
Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movep18/

October 23, 2018

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/49



Introduction

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 Ê-regular properties

5 Verifying DBA objectives

6 Verifying Ê-regular properties

7 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/49

Prf 06 )

Pr ( s f- DOG )

Pr ( s f OD G )

w - regular properties

DO F  r OD H



Introduction

Summary of previous lectures

Reachability probabilities

Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal

1. Repeated reachability

I = Reachability of the BSCCs containing a goal state

2. Persistence

I = Reachability of the BSCCs only containing goal states
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Introduction

Aim of this lecture

Reachability probabilities = key to determine the probability of any

Ê-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.

2. All traces refuting such property P are recognized by a deterministic

finite-state automaton A.

3. Probability of P = reachability probability in a product of D and A.

4. What are Ê-regular properties?

5. All traces satisfying such property P are recognized by a deterministic

Rabin automaton A.

6. Probability of P = reachability probability in a product of D and A.
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Preliminaries

Paths and traces

Paths

A path in DTMC D is an infinite sequence of states s0s1s2 . . . . . . with

P(si , si+1) > 0 for all i .

Let Paths(D) denote the set of paths in D, and Paths
ú
(D) the set of finite

prefixes thereof.

Traces

The trace of path fi = s0 s1 s2 . . . is trace(fi) = L(s0) L(s1) L(s2) . . ..
The trace of finite path ‚fi = s0 s1 . . . sn is trace(‚fi) = L(s0) L(s1) . . . L(sn).

The set of traces of a set � of paths: trace(�) = { trace(fi) | fi œ � }.
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Preliminaries

LT properties

Linear-time property

A linear-time property (LT property) over AP is a subset of
!
2

AP"Ê
.

An

LT-property is thus a set of infinite traces over 2
AP

.

Intuition

An LT-property gives the admissible behaviours of the DTMC at hand.
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Preliminaries

Probability of LT properties

Probability of LT properties

The probability for DTMC D to exhibit a trace in property P (over AP) is:

Pr
D

(P) = Pr
D{ fi œ Paths(D) | trace(fi) œ P }.

For state s in D, let Pr(s |= P) = Prs{ fi œ Paths(s) | trace(fi) œ P }.

We do not address measurability of P yet. We will later identify a rich set P of

LT-properties—those that include all LTL formulas—for which the set of paths

{ fi œ Paths(D) | trace(fi) œ P } is measurable.
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Preliminaries

Safety properties

Safety property

LT property Psafe over AP is a safety property if for all ‡ œ
!
2

AP"Ê \ Psafe
there exists a finite prefix ‚‡ of ‡ such that:

Psafe fl
Ó

‡Õ œ
!
2

AP"Ê | ‚‡ is a prefix of ‡Õ
Ô

¸ ˚˙ ˝
all possible extensions of ‚‡

= ?.

Any such finite word ‚‡ is called a bad prefix for Psafe .

Regular safety property

A safety property is regular if its set of bad prefixes constitutes a regular

language (over the alphabet 2
AP

). Thus, the set of all bad prefixes of a

regular safety property can be represented by a finite-state automaton.
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Preliminaries

Property of Knuth’s die

Property of Knuth’s die

After initial tails, yield 1 or 3 but with maximally five time tails.
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Preliminaries

Property as an automaton

After initial tails, yield 1 or 3 but with at most five times tails in total
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Verifying regular safety properties

Probability of a regular safety property

Let A = (Q, 2
AP

, ”, q0, F ) be a deterministic finite-state automaton (DFA)

for the bad prefixes of regular safety property Psafe :

Psafe = { A0 A1 A2 . . . œ
!
2

AP"Ê | ’n > 0. A0 A1 . . . An ”œ L(A) }.

Let ” be total, i.e., ”(q, A) is defined for each A ™ AP and state q œ Q.

Furthermore, let D = (S, P, ÿinit, AP, L) be a finite DTMC. Our interest is

to compute the probability

Pr
D

(Psafe) = 1 ≠
ÿ

sœS
ÿinit(s) · Pr(s |= A) where

Pr(s |= A) = Pr
D

s { fi œ Paths(s) | trace(fi) /œ Psafe }.

