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Summary of previous lectures

Reachability probabilities

Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal

1. Repeated reachability
» = Reachability of the BSCCs containing a goal state

2. Persistence AT 6
» = Reachability of the BSCCs only containing goal states

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/49



Aim of this lecture

|
Reachability probabilities = key to determine the probability of any
w-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.

2. All traces refuting such property P are recognized by a deterministic
finite-state automaton A.
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Aim of this lecture

|
Reachability probabilities = key to determine the probability of any
w-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.

2. All traces refuting such property P are recognized by a deterministic
finite-state automaton A.

3. Probability of P = reachability probability in a product of D and A.
4. What are w-regular properties?

5. All traces satisfying such property P are recognized by a deterministic

Rabin automaton A. @ —— = | DRA A /"b
T \ =
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Aim of this lecture

|
Reachability probabilities = key to determine the probability of any
w-regular property. (This includes all linear temporal logic formulas.)

Major steps for Markov chain D

1. Consider first a simple class of properties: regular safety properties.

2. All traces refuting such property P are recognized by a deterministic
finite-state automaton A.

3. Probability of P = reachability probability in a product of D and A.
4. What are w-regular properties?

5. All traces satisfying such property P are recognized by a deterministic
Rabin automaton A.

6. Probability of P = reachability probability in a product of D and A.
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Preliminaries

Overview

© Preliminaries
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Preliminaries

Paths and traces

Paths

A path in DTMC D is an infinite sequence of states sps; s,
P(si,si+1) > 0 for all i.

Let Paths(D) denote the set of paths in D, and Paths*(D) the set of finite
prefixes thereof.
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Preliminaries

Paths and traces

A path in DTMC D is an infinite sequence of states sps1sp... ... with
P(sj, si+1) > 0 for all i.

Let Paths(D) denote the set of paths in D, and Paths*(D) the set of finite
prefixes thereof.

Traces

The trace of path m = sps1 s ... is trace(m) = L(sp) L(s1) L(s2) - . ..
—
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Paths and traces

A path in DTMC D is an infinite sequence of states sps1sp... ... with
P(sj, si+1) > 0 for all i.

Let Paths(D) denote the set of paths in D, and Paths*(D) the set of finite
prefixes thereof.

Traces

The trace of path m = sps1 5 ... is trace(m) = L(so) L(s1) L(s2) - . ..
The trace of finite path T = sy s1... s is trace(7) = L(so) L(s1) ... L(sp).

The set of traces of a set [1 of paths: trace(l) = { trace(w) | 7 € M }.
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LT properties
P v e seb oF "R bmces

Linear-time property

A linear-time property (LT property) over AP is a subset of (2AP)W.
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Preliminaries

LT properties

Linear-time property

A linear-time property (LT property) over AP is a subset of (2AP)W. An
LT-property is thus a set of infinite traces over 2AP
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Preliminaries

LT properties

%

Linear-time property

A linear-time property (LT property) over AP is a subset of (2AP)W. An
LT-property is thus a set of infinite traces over 2AP

Intuition

An LT-property gives the admissible behaviours of the DTMC at hand.

MP
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Preliminaries

Probability of LT properties

Probability of LT properties

The probability for DTMC D to exhibit a trace in property P (over AP) is:
PP(P) = PP{r € Paths(D) | trace(n) € P}.
L \
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Preliminaries

Probability of LT properties

Probability of LT properties

The probability for DTMC D to exhibit a trace in property P (over AP) is:
PP(P) = PP{r € Paths(D) | trace(n) € P}.

For state s in D, let Pr(s = P) = Prs{m € Paths(s) | trace(n) € P }.
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Preliminaries

Probability of LT properties

Probability of LT properties

The probability for DTMC D to exhibit a trace in property P (over AP) is:

PP (P) @e Paths(D) | @

For state s in D, let Pr(s = P) = Prs{m € Paths(s) | trace(n) € P }.

