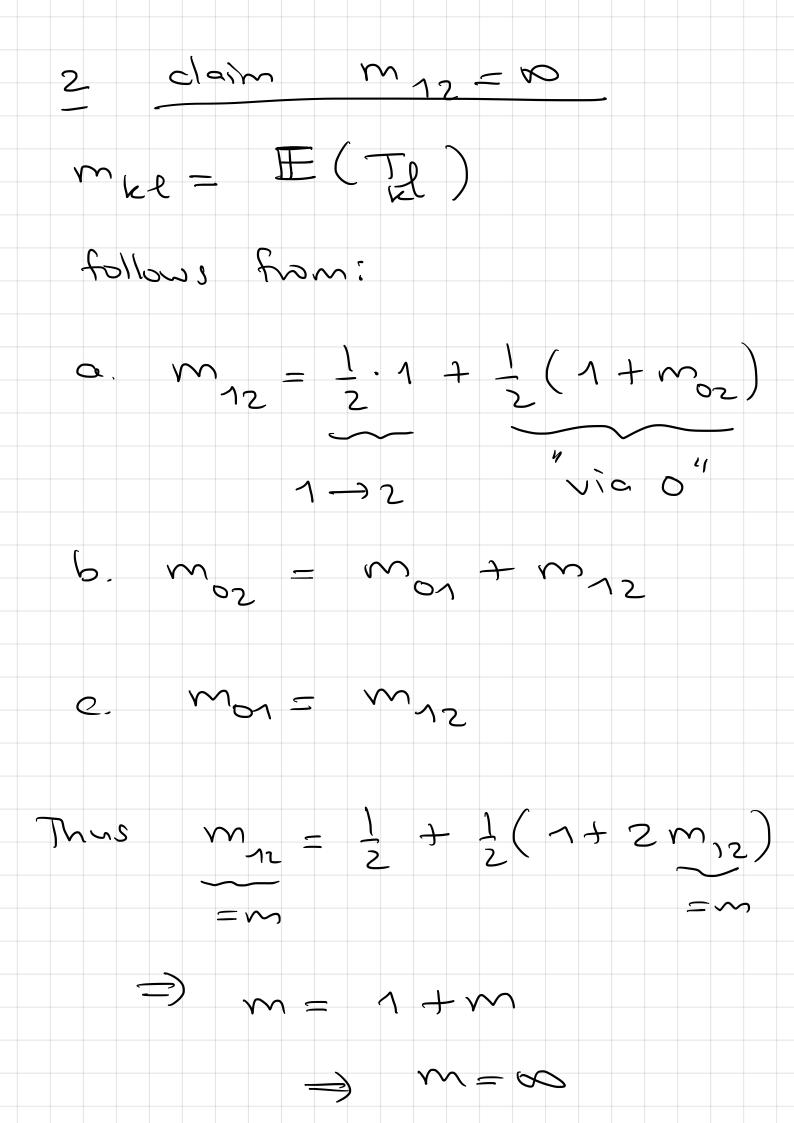






Probabilistic Programming





Compositionality

Consider the two probabilistic programs:

```
int x := 1;
bool c := true;
while (c) {
    c := false [0.5] c := true;
    x := 2*x
}
```

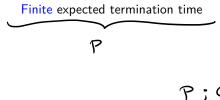
Finite expected termination time

.

Compositionality

Consider the two probabilistic programs:

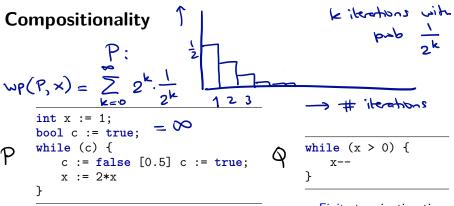
```
int x := 1;
bool c := true;
while (c) {
   c := false [0.5] c := true:
   x := 2 * x
}
```



while (x > 0) { x--}

Finite termination time

P; Q



Finite expected termination time

Finite termination time

Running the right after the left program \mathcal{P} ; \mathcal{P} yields an infinite expected termination time

