Probabilistic Programming

Probabilistic Programming

Lecture #13: Hardness of Almost-Sure Termination

Joost-Pieter Katoen

: Software Modeling

‘ Bl and Verification Chair

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/33

Probabilistic Programming

Overview

© Motivation

g Nuances of termination
i(- CQ\IV‘)\QEQ
/" 2

© Hardness of almost-sure termination

@ Hardness of positive almost-sure termination

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Motivation

Overview

© Motivation

What we all know about termination

The halting problem
— does a program P terminate on a given input state s? —
is semi-decidable.

The universal halting problem
— does a program P terminate on all input states? —
is undecidable.

Alan Mathison Turing
On computable numbers,
with an application to the Entscheidungsproblem

1937

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Motivation

Complexity jump for termination

A UH

semi-decidable;

even with
jump in complexity access to
H-oracle
o 0
L IT;
H 0
A |
semi-decidable
decidable

Joost-Pieter Katoen

Motivation

Probabilistic Programming

What if programs roll dice?

@
9
2
T
X
3
2
2
a
&
13
o
o
S

A radical change

» A program either terminates or not (on a given input)
» Terminating programs have a finite run time

» Terminating in finite time is a compositional property

TeN 4 pygeun

Q e wh

Joost-Pieter Katoen Probabilistic Programming

A radical change

» A program either terminates or not (on a given input)
» Terminating programs have a finite run time

» Terminating in finite time is a compositional property

All these facts do not hold for probabilistic programs!

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Nuances of termination

Overview

© Nuances of termination

Joost-Pieter Katoen istic Programming

Certain termination

i := 100; while (i > 0) { i-- }

This program certainly terminates.

Joost-Pieter Katoen

Almost-sure termination

P d"

For 0 < p <1 an arbitrary probability:

Pi bool ¢ := true;
int i := 0;
while (c) {

i++;

(c := false [p] c := true)

This program does not always terminate. It almost surely terminates.

> P s ezt~ = P A ~<‘.:”5\~<

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Nuances of termination

Almost-sure termination

Do the following programs almost surely terminate?

(0 P := (skip [0.5] call P)

P := (skip [0.5] call P; call P)

) .
kp = —\Z"4 +‘\Z.kf*‘cp = \=\°'=)L”'L\.P

(skip [0.5] call P; call P; call P)

3 ANs

= A A - 2

W
N—
o
1]

Probabilistic Programming

Joost-Pieter Katoen

Positive almost-sure termination

P

For 0 < p <1 an arbitrary probability:

bool c := true;
int i : = 0;
Geoon (p) while (c) {
i++;

(c := false [p] c := true)
} -
ehaem U

Prdic VY ~ Geom (o)

This program almost surely terminates. In finite expected time.

Despite its possibility of divergence. AN s
WRreRons
3
er\c(?): ?,—)-? < 0 PM
G‘W'C)‘

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Nuances of termination

Null almost-sure termination

AST 4 s\

vV A
Ni— N —

.

' (OAJ.U ASY

Consider the one-dimensional (symmetric) rapdom walk:

int x :=

P
10; while (x > 0) { x—- (1/2:9x++ }

This program almost surely terminates
but requires an infinite expected time to do so.
s)) o1
\n\.!\—' ?_ AN

Joost-Pieter Katoen

Probabilistic Programming

Skekels

ket T = Bl e beat Sve v

winks @s\\:\\»\ AR

Pkl = Y SLT{CVQ\\ sz\cl_‘

N—T N\ ——

) Skv‘cs(bfw
Ve

@ c\al~n Pd\ = A. YAy Q\:\\Qos M\.

A
+ sz

dm—gq’y\\») vwowe e O
VO A2

u
S Pony = Fap (e
T™Ma e Wov

poeey)

P Vo) [Cj) \ &

\2 = 2_ l_ VO\ 7<?/\’L] 3 ¥ EF\L

= N L

) Q\Q\\NW ‘f\/\/\7 =
me= ECTR)
‘Q‘\D\\Qws RZ\&M
@ 2% = __-/\ 2+ Al (/\ + v)
1 2 R= 1=
— ~— N\
y - ¢
14— Y9
\o, YN\ — M
SbY A = m/\z—
F-S\/\\AS YV — ,_, l
s L</\+ 2w,)
= vr =V
f:,> A A == A G vy

Probabilistic Programming Nuances of termination

Compositionality

Consider the two probabilistic programs:

int x := 1;

bool ¢ := true;

while (c) {
c := false [0.5] c := true;
X = 2%x

}

Finite expected termination time

‘L' = 2 Weehond on o*ﬂﬂTYL

Yy

Probabilistic Programming

Joost-Pieter Katoen

Compositionality

Consider the two probabilistic programs:

int x := 1

bool ¢ := true;
while (c) { while (x > 0) {

c := false [0.5] c := true; x--

X 1= 2%x T
}

Finite termination time
Finite expected termination time

— Cﬁr“‘ﬂ'n\ﬁb -\'(m\\nok

— 2>
Q

"7

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Nuances of termination

Compositionality] ke Weesiions "\"h
e —
\ 'S
P: 3 2
e \
k=0 123 — ‘tereNonS
int x := 1;
bool ¢ := true; — o
while (c) { while (x > 0) {
P c := false [0.5] c := true; Q x--
X 1= 2%x T
}