We do not address measurability of P yet. We will later identify a rich set P of
LT-properties—those that include all LTL formulas—for which the set of paths
{7 € Paths(D) | trace(w) € P} is measurable.
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Safety properties
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Preliminaries

Safety properties sed of ~Reke Amces

Safety property

LT property Ps.r over AP is a safety property if for all o € (24P)\ Pgr
there exists a finite prefix & of o such that:

—_—

Faate
Psafe N {0'/ S (2AP)UJ ‘ o is a prefix of U’} = J. >

all possible extensions of &
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Safety properties

Safety property

LT property P, over AP is a safety property if for all o € (2AP)w \ Psafe
there exists a finite prefix & of o such that:

Psafe N {0'/ S (2AP)UJ ‘ o is a prefix of UI} = J.

all possible extensions of &

Any such finite word & is called a bad prefix for Ps,fe.
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Preliminaries

there exists a finite prefix & of o such that:

Psafe N {0'/ S (2AP)UJ ‘ o is a prefix of U’} = .

all possible extensions of &

Any such finite word & is called a bad prefix for Ps,fe.

Regular safety property

A safety property is regular if its set of bad prefixes constitutes a regular
language (over the alphabet 24P).
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Preliminaries

Safety properties

Safety property

LT property Ps.r over AP is a safety property if for all o € (24P)\ Pgr
there exists a finite prefix & of o such that:

Psafe N {0'/ S (2AP)UJ ‘ o is a prefix of U’} = J.

all possible extensions of &

Any such finite word & is called a bad prefix for Ps,fe.

Regular safety property

A safety property is regular if its set of bad prefixes constitutes a regular
language (over the alphabet 2AP). Thus, the set of all bad prefixes of a
regular safety property can be represented by a finite-state automaton.
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Property of Knuth’s die

Property of Knuth’s die

After initial tails, yield 1 or 3 but with maximally five time tails.
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Preliminaries

Property as an automaton  eeox. S et 2u5b o™

true

After initial tails, yield 1 or 3 but with at most five times tails in total
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Verifying regular safety properties

Overview

© Verifying regular safety properties
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Verifying regular safety properties

Probability of a regular safety property

Let A= (Q,24F 4, qo, F) be a deterministic finite-state automaton (DFA)
for the bad pfefixes of regular safety property Psafe:

Pose =| (Ao AL Ao .. € (2P VA > 0. A0 Ay ... Ay & L(A) ).
—_— —
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Verifying regular safety properties

Probability of a regular safety property

Let A = (Q,24P, 4, qo, F) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Ps,fe:

Poare = {AoA1As... € 2AP) |Vn=0.AgA1... A, & L(A)}.

Let ¢ be total, i.e., 6(q, A) is defined for each A C AP and state q € Q.

O/ A<AP

a
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Verifying regular safety properties

Probability of a regular safety property

Let A = (Q,24P, 4, qo, F) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Ps,fe:

Poare = {AoA1As... € 2AP) |Vn=0.AgA1... A, & L(A)}.

Let ¢ be total, i.e., 6(q, A) is defined for each A C AP and state q € Q.
Furthermore, let D = (S, P, t;nir, AP, L) be a finite DTMC. Our interest is

to compute the probability TP (A occepks & D sherks
~—— \n S
PP (Psae) = 1 — ZLinjt(s) -Pr(s = A) where
—_—— seS

A— pr. By s o~‘3"2P)";:_‘)
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Verifying regular safety properties

Probability of a regular safety property

Let A = (Q,24P, 4, qo, F) be a deterministic finite-state automaton (DFA)
for the bad prefixes of regular safety property Ps,fe:

Poare = {AoA1As... € 2AP) |Vn=0.AgA1... A, & L(A)}.

Let ¢ be total, i.e., 6(q, A) is defined for each A C AP and state q € Q.

Furthermore, let D = (S, P, t;ni1, AP, L) be a finite DTMC. Our interest is
to compute the probability

: 1= > tw(s) - Prs = A)  where

seS

Pr(s = A) = PrP{n c Paths(s) | trace(n) ¢ Psafe }.

These probabilities can be obtained by considering a product of DTMC D with
DFA A.
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Probability of a regular safety property

PrP(Psre) = 1 — ZLmlt -Pr(s = A) where
seS

Pr(s = A) = PrP{n c Paths(s) | trace(n) ¢ Psafe }.

