
Probabilistic Programming

Probabilistic Programming
Lecture #10: Conditioning

Joost-Pieter Katoen

RWTH Lecture Series on Probabilistic Programming 2018

Joost-Pieter Katoen Probabilistic Programming 1/41

Probabilistic Programming

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 2/41

Probabilistic Programming Motivation

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 3/41

Probabilistic Programming Motivation

Bayes’ rule

Joost-Pieter Katoen Probabilistic Programming 4/41

Brr (An B) = Prca) . Pr (B) A) G)

in addition

Pr CA NB) = Pr fB) . Prca 1B) I 2)

Prca) - Pr (Bla) = Pr CB) .
. Pr CA) B)

Pr CA) . PRCBIA)
⇐ Pr C AIB) = -

Pr CB)

Bayese .

→ basis for

statistical

inference

Probabilistic Programming Motivation

Bayes’ rule explained

Joost-Pieter Katoen Probabilistic Programming 5/41

Probabilistic Programming Motivation

Conditioning = learning

Joost-Pieter Katoen Probabilistic Programming 6/41

Probabilistic Programming Motivation

Conditioning in webPPL

Joost-Pieter Katoen Probabilistic Programming 7/41

Probabilistic Programming Observe statements

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 8/41

Probabilistic Programming Observe statements

Conditional probabilistic GCL: cpGCL Syntax

Z skip empty statement
Z diverge divergence
Z x := E assignment
Z x :r= mu random assignment (x ⇥ ⌅µ)
Z observe (G) conditioning
Z prog1 ; prog2 sequential composition
Z if (G) prog1 else prog2 choice
Z prog1 [p] prog2 probabilistic choice
Z while (G) prog iteration

Conditioning will be the key ingredient to be considered in this lecture.

Joost-Pieter Katoen Probabilistic Programming 9/41

Probabilistic Programming Observe statements

Let’s start simple

x := 0 [0.5] x := 1;
y := -1 [0.5] y := 0;
observe (x+y = 0)

This program blocks two runs as they violate x+y = 0. Outcome:

Pr[x =0, y =0] = Pr[x =1, y =�1] = 1/2

Observations thus normalize the probability of the “feasible” program runs

Joost-Pieter Katoen Probabilistic Programming 10/41

Probabilistic Programming Observe statements

A loopy program
For 0 < p < 1 an arbitrary probability:

bool c := true;
int i : = 0;
while (c) {

i++;
(c := false [p] c := true)

}
observe (odd(i))

The feasible program runs have a probability 8N'0
(1�p)2N �p = 1

2 � p

This program models the distribution:
Pr[i = 2N+1] = (1�p)2N � p � (2�p) for N ' 0

Pr[i = 2N] = 0

Joost-Pieter Katoen Probabilistic Programming 11/41

Probabilistic Programming Observe statements

A mathematician’s perspective

A geometric distribution with p = 1/2, conditioned on “x is odd”:

Pr(x = N ∂ x is odd) = w 3

2
N+1

if N is odd
0 otherwise.

A geometric distribution with p = 1/3, conditioned on “x is odd”:

Pr(x = N ∂ x is odd) =
~ÑÑÑÇÑÑÑÄ

2
N �5

3
N+2

if N is odd
0 otherwise.

Joost-Pieter Katoen Probabilistic Programming 12/41

Probabilistic Programming Observe statements

Which program pairs are equivalent?

{ x := 0 [0.5] x := 1 };
observe(x = 1)

{ x := 0; observe(x = 1) }
[0.5]
{ x := 1; observe(x = 1) }

x := 1 [0.5] diverge x := 1 [0.5] observe(false)

int x := 1;
while (x = 1) {

x := 1
}

int x := 1;
while (x = 1) {

x := 1 [0.5] x := 0;
observe (x = 1)

}

Joost-Pieter Katoen Probabilistic Programming 13/41

I

⇒ dj
.

On
⇐

" " ' n

t
O
o

Probabilistic Programming Observe statements

Which program pairs are equivalent?

{ x := 0 [0.5] x := 1 };
observe(x = 1)

{ x := 0; observe(x = 1) }
[0.5]
{ x := 1; observe(x = 1) }

x := 1 [0.5] diverge x := 1 [0.5] observe(false)

int x := 1;
while (x = 1) {

x := 1
}

int x := 1;
while (x = 1) {

x := 1 [0.5] x := 0;
observe (x = 1)

}

Joost-Pieter Katoen Probabilistic Programming 13/41

Probabilistic Programming Operational semantics

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 14/41

Probabilistic Programming Operational semantics

Structural operational semantics: ingredients

Z Variable valuation s ⇥ Vars � Q maps each program variable onto a
value (here: rational numbers)

Z Expression valuation, let [[E]] denote the valuation of expression E

Z Configuration (aka: state) ÖP, sã denotes that
Z program P is about to be executed (aka: program counter)
Z and the current variable valuation equals s.

