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Probabilistic Programming Motivation

Overview

@ Motivation




What we all know about termination

The halting problem s
— does a program P terminate on a given input state s? — 4
is semi-decidable.

The universal halting problem
— does a program P terminate on all input states? — —WZ
is undecidable.

Alan Mathison Turing
On computable numbers,
with an application to the Entscheidungsproblem

1937
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Probabilistic Programming Motivation

Known fact: termination of ordinary programs is undecidable.

25Si gw _undecidable” T
almost-sure termination i S
opic—of the next lecture.)

—_—

This lecture: how undecidable is it t)aanute weakest pre-expectations?
Lower bounds, upper bounds, exactly, or whether they are finite or not.

\
we (P £) > o ;’_\ wp(PH) < 2
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Probabilistic Programming The arithmetical hierarchy

Overview
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Probabilistic Programm

ing

The arithmetical hierarchy
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Probabilistic Programming The arithmetical hierarchy

Undecidable versus decidable problems

All Languagzs

Undecidable

Decidable

How can we categorise the undecidable problems?
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Probabilistic Programming The arithmetical hierarchy

Kleene and Mostovski

Andrzej Mostovski (1913-1975)
Stephen Kleene (1909-1994)
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Probabilistic Programming

The arithmetical hierarchy

Decision problems as formulas (1)

Idea: classify sets — ought to model decision problems — based on the complexity
of characterising formulas in first-order Peano arithmetic.

Let H be the halting problem. The set H is defined for program P and input
state s by:

(P,s)e H iff 3k €N.3s' €S.P terminates on input s in k steps in state s’

or equivalently:

(P,s)e H iff 3keN,s €S. P terminates on input s in k steps in state s’
| —

one quantifier

H € ¥, as H can be defined by an existentially quantified formula of one level.

3..3..3, . NY._ ¥

[ e N

3 A4
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Probabilistic Programming The arithmetical hierarchy

Decision problems as formulas (1)

Idea: classify sets — ought to model decision problems — based on the complexity
of characterising formulas in first-order Peano arithmetic.

Let H be the halting problem. The set H is defined for program P and input
state s by:

(P,s)e H iff 3k €N.3s' €S.P terminates on input s in k steps in state s’
or equivalently:

(P,s)e H iff 3keN,s €S. P terminates on input s in k steps in state s’
| —

one quantifier

H € ¥, as H can be defined by an existentially quantified formula of one level.

The level indicates the number of required quantifier alternations.

This is not the number of quantifiers as multiple quantifiers of the same type are
contracted into one quantifier.
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Probabilistic Programming The arithmetical hierarchy

Decision problems as formulas (2)

Let UH be the universal halting problem. The set UH is defined for program P by:
Pe UH iff V¥seS.(P,s)eH.
——

That is:

P e UH iff VseS.(3keN,s €S.P terminates on input s in k steps in state s')

UH €11, as UH can be defined by a universally quantified formula of two

alternations.
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Probabilistic Programming The arithmetical hierarchy

The arithmetical (Kleene-Mostovski) hierarchy
» Class ¥, is defined as:

Yy = {AlA={x]| EIY1VY2E|Y3--~V/EIYn:(Xv)/1v--'v)/n)

where R is a decidable relation.

or @¥n

Aefatr\a“\.:) O~ W QAA
NnN= 2 331 V‘OZ

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming The arithmetical hierarchy

The arithmetical (Kleene-Mostovski) hierarchy

» Class ¥, is defined as:

Yo = {AlA={x|3nVyTys...V/3y, : (x,y1.....yn) € R}}
where R is a decidable relation.

Example: the halting problem His in ¥;. It is semi-decidable.

» Class I, is defined as:

My = {AlA={x|Vy3yoVy3...V/3ys: (x,y1,....¥a) € R}}

where R is a decidable relation.
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Probabilistic Programming The arithmetical hierarchy

The arithmetical (Kleene-Mostovski) hierarchy
» Class ¥, is defined as:

Yo = {AlA={x|3nVyTys...¥/3y, : (x,y1.....yn) € R}}
where R is a decidable relation.

Example: the halting problem His in ¥;. It is semi-decidable.