The value Pr(s |= A) can be written as the (possibly infinite) sum:

Prisf=A) = > P(7)

~

where T ranges over all finite path prefixes sp s; ...s, with so = s and:
1. trace(sosi---sn) = L(so) L(s1)---L(sn) € L(A), and

2. the length of 7 is minimal, i.e., trace(sp sy ...s;) ¢ L(A) for all 0 <7 < n.
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Verifying regular safety properties

Pr

TMC D
with state space S

construction: intuition SN

DRA A
ith state space @

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Verifying regular safety properties

Product construction: intuition

F
DTMC D DRA A
with state space S witk_state space @
90 0
m Ao

1 ---------- — dn
Sp L (S,-,) :An . Sp, CIIIH'I > 1 A”

product D ® A

Modeling and Verification of Probabilistic Systems



Verifying regular safety properties

Product Markov chain
Product Markov chain

Let D = (S, P, Linit,L) be a DTMC and A = (Q,2AP, J,qo, F) be a
DFA. The product D ® A is the DTMC:

Nf'\
DA = (Sx QP .. { accept}@
where L'((s, q)) = { accept } if g € F and L'((s, q)) = & otherwise,

T

L. SxAa— 9¢ ¥
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Verifying regular safety properties

Product Markov chain
Product Markov chain

Let D = (S, P, 1., AP, L) be a DTMC and A = (Q, 24P, 6, go, F) be a
DFA. The product D ® A is the DTMC:

DA = (Sx Lgnit,{accept}, L")

where L'((s, q)) = { accept} if g € F and L'((s, q)) = @ otherwise, and

e
[’ini(, |f = (5 ,
d e = { (s)  if 9= 0(do, L(s))

0 otherwise.

Steke o? D
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Product Markov chain

Product Markov chain

Let D = (S, P, 1., AP, L) be a DTMC and A = (Q, 24P, 6, go, F) be a
DFA. The product D ® A is the DTMC:

DA = (SxQ,P 4, {accept}, L)
where L'((s, q)) = { accept} if g € F and L'((s, q)) = @ otherwise, and

Lini(,(s) If q = 6(q0’ L(s))
0 otherwise.

Lu((5: 9)) = {

The transition probabilities in D ® A are given by:

P(s,s")  ifq =6(q, L(s"))

0 otherwise.

P'((s.q).(s".q")) = {
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Verifying regular safety properties

Example product: Knuth-Yao’s die

1
.ﬁ- @)

kQ&LS
Eah 1 1
2 2
1 1 1 1 1 1
511 53,2 2 51,3 2 s3,4 2 51,9 2 @,5
1 1 c 1 1
\seeés 3 2‘ kels 32/ |,
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1
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Product Markov chain
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Product Markov chain

Some observations

» For each path m = sps;sy...in DTMC D there exists a unique run
Go g1 qz...in DFA A for trace(m) = L(so) L(s1) L(s2) ... and
nt = (so, q1> <51, q2) (s2, q3> ...is apathin D® A.

» The DFA A does not affect the probabilities, i.e., for each measurable
set I1 of paths in D and state s:

A
PE(N) = PriSausy L 7 en}
n+
» For M = {7 € Paths"(s) | pref(trace(n)) N L(A) # @ }, the set M+
is given by:

Nt = {77 € Paths®®4((s,8(qo, L(s)))) | =" |= Qaccept}.
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Quantitative analysis of regular safety properties
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Quantitative analysis of regular safety properties

Theorem for analysing regular safety properties

Let Psafe be a regular safety property
of Psyre, D a DTMC, and s a state in D.

PP(s = Poare) =

A)for the set of bad prefixes

en: ‘c‘\;z\,
P
PP2A((s, gs) B~ Qaccept)

—_—

 bhe @sduck DO B

D sheks - S
ond sabishes P o

o\ kad ‘-N'LQ\'J(:S QQ Tsle = \—de\nr \o.,\J\,\t.)g

= \cﬁ\s 9t Oaxeled
by = DFA H
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Verifying regular safety properties

Quantitative analysis of regular safety properties

Theorem for analysing regular safety properties

Let Psafe be a regular safety property, A a DFA for the set of bad prefixes
of Psyre, D a DTMC, and s a state in D. Then:

PrD(s E Psate) p,D®A(<s, qs<>accept)
L 1 — PrP®4((s, gs) |= Oaccept)
where gs = d(qo, L(s)). 1
pmc D PFA A
s = L)

LT T——
I
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Verifying regular safety properties

Quantitative analysis of regular safety properties

Theorem for analysing regular safety properties

Let Ps.fe be a regular safety property, A @o the set of bad prefixes
of Psyre, D a DTMC, and s a state in D. en:

Xrver DR A
A \s O‘DQ;\\ a
PP(s = Poare) = PrP94((s, gs) = Qaccept) eteow

= 1—PP%4((s, qs) = Oaccept)  cloin
where gs = 6(qo, L(s)).