These probabilities can be obtained by considering a product of DTMC D with

DFA A.
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Verifying regular safety properties

Probability of a regular safety property

Pr
D

(Psafe) = 1 ≠
ÿ

sœS
ÿinit(s) · Pr(s |= A) where

Pr(s |= A) = Pr
D

s { fi œ Paths(s) | trace(fi) /œ Psafe }.

Remark

The value Pr(s |= A) can be written as the (possibly infinite) sum:

Pr(s |= A) =

ÿ

‚fi
P(‚fi)

where ‚fi ranges over all finite path prefixes s0 s1 . . . sn with s0 = s and:

1. trace(s0 s1 . . . sn) = L(s0) L(s1) . . . L(sn) œ L(A), and

2. the length of ‚fi is minimal, i.e., trace(s0 s1 . . . si) /œ L(A) for all 0 6 i < n.
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Verifying regular safety properties

Product construction: intuition

DTMC D DRA A
with state space S with state space Q
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Verifying regular safety properties

Product construction: intuition

DTMC D DRA A
with state space S with state space Q

product D ¢ A
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Verifying regular safety properties

Product Markov chain

Product Markov chain

Let D = (S, P, ÿinit, AP, L) be a DTMC and A = (Q, 2
AP

, ”, q0, F ) be a

DFA. The product D ¢ A is the DTMC:

D ¢ A = (S ◊ Q, P
Õ
, ÿÕ

init, { accept }, L
Õ
)

where L
Õ
(Ès, qÍ) = { accept } if q œ F and L

Õ
(Ès, qÍ) = ? otherwise,

and

ÿÕ

init(Ès, qÍ) =

I
ÿinit(s) if q = ”(q0, L(s))

0 otherwise.

The transition probabilities in D ¢ A are given by:

P
Õ
(Ès, qÍ, Ès Õ

, q
ÕÍ) =

I
P(s, s

Õ
) if q

Õ
= ”(q, L(s

Õ
))

0 otherwise.
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Verifying regular safety properties

Example product: Knuth-Yao’s die
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Verifying regular safety properties

Product Markov chain

Some observations

I For each path fi = s0 s1 s2 . . . in DTMC D there exists a unique run

q0 q1 q2 . . . in DFA A for trace(fi) = L(s0) L(s1) L(s2) . . . and

fi+
= Ès0, q1Í Ès1, q2Í Ès2, q3Í . . . is a path in D ¢ A.

I The DFA A does not a�ect the probabilities, i.e., for each measurable

set � of paths in D and state s:

Pr
D

s (�) = Pr
D¢A

Ès,”(q0,L(s))Í { fi+ | fi œ � }
¸ ˚˙ ˝

�+

I For � =
)

fi œ Paths
D

(s) | pref(trace(fi)) fl L(A) ”= ?
*
, the set �

+

is given by:

�
+

=
)

fi+ œ Paths
D¢A

(Ès, ”(q0, L(s))Í) | fi+ |= ⌃accept
*
.
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Verifying regular safety properties

Quantitative analysis of regular safety properties

Theorem for analysing regular safety properties

Let Psafe be a regular safety property, A a DFA for the set of bad prefixes

of Psafe , D a DTMC, and s a state in D. Then:

Pr
D

(s |= Psafe) = Pr
D¢A

(Ès, qsÍ ”|= ⌃accept)

= 1 ≠ Pr
D¢A

(Ès, qsÍ |= ⌃accept)

where qs = ”(q0, L(s)).

Remarks

1. For finite DTMCs, Pr
D

(s |= Psafe) can thus be computed by determining

reachability probabilities of accept states in D ¢ A. This amounts to solving

a linear equation system.

2. For qualitative regular safety properties, i.e., Pr
D

(s |= Psafe) > 0 and

Pr
D

(s |= Psafe) = 1, a graph analysis of D ¢ A su�ces.
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Pr
D

(s |= Psafe) = Pr
D¢A

(Ès, qsÍ ”|= ⌃accept)

= 1 ≠ Pr
D¢A

(Ès, qsÍ |= ⌃accept)

where qs = ”(q0, L(s)).