Finite termination time
Finite expected termination time

Running the right after the left program Ps Q
yields an infinite expected termination time

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Nuances of termination

Olivier Bournez Florent Garnier

Nuances of termination

...... certain termination

...... termination with probability one

= almost-sure termination

...... in an expected finite number of steps

= “positive” almost-sure termination

...... in an expected infinite number of steps

= "“null” almost-sure termination

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Hardness of almost-sure termination

Overview

© Hardness of almost-sure termination Pr=1
e <\

Joost-Pieter Katoen tic Programming

Computable approximations of such distributions

1. The (sub-)distribution [P T5* of pGCL program P over final states on
input s after exactly k computation steps is defined by:

[PIt) =) qwithX={o=(tkoq)|(Ps0¢e1)->" 0}

oEL

2. The k-the approximation of the weakest pre-expectation wp(P, f) is
defined by:

wp(P, f)(s) = 5 TPIN1)- ()

tex p

3. The computable weakest pre-expectations are defined by:

[oe]

wp(P, f)(s) =) wp(P,f)™(s)
k=0

Joost-Pieter Katoen Probabilistic Programming 17/33

Almost-sure termination

Similar to the halting H and the universal halting problem UH,
we define the decision problems AST and UAST

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Hardness of almost-sure termination

Almost-sure termination

Similar to the halting H and the universal halting problem UH,
we define the decision problems AST and UAST

The decision problems AST and UAST

Let P be a pGCL program, s € S a variable valuation. Then:

(P.s) € AST ifF

P e UAST iff/ Vs€S.(P,s)e AST

P dewdodes ik pab 4

[Ya) ;\ﬁev& S

Joost-Pieter Katoen Probabilistic Programming

Almost-sure termination

Similar to the halting H and the universal halting problem UH,
we define the decision problems AST and UAST

The decision problems AST and UAST

Let P be a pGCL program, s € S a variable valuation. Then:

(P,s) e AST iff wp(P,1)(s)=1
P e UAST iff VseS.(P,s)eAST

The geometric distribution program € UAST, one-dimensional symmetric random
walk € UAST, one-dimensional asymmetric random walk ¢ UAST, but for input
0isin AST.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming

Hardness of almost-sure termination

Hardness of almost-sure termination V.. .3d....

The decision problems AST and UAST

Let P be a pGCL program, s € S a variable valuatiof. Then:
. (R
iff (D es.(P.s) eAST WVY...3-
L
¢ -3

Hardness of almost-sure termination
AST and UAST are both lN,-complete.

Proof.
For AST on the black board. UAST: straightforward from the definition
of UAST and the fact that AST is lM,-complete. Ol

Joost-Pieter Katoen Probabilistic Programming 19/33

ASY S Trz:‘ \"‘G/"é‘)
T UW — A3Y

r(@) — C(P) S)

Gl poyvem

L:S GQQM('&a‘,) >
5 (Yq ()
‘{ Ewe =t \\’\P\'\C Yo inarts YoM Q

seate pases Q

1\

Cort.coness Q e UV N (f‘;, Y) € ATY

Interpreting this hardness result

Deciding almost-sure termination of a probabilistic program
for a single input

is as hard as
deciding termination of an ordinary program for all inputs
is as hard as

deciding almost-sure termination of a probabilistic program
for all inputs.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Hardness of positive almost-sure termination

Overview

@ Hardness of positive almost-sure termination

Joost-Pieter Katoen ilistic Programming

Probabilistic Programming

Hardness of positive almost-sure termination

The expected run-time of a program

The expected run-time of a program

The expected run-time of pGCL program P on input state s is defined by:
(00]
ert(P,s) = Z(l - 2 q)
k=1

where C is the set of final configurations that can be reached in less
than k steps by running P on input state s:

C* = {o=(.t.nbq)|(Ps0el)>"ocandn<k}

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming

Hardness of positive almost-sure termination

Computable approximations of expected run-times

The expected run-time of a program in k steps

The expected run-time of pGCL program P running on input state s for at
most m steps is defined by:

ert™"(P,s) = Z(l— Z q)
k=1

where C*¥ is the set of final configurations that can be reached in less
than k steps by running P on input state s.