1. For finite DTMCs, Pr(s = Ps.z) can thus be computed by determining

reachability probabilities of accept states in D ® A. This amounts to solving
a linear equation system.

2. For qualitative regular safety properties, i.e., PrD(s E Psfr) >0 and
PrP (s |= Psare) = 1, a graph analysis of D ® A suffices.
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Verifying regular safety properties

Determining the property’s probability

PrP®A((s, q5) |= Qaccept) equals L + 1+ L + L =5

— — —
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w-regular properties

Overview
whwte  baces
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w-regular languages
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w-regular languages

Infinite repetition of languages

2 = lzq_\\olcg

Let ¥ be a finite alphabet.
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w-regular languages Rl Cords over 2

Infinite repetition of languages

Let X be a finite alphabet. For language £ { let £L¥ be the set of words in
¥* U XY that arise from the infinite concatenation of (arbitrary) words in X,

S- jabey
"
o\\,q) a\a\_-,) acccy € &

D
oca \:‘:Qﬁ-k mc\;.__f-\___, (QQQL)
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w-regular languages

Infinite repetition of languages

Let ¥ be a finite alphabet. For language £ C ¥*, let £L“ be the set of words in
¥* U XY that arise from the infinite concatenation of (arbitrary) words in X, i.e.,

LY = {W1W2W3...|W,'€£,l.>1}.
—

Liwke womhs
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w-regular properties

w-regular languages

Infinite repetition of languages

Let ¥ be a finite alphabet. For language £ C ¥*, let £L“ be the set of words in
¥* U XY that arise from the infinite concatenation of (arbitrary) words in X, i.e.,

LY = {W1W2W3...|W,'€£,l.>1}.

The result is an w-language, i.e., L C ¥*, provided ti.e., ed L.
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w-regular languages

Infinite repetition of languages

Let ¥ be a finite alphabet. For language £ C ¥*, let £L“ be the set of words in
¥* U XY that arise from the infinite concatenation of (arbitrary) words in X, i.e.,

LY = {W1W2W3...|W,'€£,l.>1}.

The result is an w-language, i.e., L C X*, provided that LC X T, ie., e € L.

w-regular expression

An w-regular expression G over the X has the form:

\_,) ia.%c&
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w-regular languages

Infinite repetition of languages

Let ¥ be a finite alphabet. For language £ C ¥*, let £L“ be the set of words in
¥* U XY that arise from the infinite concatenation of (arbitrary) words in X, i.e.,

LY = {W1W2W3...|W,'€£,l.>1}.

The result is an w-language, i.e., L C X*, provided that LC X T, ie., e € L.

w-regular expression

An w-regular expression G over the ¥ has the form: (G = E1.F{ + ... + E,.F;,
where n > 1 and Eq,...,E, Fq,..., F, are regular expressions over > such that
e ¢ L(F;), forall1<i<n.

)
ELE ¢ E R 4 vECT
V4

\-(5&\0( CﬁF‘

&3“\'-\(

(bt vt 2)
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w-regular languages

Infinite repetition of languages

Let ¥ be a finite alphabet. For language £ C ¥*, let £L“ be the set of words in
Y * U X% that arise from the infinite concatenation of (arbitrary) words in X, i.e.,

LY = {W1W2W3...|W,'€£,l.>1}.

The result is an w-language, i.e., L C X*, provided that LC X T, ie., e € L.

w-regular expression

An w-regular expression G over the ¥ has the form: G =E;.F{ + ...+ E,.F}
where n > 1 and Eq,...,E, Fy,..., F, are regular expressions over ¥ such that
e ¢ L(F;), forall1<i<n.

The semantics of G is defined by £,(G) = L(E1).L(F1)*U...UL(E,).L(F,)*
where £(E) C ©* denotes the language (of finite words) induced by the regular
expression E.
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B CRT AR ST n=2
A (Brc \f’, R

w-regular expression

An w-regular expression G over the ¥ has the form: G = E;.F{ + ... + E,.F}
where n > 1 and Eq, ..., E, F1, ..., F, are regular expressions over ¥ such that
e ¢ L(F;), forall 1<i<n.

The semantics of G is defined by £,(G) = L(E1).L(F1)* U...UL(E,).L(F,)“
where £(E) € ©* denotes the language (of finite words) induced by the regular
expression E.

w-regular expressions

Examples for w-regular expressions over the alphabet ¥ = {A, B, C} are
(A+ B)*A(AAB+ C)¥ or A(B+ O)*AY 4+ B(A+ CO)~.