Olivier Bournez Florent Garnier

Nuances of termination

..... termination with probability one

almost-sure termination

Nuances of termination

..... in an expected finite number of steps

"positive" almost-sure termination

..... in an expected infinite number of steps

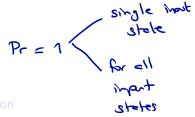
"null" almost-sure termination

Overview

2 Nuances of termination

3 Hardness of almost-sure termination

4 Hardness of positive almost-sure termination



Computable approximations of such distributions

 The (sub-)distribution [[P]]^{=k}_s of pGCL program P over final states on input s after exactly k computation steps is defined by:

$$[P]_{s}^{=k}(t) = \sum_{\sigma \in \Sigma} q \text{ with } \Sigma = \{ \sigma = \langle \downarrow, t, k, \theta, q \rangle \mid \langle P, s, 0, \varepsilon, 1 \rangle \rightarrow^{*} \sigma \}$$

The k-the approximation of the weakest pre-expectation wp(P, f) is defined by:

$$wp(P, f)^{=k}(s) = \sum_{t \in \Sigma_P} [P]_s^{=k}(t) \cdot f(t)$$

3. The computable weakest pre-expectations are defined by:

$$wp(P, f)(s) = \sum_{k=0}^{\infty} wp(P, f)^{=k}(s)$$

Similar to the halting H and the universal halting problem UH, we define the decision problems AST and UAST

Similar to the halting H and the universal halting problem UH, we define the decision problems AST and UAST

The decision problems AST and UAST

Let P be a pGCL program, $s \in \mathbb{S}$ a variable valuation. Then:

$$(P, s) \in AST$$
 iff $wp(P, 1)(s) = 1$
 $P \in UAST$ iff $\forall s \in S. (P, s) \in AST$
 P terminates with part 1
 OO input S

Similar to the halting H and the universal halting problem UH, we define the decision problems AST and UAST

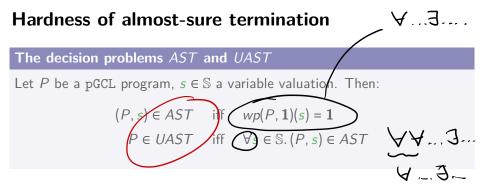
The decision problems AST and UAST

Let *P* be a pGCL program, $s \in S$ a variable valuation. Then:

 $(P, s) \in AST$ iff $wp(P, \mathbf{1})(s) = \mathbf{1}$ $P \in UAST$ iff $\forall s \in \mathbb{S}. (P, s) \in AST$

Examples

The geometric distribution program $\in UAST$, one-dimensional symmetric random walk $\in UAST$, one-dimensional asymmetric random walk $\notin UAST$, but for input 0 is in *AST*.

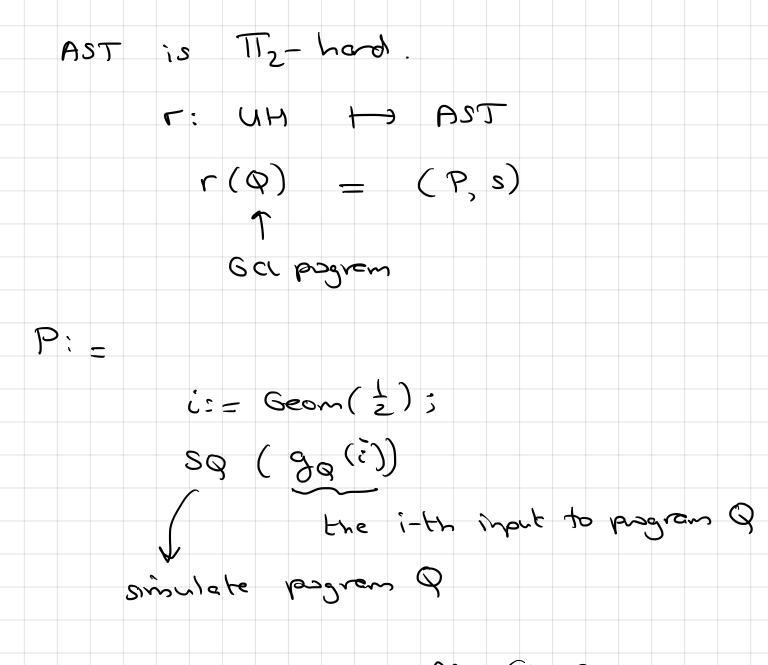


Hardness of almost-sure termination

AST and UAST are both Π_2 -complete.