Remarks

1. For finite DTMCs, Pr
D

(s |= Psafe) can thus be computed by determining

reachability probabilities of accept states in D ¢ A. This amounts to solving

a linear equation system.

2. For qualitative regular safety properties, i.e., Pr
D

(s |= Psafe) > 0 and

Pr
D

(s |= Psafe) = 1, a graph analysis of D ¢ A su�ces.
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Verifying regular safety properties

Determining the property’s probability

Pr
D¢A

(Ès, qsÍ |= ⌃accept) equals
1
8 +

1
8 +

1
32 +

1
32 =

5
16 .
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Ê-regular properties

Overview
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Ê-regular properties

Ê-regular languages

Infinite repetition of languages

Let � be a finite alphabet. For language L ™ �
ú
, let LÊ

be the set of words in

�
ú fi �

Ê
that arise from the infinite concatenation of (arbitrary) words in �, i.e.,

LÊ
=

)
w1w2w3 . . . | wi œ L, i > 1

*
.

The result is an Ê-language, i.e., L ™ �
ú
, provided that L ™ �

+
, i.e., Á ”œ L.

Ê-regular expression

An Ê-regular expression G over the � has the form: G = E1.FÊ
1 + . . . + En.FÊ

n
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over � such that

Á /œ L(Fi), for all 1 6 i 6 n.

The semantics of G is defined by LÊ(G) = L(E1).L(F1)
Ê fi . . . fi L(En).L(Fn)

Ê

where L(E) ™ �
ú

denotes the language (of finite words) induced by the regular

expression E.
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Ê-regular properties

Ê-regular expressions

Ê-regular expression

An Ê-regular expression G over the � has the form: G = E1.FÊ
1 + . . . + En.FÊ

n
where n > 1 and E1, . . . , En, F1, . . . , Fn are regular expressions over � such that

Á /œ L(Fi), for all 1 6 i 6 n.

The semantics of G is defined by LÊ(G) = L(E1).L(F1)
Ê fi . . . fi L(En).L(Fn)

Ê

where L(E) ™ �
ú

denotes the language (of finite words) induced by the regular

expression E.

Example

Examples for Ê-regular expressions over the alphabet � = { A, B, C } are

(A + B)
ú
A(AAB + C)

Ê
or A(B + C)

ú
A

Ê
+ B(A + C)

Ê
.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/49

E
,

- Flw t Ez - Fzw h=2

A- ( Btc )
'

A

IT F
,

\
B E - Atc

-

-

p
n -- i Ep . FT E

,  
--(AtB)* . A

Ft  = AABTC



Ê-regular properties

Ê-regular properties

Ê-regular property

LT property P over AP is called Ê-regular if P = LÊ(G) for some

Ê-regular expression G over the alphabet 2
AP

.

Example

Let AP = { a, b }. Then some Ê-regular properties over AP are:

I always a, i.e., ({ a } + { a, b })
Ê

.

I eventually a, i.e., (? + { b })
ú.({ a } + { a, b }).(2AP

)
Ê

.

I infinitely often a, i.e., ((? + { b })
ú.({ a } + { a, b }))

Ê
.

I from some moment on, always a, i.e., (2
AP

)
ú.({ a } + { a, b })

Ê
.
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Ê-regular properties

Ê-regular property
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Ê-regular properties

Ê-regular properties

Ê-regular property

LT property P over AP is called Ê-regular if P = LÊ(G) for some

Ê-regular expression G over the alphabet 2
AP

.

Example

Any regular safety property Psafe is an Ê-regular property. This follows from the

fact that the complement language

!
2
AP"Ê \ Psafe = BadPref(Psafe)¸ ˚˙ ˝

regular
.
!
2
AP"Ê

is an Ê-regular language, and Ê-regular languages are closed under complement.
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Ê-regular properties

Ê-regular properties

Ê-regular property

LT property P over AP is called Ê-regular if P = LÊ(G) for some

Ê-regular expression G over the alphabet 2
AP

.