—— Y —

- x
N=4 E1 - F E‘:(A43) - A 'T
FJ\: AARA-C
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w-regular properties
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w-regular properties

w-regular properties

w-regular property

LT property P over AP is called w-regular i %. some

w-regylar expression G over the alphabet AR

sebk of wRate dvaces

P ca-~ = represeted \—3 an Q—n&\\u erpressian

[—) QO -—rea\\af‘
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w-regular properties

w-regular property

LT property P over AP is called w-regular if P = L,,(G) for some
w-regular expression G over the alphabet AP

Let AP={a, b}. Then some w-regular properties over AP are:

> always a, i.e, ({a}+{a b})~. E - F
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w-regular properties

w-regular property

LT property P over AP is called w-regular if P = L,,(G) for some
w-regular expression G over the alphabet AP

Let AP={a, b}. Then some w-regular properties over AP are:
> always a, i.e., ({a}+{a b})~.
> eventually a, ie., (@ +{b})*.({a}+{a b}).2AP).
Qe T T &

1
—— ‘\_/V'\-—\.a—ﬂ

fo a's One O~ ““3\"":)
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w-regular properties

w-regular property

LT property P over AP is called w-regular if P = L,,(G) for some
w-regular expression G over the alphabet AP

Let AP={a, b}. Then some w-regular properties over AP are:
> always a, i.e., ({a}+{a b})~.
> eventually a, ie., (@ +{b})*.({a}+{a b}).2AP).

> infinitely often a, i.e., (& +{b})*.({a}+{a b}))~. £ =t
0o o - < —
Y
—— & > %« > N
v o' e o'S wo Q'S
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w-regular properties

w-regular property

LT property P over AP is called w-regular if P = L,,(G) for some
w-regular expression G over the alphabet AP

Let AP={a, b}. Then some w-regular properties over AP are:
> always a, i.e., ({a}+{a b})~.
> eventually a, ie., (@ +{b})*.({a}+{a b}).2AP).
> infinitely often a, i.e., (T +{b})*.({a} +{a b}))”. HSTe

> from some moment on, always a, i.e., (22P)*.({a} + {a, b})~.
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w-regular properties

w-regular property

LT property P over AP is called w-regular if P = L,,(G) for some
w-regular expression G over the alphabet AP

Any regular safety property Ps. is an w-regular property. This follows from the
fact that the complement language S 13

—

/\/"\
(2AP)w \ Psafe = BadPref(Psafe) ~(2AP)W
—
regular

is an w-regular language, and w-regular languages are closed under complement.

Joost-Pieter Katoen
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w-regular properties

w-regular property

LT property P over AP is called w-regular if P = L,,(G) for some
w-regular expression G over the alphabet 2AP
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w-regular properties

w-regular properties

w-regular property

LT property P over AP is called w-regular if P = L,,(G) for some
w-regular expression G over the alphabet 2AP

Starvation freedom in the sense of “whenever process P is waiting then it will

enter its critical section eventually” is an w-regular property as it can be described
by
((—wait)* .wait.true*.crit)” + ((—wait)*.wait.true*.crit)".(~wait)*

Intuitively, the first summand stands for the case where P requests and enters its
critical section infinitely often, while the second summand stands for the case
where P is in its waiting phase only finitely many times.
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Verifying DBA objectives

Overview La—reylar
P«eew\-rcs

DBA

> S a
© Verifying DBA objectives
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Deterministic Biichi automata
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Deterministic Biichi automata

Deterministic Biichi Automaton (DBA)

A deterministic Biichi automaton (DBA) A = (Q, X, d, qo, F) with

> @ is a finite set of states with initial state gg € Qp,
Y is an alphabet, \ = \e DFa:
0: Q X §—> @ is a transition function,

v

v

» F C Qis a set of accept (or: final) states.
A run for 0 = ApA1Az ... € ¥ denotes an infinite sequence gp g1 g2 . . . of
states in A such that go € Qp and g; A, gi41 for i > 0.
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Verifying DBA objectives

Deterministic Biichi automata

Deterministic Biichi Automaton (DBA)