It follows that ert“™(P, s) is computable®

1
due to the Kleene Normal Form Theorem.
Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming

Hardness of positive almost-sure termination

Computable approximations of expected run-times

The expected run-time of a program in k steps

The expected run-time of pGCL program P running on input state s for at
most m steps is defined by:

ert™"(P,s) = Z(l— Z q)
k=1

where C*¥ is the set of final configurations that can be reached in less
than k steps by running P on input state s.

It follows that ert“™(P, s) is computable®

Moreover, we have: ert(P,s) = sup,yert (P, s)

1
due to the Kleene Normal Form Theorem.
Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Hardness of positive almost-sure termination

Positive almost-sure termination

The decision problems PAST and UPAST

Let P be a pGCL program, s € S a variable valuation. Then:

(P,s) e PAST iff ert(P,s)< o0
P e UPAST iff VseS.(P,s)e PAST

It follows that PAST & AST and UPAST & UAST.

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Hardness of positive almost-sure termination

Positive almost-sure termination

Hardness of positive almost-sure termination

1. PAST is Xr-complete.
2. UPAST is N3-complete.

1. PAST € ¥,: on black board; ¥5-hardness: sketch on next slides.

2. See the lecture notes (on the web page).

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Hardness of positive almost-sure termination

Proof idea: hardness of positive as-termination
iz —\ad

Reduction from the complement of the universal halting problem

For an ordinary program Q, provide a probabilistic program P (depending on Q)
and an input s, such that

P terminates in a finite expected number of steps on s
if and only if
Q does not terminate on some input

Correchess ¢
: L(A; — PasT Qe n
— 64
2,- e () e TAST

Joost-Pieter Katoen Probabilistic Programming

-—

\

PAS e 2,

(?) s) e PesSY

5

erk (P)SB <

IR

Je

706
3c

eck (Bs) <=

Probabilistic Programming

Hardness of positive almost-sure termination

Let’s start simple

bool c := true;
int nrflips := 0;
while (c) {
nrflips++;
(c := false [0.5] ¢ := true);

Expected runtime (integral over the bars):

The nrflips-th iteration takes place with probability 1/2% s,

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming

Hardness of positive almost-sure termination

Reducing an ordinary program to a probabilistic one

Assume an enumeration of all inputs for Q is given

bool c := true; —

’ -
int nrflips := 0; QGUH 1=y (Q)
int 1 :=0; € PAT
while (c) {

// simulate Q for one (further) step on its i-th input
if (Q terminates on its i-th input) {
cheer; // take 2"7'"° effectless steps
i++;
// reset simulation of program Q
¥
nrflips++;
(c := false [0.5] c := true);

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming

Hardness of positive almost-sure termination

Reducing an ordinary program to a probabilistic one

Assume an enumeration of all inputs for Q is given

bool c := true;

int nrflips := O;

int i := 0;

while (c) {
// simulate Q for one (further) step on its i-th input
if (Q terminates on its i-th input) {

cheer; // take 2"7'"° effectless steps

i++;

// reset simulation of program Q

¥

nrflips++;

(c := false [0.5] c := true);

P looses interest in further simulating @ by a coin flip to decide for termination.

Joost-Pieter Katoen

Probabilistic Programming

Probabilistic Programming Hardness of positive almost-sure termination

Q@ does not always halt

Let i be the first input for which @ does not terminate.

Joost-Pieter Katoen Probabilistic Programming

‘\\APJ:J‘ Q

Probabilistic Programming Hardness of positive almost-sure termination

Q@ does not always halt

Let i be the first input for which @ does not terminate.
C\-\QEA\:S

Expected runtime of P (integral over the bars):

¥ @ Aenbles kwen
(=N \:»‘9 (\\Qﬂ ’\"\<£S
c +@ skps

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Hardness of positive almost-sure termination

Q does not always halt Q e un

Let i be the first input for which @ does not terminate.

Expected runtime of P (integral over the bars):

Rl |

cheering on termlnatlon on (i—1)-th input

Finite cheering — finite expected runtime

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Hardness of positive almost-sure termination

R terminates on all inputs

Expected runtime of P (integral over the bars):

TRN[INIE

Infinite cheering — infinite expected runtime

Joost-Pieter Katoen Probabilistic Programming

Probabilistic Programming Hardness of positive almost-sure termination

Hardness of almost sure termination

Joost-Pieter Katoen Probabilistic Programming

ness of positive almost-sure termination

Complexity landscape

0
22

with access to
H-oracle:

semi-decidable
3 0

1

semi-decidable

nojump .

AST PAST

not
semi-decidable;
even with
access to

UH-oracle

not
semi-decidable;
even with
access to

‘H-oracle

ieter Katoen

Probabilistic Programming Hardness of positive almost-sure termination

Interpretation of these results

There is a complexity gap
between termination on one or all inputs

but not
between almost-sure termination on one or all inputs
but again

between positive almost-sure termination on one or all inputs

Joost-Pieter Katoen Probabilistic Programming