Z Transition rules for the execution of commands: ÖP, sã ∫ ÖP ¨, s ¨ã
transition rules are written as

premise
conclusion

where the premise is omitted if it is vacuously true.

Joost-Pieter Katoen Probabilistic Programming 15/41

Probabilistic Programming Operational semantics

Recall: Markov chains

A Markov chain (MC) is a triple (�, ‡I , P) with:
Z � being a countable set of states
Z ‡I " � the initial state, and
Z P ⇥ � � Dist(�) the transition probability function

where Dist(�) is a discrete probability measure on �.

Joost-Pieter Katoen Probabilistic Programming 16/41

Probabilistic Programming Operational semantics

Operational semantics of conditional pGCL
Aim: Model the behaviour of a program P by the MC [[P]].

This can be defined using Plotkin’s SOS-style semantics

Joost-Pieter Katoen Probabilistic Programming 17/41

Probabilistic Programming Operational semantics

Operational semantics

Aim: Model the behaviour of a conditional pGCL program P by MC [[P]].
Approach:

Z Take states of the form
Z ÖQ, sã with program Q or ⇤, and variable valuation s ⇥ Vars � Q
Z Ö≤ã models the violation of an observation, and
Z Ösinkã models successful program termination

Z Take initial state ‡I = ÖP, sã where s fulfils the initial conditions
Z Transition relation � is the smallest relation satisfying the SOS rules

on the next slides
Z Where transition probabilities equal to one are omitted

Joost-Pieter Katoen Probabilistic Programming 18/41

Probabilistic Programming Operational semantics

Transition rules for cpGCL (1)

Öskip, sã � Ö⇤, sã Ödiverge, sã � Ödiverge, sã
s Ï GÖobserve(G), sã � Ö⇤, sã s /Ï GÖobserve(G), sã � Ö≤ã

Ö⇤, sã � Ösinkã Ö≤ã � Ösinkã Ösinkã � Ösinkã
Öx ⇥= E , sã � Ö⇤, s[x ⇥= s([[E]])]ã

µ(s)(v) = a > 0Öx ⇥ ⌅µ, sã a��� Ö⇤, s[x ⇥= v]ã
ÖP[p]Q, sã � µ with µ(ÖP, sã) = p and µ(ÖQ, sã) = 1�p

Joost-Pieter Katoen Probabilistic Programming 19/41

Probabilistic Programming Operational semantics

Transition rules for cpGCL (2)

ÖP, sã � Ö≤ãÖP; Q, sã � Ö≤ã ÖP, sã � µÖP; Q, sã � ‹
with ‹(ÖP ¨; Q ¨, s ¨ã) = µ(ÖP ¨, s ¨ã) where ⇤; Q = Q

s Ï GÖif (G){P} else {Q}, sã � ÖP, sã s /Ï GÖif (G){P} else {Q}, sã � ÖQ, sã
s Ï GÖwhile(G){P}, sã � ÖP; while (G){P}, sã s /Ï GÖwhile(G){P}, sã � Ö⇤, sã

Joost-Pieter Katoen Probabilistic Programming 20/41

Probabilistic Programming Operational semantics

Examples

Joost-Pieter Katoen Probabilistic Programming 21/41

P : , diverge EI] { x : -0 E' k) xie - a ;

y.no
E' k) gree ;

y
observe (x -011 yeo)

tme GPD :

I

Jjdie O O

O 7% 's

r O O'

to
'fo

O O O O

cd.gsIa
o

toda dog
SKI - O

Shoko £#
TED

er (O sink n not)
-

Pr l note)

=

Probabilistic Programming Operational semantics

The conditional distribution of a program

The conditional distribution [[P]]‡ ∂¬≤ over terminal states of cpGCL
program P when starting in state s is defined by:

[[P]]‡ ∂¬≤ (·) =

~ÑÑÑÑÑÑÑÑÇÑÑÑÑÑÑÑÑÄ

0 if · = ≤ and [[P]]‡(≤) < 1
[[P]]‡(·)

1 � [[P]]‡(≤) if · j ≤ and [[P]]‡(≤) < 1

undefined if [[P]]‡(≤) = 1

This is the distribution if Öã � Ö≤ã.

Joost-Pieter Katoen Probabilistic Programming 22/41

1

Probabilistic Programming Operational semantics

The piranha problem [Tijms, 2004]

Joost-Pieter Katoen Probabilistic Programming 23/41

Probabilistic Programming Operational semantics

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

Joost-Pieter Katoen Probabilistic Programming 24/41

Probabilistic Programming Operational semantics

The full operational semantics

Joost-Pieter Katoen Probabilistic Programming 25/41

Probabilistic Programming Conditional expected rewards

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 26/41

Probabilistic Programming Conditional expected rewards

Rewards

To reason about resource usage in MCs: use rewards.