A deterministic Biichi automaton (DBA) A = (Q, X, d, qo, F) with

> @ is a finite set of states with initial state gg € Qp,

» 2 is an alphabet,

> §: QXX — @ is a transition function,

» F C Qis a set of accept (or: final) states.
A run for 0 = AgA1Asz ... € ¥ denotes an infinite sequence gp g1 g2 . . . of
states in A such that go € Qp and g; i gi41 for i > 0.
Run qo g1 g2 ... is accepting if g; € F for infinitely many indices i € IN.
The infinite language of A is

L,(A) = {o € X¥]|there exists an accepting run for o in A}.
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Verifying DBA objectives
Deterministic Biichi automata for LT properties

Q; % %O; 5’\\

Ao
RAA B
Yans =
L) = @] L
(o8] S ' A U 30309_\1‘..-&...
(r=B) B

DBA over { A, B} with F = { g1 } and initial state go

N —

=2
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Verifying DBA objectives

Deterministic Biichi automata for LT properties

O

B

O==

a1
A
A

DBA over { A, B} with F = { g1 } and initial state gy accepting the LT
property “infinitely often B".
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Some facts about DBA

Expressiveness of DBA

For any DBA A, the language £, (A) is w-regular.

There does not exist a DBA over the alphabet ¥ = { a, b} for the

w-regular expression (a+ b)*.a“. . Q0 a

8= g0-
T NEa
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Some facts about DBA

Expressiveness of DBA

For any DBA A, the language £, (A) is w-regular.

There does not exist a DBA over the alphabet ¥ = { a, b} for the
w-regular expression (a+ b)*.a“.

The class of DBA-recognizable languages is a proper subclass of the class
of w-regular languages

-B O—veyler
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Some facts about DBA

Expressiveness of DBA

For any DBA A, the language £, (A) is w-regular.

There does not exist a DBA over the alphabet ¥ = { a, b} for the
w-regular expression (a+ b)*.a“.

The class of DBA-recognizable languages is a proper subclass of the class
of w-regular languages and is not closed under complementation.

|
An w-language is recognizable by a DBA iff it is the limit language of a
regular language. (Details: see lecture Applications of Automata Theory.)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/49



et L € S*

L o\l abel 2
\N € ZQ 'S WA b\( \.:M\\: 0-9' | h\g: G~ oa:)\g‘

\Prt'Q(w)ﬁL \ = O

Tha "v‘or Qr\o"\:\(ﬁ:\a’ AR YVere 18 OO0 U»GL

SO~ Kaalke \Us\ > n vkt W\ € f:\r:g (w)

5§ c~d oﬁ\& ;&
l s e [N oYY OQ‘ Sdre (%\»\Ov- \CU
R’QOQ‘_ \ek A Le o DA oA A" e Concs-
pording TEA. Clade 4.,P) = Lt of A),
N € ZLD ;& QQCQP’EQA b DRA N \QS’ SOnne &\«\Q\ Shk

i~ B is uisiked th%w\ceé_ olken Ths o 5E

AV w/\a_ M’?\‘xes QS‘ W arsce O\ch\o\-(g\ b B', H/Er\R)



Quantitative analysis of DBA properties
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Verifying DBA objectives

Quantitative analysis of DBA properties
DFA

Quantitative Analysis for DBA-Definable Properties

< c;O:q-t

Let A be a DBA and D a DTMC. Then, for all statef s in D:

PP(s k= A) = PP®A((s, qs) = OOaccept)

where gs = d(qo, L(s)). podacky MC
. acyt
et (DBA A —
“C o? \
~at
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Verifying DBA objectives

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties

Let A be a DBA and D a DTMC. Then, for all states s in D:

PP(s = A) = <S, gs) = OOaccept)

where gs = d(qo, L(s)). greh enclysis 4 reachelailyy Ppabs
Algorithm

Recall that for finite DTMCs, the probability of C0Qaccept can be obtained in
polynomial time by first determining the BSCCs of D ® A.
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Verifying DBA objectives

Quantitative analysis of DBA properties

Quantitative Analysis for DBA-Definable Properties

Let A be a DBA and D a DTMC. Then, for all states s in D:
PP(s k= A) = PP®A((s, qs) = OOaccept)

where gs = d(qo, L(s)). o BSCC ek candains
2 A accek syale.