Example

Starvation freedom in the sense of “whenever process P is waiting then it will

enter its critical section eventually” is an Ê-regular property as it can be described

by !
(¬wait)

ú.wait.true
ú.crit

"Ê
+

!
(¬wait)

ú.wait.true
ú.crit

"ú
.(¬wait)

Ê

Intuitively, the first summand stands for the case where P requests and enters its

critical section infinitely often, while the second summand stands for the case

where P is in its waiting phase only finitely many times.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/49



Ê-regular properties

Ê-regular properties

Ê-regular property

LT property P over AP is called Ê-regular if P = LÊ(G) for some

Ê-regular expression G over the alphabet 2
AP

.

Example

Starvation freedom in the sense of “whenever process P is waiting then it will

enter its critical section eventually” is an Ê-regular property as it can be described

by !
(¬wait)

ú.wait.true
ú.crit

"Ê
+

!
(¬wait)

ú.wait.true
ú.crit

"ú
.(¬wait)

Ê

Intuitively, the first summand stands for the case where P requests and enters its

critical section infinitely often, while the second summand stands for the case

where P is in its waiting phase only finitely many times.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/49



Verifying DBA objectives

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 Ê-regular properties

5 Verifying DBA objectives

6 Verifying Ê-regular properties

7 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/49

.

÷ .

> OD a



Verifying DBA objectives

Deterministic Büchi automata

Deterministic Büchi Automaton (DBA)

A deterministic Büchi automaton (DBA) A = (Q, �, ”, q0, F ) with

I Q is a finite set of states with initial state q0 œ Q0,

I � is an alphabet,

I ” : Q ◊ � æ Q is a transition function,

I F ™ Q is a set of accept (or: final) states.

A run for ‡ = A0A1A2 . . . œ �
Ê

denotes an infinite sequence q0 q1 q2 . . . of

states in A such that q0 œ Q0 and qi
Ai≠≠æ qi+1 for i > 0.

Run q0 q1 q2 . . . is accepting if qi œ F for infinitely many indices i œ IN.

The infinite language of A is

LÊ(A) =
)

‡ œ �
Ê | there exists an accepting run for ‡ in A

*
.
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Verifying DBA objectives

Deterministic Büchi automata for LT properties

DBA over { A, B } with F = { q1 } and initial state q0

accepting the LT

property “infinitely often B".
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Deterministic Büchi automata for LT properties

DBA over { A, B } with F = { q1 } and initial state q0 accepting the LT

property “infinitely often B".
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Verifying DBA objectives

Some facts about DBA

Expressiveness of DBA

For any DBA A, the language LÊ(A) is Ê-regular.

There does not exist a DBA over the alphabet � = { a, b } for the

Ê-regular expression (a + b)
ú.aÊ

.

The class of DBA-recognizable languages is a proper subclass of the class

of Ê-regular languages and is not closed under complementation.

An Ê-language is recognizable by a DBA i� it is the limit language of a

regular language. (Details: see lecture Applications of Automata Theory.)
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Verifying DBA objectives

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties

Let A be a DBA and D a DTMC. Then, for all states s in D:

Pr
D

(s |= A) = Pr
D¢A

(Ès, qsÍ |= ⇤⌃accept)

where qs = ”(q0, L(s)).

Algorithm

Recall that for finite DTMCs, the probability of ⇤⌃accept can be obtained in

polynomial time by first determining the BSCCs of D ¢ A. For each BSCC B

that contains a state Ès, qÍ with q œ F , determine the probability of eventually

reaching B. Its sum is the required probability. Thus this amounts to solve a

linear equation system for each accepting BSCC in D.
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Verifying Ê-regular properties

Overview

1 Introduction

2 Preliminaries

3 Verifying regular safety properties

4 Ê-regular properties

5 Verifying DBA objectives

6 Verifying Ê-regular properties

7 Summary
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Verifying Ê-regular properties

Beyond DBA properties

Remarks

I Since DBAs do not have the full power of Ê-regular languages, this approach

is not capable of handling arbitrary Ê-regular properties.

I To overcome this deficiency, Büchi automata will be replaced by an

alternative automaton model for which their deterministic counterparts are

as expressive as Ê-regular languages.

I Such automata have the same components as DBA (finite set of states, and

so on) except for the acceptance sets. We consider deterministic Rabin

automata. There are alternatives, e.g., Muller automata.