Proof.

For AST on the black board. UAST: straightforward from the definition of UAST and the fact that AST is Π_2 -complete.



QEUM iff (P,S) EAST Correctness

Interpreting this hardness result

Deciding almost-sure termination of a probabilistic program for a single input

is as hard as

deciding termination of an ordinary program for all inputs

is as hard as

deciding almost-sure termination of a probabilistic program for all inputs.

Overview

3 Hardness of almost-sure termination

The expected run-time of a program

The expected run-time of a program

The expected run-time of pGCL program P on input state s is defined by:

$$ert(P, s) = \sum_{k=1}^{\infty} \left(1 - \sum_{\langle \downarrow, \dots, q \rangle \in \mathbb{C}^{$$

where $\mathbb{C}^{<k}$ is the set of final configurations that can be reached in less than *k* steps by running *P* on input state *s*:

$$\mathbb{C}^{$$

Computable approximations of expected run-times

The expected run-time of a program in k steps

The expected run-time of pGCL program P running on input state s for at most m steps is defined by:

$$ert^{\leq m}(P,s) = \sum_{k=1}^{m} (1 - \sum_{\langle \downarrow, \dots, q \rangle \in \mathbb{C}^{$$

where $\mathbb{C}^{<k}$ is the set of final configurations that can be reached in less than *k* steps by running *P* on input state *s*.

It follows that
$$ert^{\leq m}(P, s)$$
 is computable¹

¹due to the Kleene Normal Form Theorem.

Computable approximations of expected run-times

The expected run-time of a program in k steps

The expected run-time of pGCL program P running on input state s for at most m steps is defined by:

$$ert^{\leq m}(P,s) = \sum_{k=1}^{m} (1 - \sum_{\langle \downarrow, \dots, q \rangle \in \mathbb{C}^{$$

where $\mathbb{C}^{<k}$ is the set of final configurations that can be reached in less than *k* steps by running *P* on input state *s*.

It follows that
$$ert^{\leq m}(P, s)$$
 is computable¹

Moreover, we have:
$$ert(P, s) = \sup_{m \in \mathbb{N}} ert^{\leq m}(P, s)$$

¹due to the Kleene Normal Form Theorem.

Joost-Pieter Katoen

Probabilistic Programming

Positive almost-sure termination

The decision problems PAST and UPAST

Let *P* be a pGCL program, $s \in S$ a variable valuation. Then:

 $(P, s) \in PAST$ iff $ert(P, s) < \infty$ $P \in UPAST$ iff $\forall s \in S. (P, s) \in PAST$

It follows that $PAST \subsetneq AST$ and $UPAST \subsetneq UAST$.

Positive almost-sure termination

Hardness of positive almost-sure termination

- 1. *PAST* is Σ_2 -complete.
- 2. UPAST is Π_3 -complete.

Proof.

- 1. $PAST \in \Sigma_2$: on black board; Σ_2 -hardness: sketch on next slides.
- 2. See the lecture notes (on the web page).

Proof idea: <u>hardness</u> of positive as-termination Σ_2 -hard

Reduction from the complement of the universal halting problem

For an ordinary program Q, provide a probabilistic program P (depending on Q) and an input s, such that