» Class I, is defined as:

N, = {AlA={x|VYy13yVys...V/3y, 1 (x, y1,...,¥s) € R}}
where R is a decidable relation.

Example: the universal halting problem UH is in 5.

Vse 8. Feem s,

k.
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Probabilistic Programming The arithmetical hierarchy

The arithmetical (Kleene-Mostovski) hierarchy
» Class ¥, is defined as:

Yo = {AlA={x|3nVyTys...¥/3y, : (x,y1.....yn) € R}}
where R is a decidable relation.

Example: the halting problem His in ¥;. It is semi-decidable.

» Class I, is defined as:

N, = {AlA={x|VYy13yVys...V/3y, 1 (x, y1,...,¥s) € R}}
where R is a decidable relation.

Example: the universal halting problem UH is in 5.

» Let A, =X, n T, A;isthe class of decidable problems.

The arithmetical hierarchy is used to classify the degree of undecidability.
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Probabilistic Programming

The arithmetical hierarchy

The bigger picture

The following inclusion diagram holds (all inclusions are strict):

=
Seqa, —
Aecidcbk

M3
Az
COF
M
AV
UH

ecm /////j
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Probabilistic Programming The arithmetical hierarchy

Elementary properties

» Classes Y, Ag, A7 and Iy coincide: decidable problems

» Classes X ,, 1, and A, are closed under conjunction and
disjunction; A, is closed under negation

» The classes 3, and I, are complementary —> v&j =Ron
» There is a strict inclusion relation between classes in the hierarchy:

Y Y

n n+1
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Probabilistic Programming The arithmetical hierarchy

Reducibility and completeness [Post 1944]
“Problem A is at least as hard as problem B"

» A set Ais called arithmetical if A€ T, for some ' € {X, I, A} and
neN

» Ac X is reducible to B € X, denoted A <,,, B, iff for some
computable function f : X - X it holds:

VxeX. xeA iff f(x)eB

» Decision problem Ais I'-hard for [ € {¥, M, A} iff edery B €T, ¢an
be reduced to A. z,

A
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Probabilistic Programming The arithmetical hierarchy

Reducibility and completeness [Post 1944]
“Problem A is at least as hard as problem B"

» A set Ais called arithmetical if A€ T, for some ' € {X, I, A} and
neN

» Ac X is reducible to B € X, denoted A <,,, B, iff for some
computable function f : X - X it holds:

VxeX. xeA iff f(x)eB

» Decision problem Ais I'-hard for [ € {¥, 1, A} iff every B€ T, can
be reduced to A.

» Decision problem Ais I',-complete if A€ T, and A is I',-hard.
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Probabilistic Programming The arithmetical hierarchy

Completeness

The halting problem is ¥;-complete.

The universal halting problem is N,-complete.

The co-finiteness problem is X 3-complete.

= W=

If problem A is ¥,-complete, then its complement is [1,-complete.
Analogous for I1,-complete problems.

Davis’ theorem

2w q
1. If problem A is ¥ ,-complete, then A€ X\, A
2. If problem A is IN,-complete, then A€, \ X,
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Probabilistic Programming The arithmetical hierarchy

Completeness

n-1

A

Problem@is Y ,-complete and hence sits properly at level n in the hierarchy.

It cannot be placed within the shaded area.

All indications in the previous picture of the arithmetical hierarchy are complete.
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Probabilistic Programming

The arithmetical hierarchy

Co-finiteness problem

Co-finiteness problem

The co-finiteness problem is defined by:
Pe COF iff {seS|(P,s)€ H} is co-finite

It is the problem of deciding whether the set of inputs on which an
ordinary program P terminates is co-finite.

The COF-problem is ¥3 complete.
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Probabilistic Programming Approximating pre-expectations

Overview

© Approximating pre-expectations

Joost-Pieter Katoen istic Programmi



Hardness results in a nutshell

|
Checking lower bounds on expected outcomes is as hard as the halting problem.

- — H
—_——

a < \wp(p$) ! 24 - nplels
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Probabilistic Programming Approximating pre-expectations

Hardness results in a nutshell

Checking lower bounds on expected outcomes is as hard as the halting problem.

@ecking upper bounds i; “more undecidable” than the halting problem.

It is as hArd as the complement of the universal halting problem.