I Determinism is important to stay within the realm of Markov chains; a

product of an MC with a deterministic automaton yields a MC.
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Verifying Ê-regular properties

Deterministic Rabin automata

Deterministic Rabin automaton

A deterministic Rabin automaton (DRA) A = (Q, �, ”, q0, F) with

I Q, q0 œ Q0, � is an alphabet, and ” : Q ◊ � æ Q as before

I F = { (Li , Ki) | 0 < i 6 k } with Li , Ki ™ Q, is a set of accept pairs

A run for ‡ = A0A1A2 . . . œ �
Ê

denotes an infinite sequence q0 q1 q2 . . . of

states in A such that q0 œ Q0 and qi
Ai≠≠æ qi+1 for i > 0.

Run q0 q1 q2 . . . is accepting if for some pair (Li , Ki), the states in Li are

visited finitely often and the states in Ki infinitely often. That is, an

accepting run should satisfy

fl

0<i6k
(⌃⇤¬Li · ⇤⌃Ki).
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Verifying Ê-regular properties

When does a DRA accept an infinite word?

Acceptance condition

A run of a word in �
Ê

on a DRA is accepting if and only if:

for some (Li , Ki) œ F , the states in Li are visited finitely often

and (some of) the states in Ki are visited infinitely often

Stated in terms of an LTL formula:

fl

0<i6k
(⌃⇤¬Li · ⇤⌃Ki)

A deterministic Büchi automaton is a DRA with acceptance condition { (?, F ) }.
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Verifying Ê-regular properties

Deterministic Rabin automaton: Example

Acceptance condition

A run of a word in �
Ê

on a DRA is accepting i�
x

0<i6k (⌃⇤¬Li · ⇤⌃Ki).

For F = { (L, K ) } with L = { q0 } and K = { q1 }, this DRA accepts ⌃⇤a

Recall that there does not exist a deterministic Büchi automaton for ⌃⇤a.
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Verifying Ê-regular properties

Deterministic Rabin automata

DRA are Ê-regular

A language on infinite words is Ê-regular i� there exists a DRA that

generates it.

I DRA are thus equally expressive as nondeterministic Büchi automata.

I They are more expressive than deterministic Büchi automata.

I Any nondeterministic Büchi automata of n states can be converted to

a DRA of size 2
O(n· log n)

. (Details omitted.)
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Verifying Ê-regular properties

Verifying DRA properties

Product of a Markov chain and a DRA

The product of DTMC D and DRA A is defined as the product of a Markov

chain and a DFA, except that the labeling is defined di�erently.

Let the acceptance condition of A is F = { (L1, K1), . . . , (Lk , Kk) }. Then the

sets Li , Ki serve as atomic propositions in D ¢ A. The labeling function L
Õ

in

D ¢ A is the obvious one: if H œ { L1, . . . , Lk , K1, . . . , Kk }, then H œ L
Õ
(Ès, qÍ)

i� q œ H.

Accepting BSCC

A BSCC T in D ¢ A is accepting i� for some index i œ { 1, . . . , k } we have:

T fl (S ◊ Li) = ? and T fl (S ◊ Ki) ”= ?.

Thus, once such an accepting BSCC T is reached in D ¢ A, the acceptance

criterion for the DRA A is fulfilled almost surely.
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Verifying Ê-regular properties

Verifying DRA properties

Accepting BSCC

A BSCC T in D ¢ A is accepting i� for some index i œ { 1, . . . , k } we have:

T fl (S ◊ Li) = ? and T fl (S ◊ Ki) ”= ?.

Thus, once such an accepting BSCC T is reached in D ¢ A, the acceptance

criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities

Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union

of all accepting BSCCs in D ¢ A. Then:

Pr
D

(s |= A) = Pr
D¢A

!
Ès, qsÍ |= ⌃U

"
where qs = ”(q0, L(s)).

Proof

On the blackboard (if time permits).
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Verifying Ê-regular properties

Verifying DRA properties
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Verifying Ê-regular properties

Verifying DRA objectives

DRA probabilities = reachability probabilities

Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union

of all accepting BSCCs in D ¢ A. Then:

Pr
D

(s |= A) = Pr
D¢A

!
Ès, qsÍ |= ⌃U

"
where qs = ”(q0, L(s)).