P terminates in a finite expected number of steps on s if and only if

Q does not terminate on some input

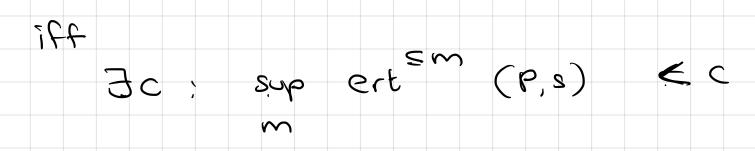
PAST & Z2

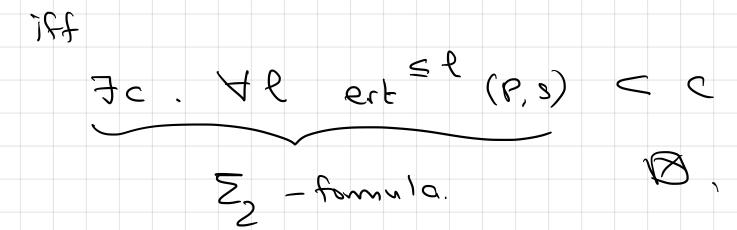
 $(P, s) \in PAST$

74

 $ert(P,s) < \infty$

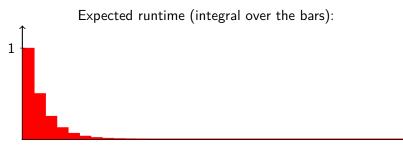
ff $\exists c : ert(P,s) < c$





Let's start simple

```
bool c := true;
int nrflips := 0;
while (c) {
    nrflips++;
    (c := false [0.5] c := true);
}
```



The nrflips-th iteration takes place with probability $1/2^{nrflips}$.

Reducing an ordinary program to a probabilistic one

Assume an enumeration of all inputs for Q is given

```
bool c := true;
                                       QEUH iff r(Q)
int nrflips := 0;
                                                       E PAST
int i := 0;
while (c) {
    // simulate Q for one (further) step on its i-th input
    if (Q terminates on its i-th input) {
         cheer: // take 2<sup>nrflips</sup> effectless steps
         i++:
         // reset simulation of program Q
    }
    nrflips++;
    (c := false [0.5] c := true);
}
```

Reducing an ordinary program to a probabilistic one

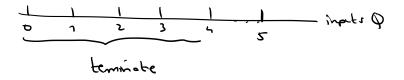
Assume an enumeration of all inputs for Q is given

```
bool c := true;
int nrflips := 0;
int i := 0;
while (c) {
    // simulate Q for one (further) step on its i-th input
    if (Q terminates on its i-th input) {
         cheer: // take 2<sup>nrflips</sup> effectless steps
         i++:
         // reset simulation of program Q
    }
    nrflips++;
    (c := false [0.5] c := true);
}
```

P looses interest in further simulating Q by a coin flip to decide for termination.

Q does not always halt

Let i be the first input for which Q does not terminate.

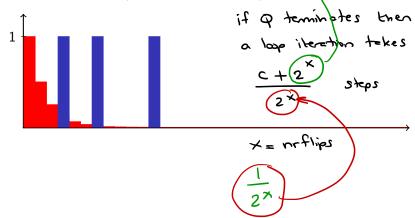


Cheening

Q does not always halt

Let i be the first input for which Q does not terminate.

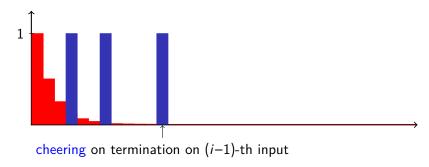
Expected runtime of *P* (integral over the bars):



Q does not always halt

Let i be the first input for which Q does not terminate.

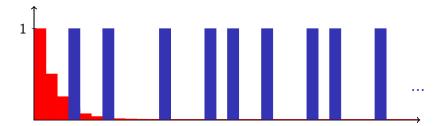
Expected runtime of P (integral over the bars):



Finite cheering — finite expected runtime

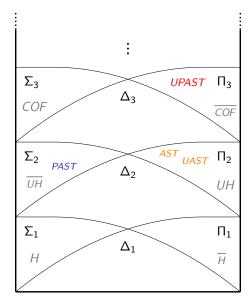
Q terminates on all inputs

Expected runtime of P (integral over the bars):

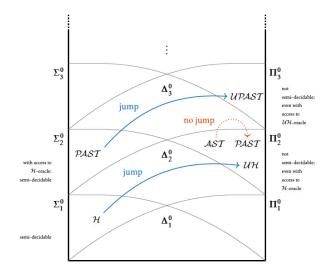


Infinite cheering — infinite expected runtime

Hardness of almost sure termination



Complexity landscape



Interpretation of these results

There is a complexity gap between termination on one or all inputs

but not

between almost-sure termination on one or all inputs

but again

between positive almost-sure termination on one or all inputs