MC with rewards
A reward MC is a pair (D, r) with D an MC with state space � and
r ⇥ � � R a function assigning a real reward to each state.
The reward r (‡) stands for the reward earned on leaving state ‡.

Cumulative reward for reachability
Let fi = ‡0 . . . ‡n be a finite path in (D, r) and G N � a set of target states
with fi " ÉG . The cumulative reward along fi until reaching G is:

rG (fi) = r (‡0) + . . . + r (‡k�1) where ‡i /" G for all i < k and ‡k " G .

If fi /" ÉG , then rG (fi) = 0.

Joost-Pieter Katoen Probabilistic Programming 27/41

Probabilistic Programming Conditional expected rewards

Expected reward reachability

Expected reward for reachability
The expected reward until reaching G N � from ‡ " � is:

ER(‡,ÉG) = 9
fiÏÉG

Pr(rfi) � rG (rfi)
where rfi = ‡0 . . . ‡k is the shortest prefix of fi such that ‡k " G and ‡0 = ‡.

Conditional expected reward
Let ER(‡,ÉG ∂ ¬ÉF) be the conditional expected reward until reaching G
under the condition that no states in F N � are visited.

Joost-Pieter Katoen Probabilistic Programming 28/41

Probabilistic Programming Conditional expected rewards

Conditional expected reward
ER(‡,ÉG ∂ ¬ÉF) is the expectation of random variable1 rv(ÉG = ¬ÉF)
with respect to the conditional probability measure:

Pr(ÉG ∂ ¬ÉF) =
Pr(ÉG = ¬ÉF)

Pr(¬ÉF)
Conditional expected reward
The conditional expected reward to reach G N � while avoiding F N � in
Markov chain D is defined as:

ERD(ÉG ∂ ¬ÉF) =
ERD(ÉG = ¬ÉF)

Pr(¬ÉF)
1This r.v. assigns to each path fi of MC D the reward r (fî) where fî is the shortest

prefix of fi such that the last state is in G and no previous state is in F .
Joost-Pieter Katoen Probabilistic Programming 29/41

,
sink

, I

Probabilistic Programming Conditional expected rewards

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

Conditional expected reward of termination without violating any observe

ER[[P]](‡I ,ÉÖsinkã ∂ ¬ÉÖ≤ã) = 1�1/2 + 0�1/4

1 � 1/4

=
1/2

3/4

= 2/3.

Joost-Pieter Katoen Probabilistic Programming 30/41

if

①①- -

=nf
[fr = pir] r(&

,gp)= O

Probabilistic Programming Conditional expected rewards

The piranha puzzle

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?
Conditional expected reward of termination without violating any observe

ER[[P]](‡I ,ÉÖsinkã ∂ ¬ÉÖ≤ã) = 1�1/2 + 0�1/4

1 � 1/4

=
1/2

3/4

= 2/3.

Joost-Pieter Katoen Probabilistic Programming 30/41

Me FPD

Pi :

&
o A

Probabilistic Programming Conditional expected rewards

A remark on divergence

Consider the two programs:

x := 1 [0.5] diverge x := 1 [0.5] observe(false)

Q: What is the probability that x = 1 on termination?

A: For the left program this is 1/2; for the right one this is 1.

Joost-Pieter Katoen Probabilistic Programming 31/41

Probabilistic Programming Conditional expected rewards

Divergence matters

diverge [0.5] {
x := 0 [0.5] x := 1;
y := 0 [0.5] y := 1;
observe (x = 0 || y = 0)

}

Q: What is the probability that y = 0 on termination?

A: 2

7
. Why?

Warning: This is a silly example. Typically divergence comes from loops.

Joost-Pieter Katoen Probabilistic Programming 32/41

Probabilistic Programming Conditional expected rewards

Divergence matters

diverge [0.5] {
x := 0 [0.5] x := 1;
y := 0 [0.5] y := 1;
observe (x = 0 || y = 0)

}

Q: What is the probability that y = 0 on termination?

A: 2

7
. Why?

Warning: This is a silly example. Typically divergence comes from loops.

Joost-Pieter Katoen Probabilistic Programming 32/41

R2

=
]

Probabilistic Programming Conditional expected rewards

Observations inside loops

Consider the following two “similar” programs:

int x := 1;
while (x = 1) {

x := 1
}

Z Certain divergence
Z Conditional expected reward = 0

int x := 1;
while (x = 1) {

x := 1 [0.5] x := 0;
observe (x = 1)

}

Z Divergence with probability zero
Z Conditional expected reward =

undefined

Our semantics does distinguish these programs.

Joost-Pieter Katoen Probabilistic Programming 33/41

Probabilistic Programming Program transformations

Overview

1 Motivation

2 Observe statements

3 Operational semantics

4 Conditional expected rewards

5 Program transformations

Joost-Pieter Katoen Probabilistic Programming 34/41