Algorithm

Recall that for finite DTMCs, the probability of \1()accept can be obtained in

polynomial time by first determining the BSCCs &f D ® A. For each BSCC B
that contains a state (s, g) with g € F, determing the probability of eventually
reaching B. Its sum is the required probability. £ hus this amounts to solve a

. . ” 4 .

linear equation system for each accepting BSCC in D.
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Verifying w-regular properties

Overview

@ Verifying w-regular properties
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Beyond DBA properties
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Beyond DBA properties

» Since DBAs do not have the full power of w-regular languages, this approach
is not capable of handling arbitrary w-regular properties.

» To overcome this deficiency, Bilichi automata will be replaced by an
alternative automaton model for which their deterministic counterparts are
as expressive as w-regular languages.

» Such automata have the same components as DBA (finite set of states, and
so on) except for the acceptance sets. We consider deterministic Rabin

automata. =
o.\‘\'EMc:‘\Nt

Sheek
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Beyond DBA properties

» Since DBAs do not have the full power of w-regular languages, this approach
is not capable of handling arbitrary w-regular properties.

» To overcome this deficiency, Bilichi automata will be replaced by an
alternative automaton model for which their deterministic counterparts are
as expressive as w-regular languages.

» Such automata have the same components as DBA (finite set of states, and
so on) except for the acceptance sets. We consider deterministic Rabin
automata. There are alternatives, e.g., Muller automata.

» Determinism is important to stay within the realm of Markov chains; a
product of an MC with a deterministic automaton yields a MC.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/49



Deterministic Rabin automata
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Verifying w-regular properties
Q Q

22
Deterministic Rabin automata SFeT¥

Deterministic Rabin automaton

A deterministic Rabin automaton (DRA) A = (Q, X, 9, qo, F) \ith

> @, go € Qo, X is an alphabet, and § : Q@ X ¥ — Q as befgre

» F={(Li,Ki)|0< i<k} with L;, Ki C Q, is a set of accept pairs
A run for 0 = ApA1A> ... € ¥ denotes an infinite sequence gp g1 g2 . .. of
states in A such that g € Qp and g; A git1 for i > 0.
Run go g1 g2 ... is accepting if for some pair (L;, K;), the states in L; are

visited finitely often and the states in K; infinitely often. That is, an
accepting run should satisfy

\ (00-L; AOOK;).
o<i<k
\ k‘\cb
’c\,\ﬂl‘k A AL
u\'k>\_; o Ky
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When does a DRA accept an infinite word?

Acceptance condition

A run of a word in £ on a DRA is accepting if and only if:
for some (L;, K;) € F, the states in L; are visited finitely often

and (some of) the states in K; are visited infinitely often

Stated in terms of an LTL formula:

(<> O=L;, A OO K,) -
0<\i/<k 0&0&\\?

A deterministic Biichi automaton is a DRA with acceptance condition { (&, F) }.
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Verifying w-regular properties

Deterministic Rabin automaton: Example S0a

“73
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Verifying w-regular properties
Deterministic Rabin automaton: Example

Acceptance condition

A run of a word in X on a DRA is accepting iff \/o_;, (00-L; A OO Kj).

For F = {(L,K)} with L={qo} and K = { g1 }, this DRA accepts ¢ Oa
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Verifying w-regular properties
Deterministic Rabin automaton: Example

Acceptance condition

A run of a word in X on a DRA is accepting iff \/o_;, (0 0-L; A OO Kj).

a
' -ﬁa ‘
a

—a

For F = {(L,K)} with L={qo} and K = { g1 }, this DRA accepts ¢ Oa

Recall that there does not exist a deterministic Biichi automaton for { Oa.
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Deterministic Rabin automata
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Verifying w-regular properties

Deterministic Rabin automata

DRA are w-regular

A language on infinite words is w-regular iff there exists a DRA that

generates it.
S -“34‘*
TRA  reagnizahle

\ °v\a\~tsjaj
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Verifying w-regular properties

Deterministic Rabin automata

DRA are w-regular

A language on infinite words is w-regular iff there exists a DRA that
generates it.

» DRA are thus equally expressive as nondeterministic Biichi automata.
» They are more expressive than deterministic Blichi automata.

» Any nondeterministic Biichi automata of n states can be converted to
a DRA of size 29(m1%en)  (Details omitted.)
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Verifying DRA properties
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Verifying DRA properties

Product of a Markov chain and a DRA

The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1, K1)....,(Lk, Kk)}. Then the
sets L;, K; serve as atomic propositions in D ® A. The labeling function L’ in
D ® A is the obvious one: if H € {Ly,..., Lk, Ki,..., Kk }, then H € L’(@)
iff g € H. - -

ael; e < L (<s o)
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Verifying DRA properties

Product of a Markov chain and a DRA
The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1, K1)....,(Lk, Kk)}. Then the
sets L;, K; serve as atomic propositions in D ® A. The labeling function L’ in
D ® A is the obvious one: if H € {Ly,..., Ly, Ki,...,Ki}, then H € L'({s, q))
iff g € H.