L T, - conple\= \

(7 i?’— Cbhp\e\'t
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Hardness results in a nutshell

|
Checking lower bounds on expected outcomes is as hard as the halting problem.

|
Checking upper bounds is “more undecidable” than the halting problem.
It is as hard as the complement of the universal halting problem.

|
Determining exact expected outcomes is as hard as the universal halting problem.
\P‘V\/

) (\-'P(?,Sf)<3_3 N —\(WQP,“”S\
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Hardness results in a nutshell

|
Checking lower bounds on expected outcomes is as hard as the halting problem.

|
Checking upper bounds is “more undecidable” than the halting problem.
It is as hard as the complement of the universal halting problem.

|
Determining exact expected outcomes is as hard as the universal halting problem.

|
Determining whether an expected outcome is finite is as hard as obtaining upper
bounds. -

we (P9 < o 7
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Hardness of expected outcomes

semi—decidable
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Probabilistic Programming Approximating pre-expectations

Extended program configurations pGCL — “‘\’:fw
cnain

Program configuration

An extended program configuration o = (P, s, n, 0, q) with:

v

P is the program left to be executed or, P =

v

s : Var - Q is the variable valuation

» n € A&s is the number of computation steps the program has
executed so far

v

6 € {L, R}" the history of all probabilistic choices made so far

v

probability g € Q N[0, 1], the probability of reaching configuration o
if probabilistic choices are resolved according to 6

The initial configuration of program P on input s is (P, s,0,,1) where ¢
denotes the empty history.

The inference rules for pGCL are extended accordingly.
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Distribution over final states

Distribution over final states

The distribution [[ P J|s of pGCL program P over final states on input s is
defined by:

[[P]]S(t)=Zq wheree Y ={o=(l,t,n0,q)| (P s0.¢e1) =" o}

oEYL

From now on, a pGCL program has no random assignments and no observe-statements.
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Computable approximations of such distributions

1. The (sub-)distribution [[P]]:k of pGCL program P over final states on
input s after exactly k computation steps is defined by:

[PINt) =) qwith X ={c=(t kb q)|(Ps0¢c1)->" 0}

oEL

2. The k-the approximation of the weakest pre-expectation wp(P, f) is

defined by:
wp(P, f)(s) = > [PI1)- (1)

teX p

3. The computable weakest pre-expectations are defined by:

(09)

wp(P, f)(s) = ) wp(P, )™ (s)

k=0
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Decision problems on weakest pre-expectations

The decision problems LEXP, REXP and EXP

Let P be a pGCL program, s € S a variable valuation, g € Q¢ and
f:S - Q9 a computable function. Then:
(P,s,f,q) € LEXP iff q < wp(P,f)(s)
(P,s,f,q) € REXP iff q > wp(P,f)(s)
(P,s,f,q) € EXP iff q = wp(P,f)(s)
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Hardness of computing weakest pre-expectations

(P,s,f,q) € LEXP iff q < wp(P,f)(s)
(P,s,f,q) € REXP iff q > wp(P,f)(s)
(P,s,f,q) € EXP iff q = wp(P,f)(s)

1. LEXP is Xi-complete, i.e., as hard as the halting problem.
2. REXP is X5-complete, i.e., strictly harder than LEXP.

3. EXP is l,-complete, i.e., as hard as the universal halting problem.

Proof.
On the black board.
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lllustration of formula defining LEXP

wp [C] (f)(0) prmrmrmrmemimimimimim i mm e,
Y7o wpk [C] (f)(0)

~
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lllustration of formula defining REXP

' T .
36>O]:
wp [C] (f)(0) presmrmrmemrmimmrmrmm e N s s e

Y7 o wpF [C](f)(0)

~

<—V.y—>

Joost-Pieter Katoen Probabilistic Programming



Finiteness of weakest pre-expectations

The finiteness decision problem FEXP

Let P be a pGCL program, s € S a variable valuation, and f : S - Q5 a
computable function. Then:

(P,s, f) € FEXP iff wp(P, f)(s) < oo.

|
FEXP is X5-complete, i.e., as hard as the REXP-problem.

Joost-Pieter Katoen Probabilistic Programming



Complexity landscape of weakest pre-expectations

semi—decidable
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