Probabilities for satisfying Ê-regular properties are obtained by computing the

reachability probabilities for accepting BSCCs in D ¢ A. Again, a graph analysis

and solving systems of linear equations su�ce. The time complexity is polynomial

in the size of D and A.
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Verifying Ê-regular properties

Example: verifying a DTMC versus a DRA

Single accepting BSCC: { Ès2, q1Í, Ès5, q1Í }.

Reachability probability is
1

2
· 1

10
·

Œÿ

k=0

3
3

5

4k
=

1

8
.
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Verifying Ê-regular properties

Measurability

Measurability theorem for Ê-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{ fi œ Paths(D) | trace(fi) œ LÊ(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1, K1), . . . , (Lm, Km) }. Let

Ïi = ⌃⇤¬Li · ⇤⌃Ki and �i the set of paths satisfying Ïi . Then

� = �1 fi . . . fi �k . In addition, �i = �
⌃⇤
i fl �

⇤⌃
i where �

⌃⇤
i is the set of paths

fi in D such that fi+ |= ⌃⇤¬Li , and �
⇤⌃
i is the set of paths fi in D such that

fi+ |= ⇤⌃Ki . It remains to show that �
⌃⇤
i and �

⇤⌃
i are measurable. This goes

along the same lines as proving that ⌃⇤G and ⇤⌃G are measurable.
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Verifying Ê-regular properties

Linear temporal logic

Linear Temporal Logic: Syntax [Pnueli 1977]

LTL formulas over the set AP obey the grammar:

Ï ::= a

--- ¬Ï
--- Ï1 · Ï2

--- • Ï
--- Ï1 U Ï2

where a œ AP and Ï, Ï1, and Ï2 are LTL formulas.

Example

On the blackboard.
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Verifying Ê-regular properties

LTL semantics

LTL semantics

The LT-property induced by LTL formula Ï over AP is:

Words(Ï) =

Ó
‡ œ

1
2

AP2Ê
| ‡ |= Ï

Ô
, where |= is the smallest relation satisfying:

‡ |= true

‡ |= a i� a œ A0 (i.e., A0 |= a)

‡ |= Ï1 · Ï2 i� ‡ |= Ï1 and ‡ |= Ï2

‡ |= ¬ Ï i� ‡ ”|= Ï

‡ |= • Ï i� ‡1
= A1A2A3 . . . |= Ï

‡ |= Ï1 U Ï2 i� ÷j > 0. ‡j |= Ï2 and ‡i |= Ï1, 0 6 i < j

for ‡ = A0A1A2 . . . we have ‡i = Ai Ai+1Ai+2 . . . is the su�x of ‡ from index i on.
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Verifying Ê-regular properties

Some facts about LTL

LTL is Ê-regular

For any LTL formula Ï, the set Words(Ï) is an Ê-regular language.

LTL are DRA-definable

For any LTL formula Ï, there exists a DRA A such that LÊ = Words(Ï)

where the number of states in A lies in 2
2|Ï|

.
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Verifying Ê-regular properties

Verifying a DTMC against LTL formulas

Complexity of LTL model checking [Vardi 1985]

The qualitative model-checking problem for finite DTMCs against LTL

formula Ï is PSPACE-complete, i.e., verifying whether Pr(s |= Ï) > 0 or

Pr(s |= Ï) = 1 is PSPACE-complete.

Recall that the LTL model-checking problem for finite transition systems is

PSPACE-complete.
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Summary

Summary

Summary

I Verifying a DTMC D against a DFA A, i.e., determining Pr(D |= A),

amounts to computing reachability probabilities of accept states in D ¢ A.

I For DBA objectives, the probability of infinitely often visiting an accept state

in D ¢ A.

I DBA are strictly less powerful than Ê-regular languages.

I Deterministic Rabin automata are as expressive as Ê-regular languages.

I Verifying DTMC D agains DRA A amounts to computing reachability

probabilities of accepting BSCCs in D ¢ A.

Take-home message

Model checking a DTMC against various automata models reduces to computing

reachability probabilities in a product.
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