Accepting BSCC

D H
f\_j i\\ Kb
G Ly
kiney 46
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Verifying DRA properties

Product of a Markov chain and a DRA

The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1, K1)....,(Lk, Kk)}. Then the
sets L;, K; serve as atomic propositions in D ® A. The labeling function L’ in
D ® A is the obvious one: if H € {Ly,..., Ly, Ki,...,Ki}, then H € L'({s, q))
iff g € H.

Accepting BSCC
A BSCC T in D® A is accepting iff for some index i € {1,..., k} we have:

Tﬂ(SXL,)IQ and Tﬁ(SXK,)#g
— —_—

o Lj-shee T >4 ke-omke T

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Verifying DRA properties

Product of a Markov chain and a DRA

The product of DTMC D and DRA A is defined as the product of a Markov
chain and a DFA, except that the labeling is defined differently.

Let the acceptance condition of A is F = { (L1, K1)....,(Lk, Kk)}. Then the
sets L;, K; serve as atomic propositions in D ® A. The labeling function L’ in
D ® A is the obvious one: if H € {Ly,..., Ly, Ki,...,Ki}, then H € L'({s, q))
iff g € H.

Accepting BSCC
A BSCC T in D® A is accepting iff for some index i € {1,..., k} we have:

Tﬂ(SXL,)IQ and Tﬁ(SXK,)#g

Thus, once such an accepting BSCC T is reached in D ® A, the acceptance
criterion for the DRA A is fulfilled almost surely.
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Verifying DRA properties

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Verifying DRA properties
Accepting BSCC

A BSCC T in D ® A is accepting iff for some index i € {1,..., k} we have:
TN(SxL)=2 and TN ((SxK)# 2.

Thus, once such an accepting BSCC T is reached in D ® A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities

Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ® A. Deh
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Verifying DRA properties

Accepting BSCC

A BSCC T in D ® A is accepting iff for some index i € {1,..., k} we have:
TN(SxL)=2 and TN ((SxK)# 2.

Thus, once such an accepting BSCC T is reached in D ® A, the acceptance
criterion for the DRA A is fulfilled almost surely.

DRA probabilities = reachability probabilities

Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ® A. Then:

P’D(S)ZA) = P'D®A(<S:qs> = <>U) where g5 = d(qo, L(s))

On the blackboard (if time permits).
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Verifying DRA objectives
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Verifying DRA objectives

DRA probabilities = reachability probabilities

Let D be a finite DTMC, s a state in D, A a DRA, and let U be the union
of all accepting BSCCs in D ® A. Then:

PP(s = A) = PP®A((s,qs) = OU) where gs=d(qo,L(s)).

|
Probabilities for satisfying w-regular properties are obtained by computing the
reachability probabilities for accepting BSCCs in D ® A. Again, a graph analysis
and solving systems of linear equations suffice. The time complexity is polynomial
in the size of D and A.
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Verifying w-regular properties

Example: verifying a DTMC versus a DRA
NG o

a
O
S
—a

Acc = { ({agph{a,D }

BSscC L K
El no Ta-stedes
— B, IS QQSE-\\\\;
Single accepting BSCC: { (s, q1), (s5, q1) }
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Verifying w-regular properties

Example: verifying a DTMC versus a DRA
(SJAN-§

a

) -

—a

Acc = { {gotia,D }

Single accepting BSCC: { (s, q1), (s5, q1) }

11 &3\ 1
Reachability probability is 510 2 <5> =5
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Measurability
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Verifying w-regular properties

Measurability

Measurability theorem for w-regular properties

[Vardi 1985]
For any DTMC D and DRA A the set

{Zr € Paths(D) | trace(w) € L, (A) }

—

is measurable.
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Verifying w-regular properties

Measurability

Measurability theorem for w-regular properties

[Vardi 1985]
For any DTMC D and DRA A the set

{7 € Paths(D) | trace(r) € L,(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1, K1), ..., (Lm, Km) }. Let
p; =00=L; A OO K; and T1; the set of paths satisfying ¢;.
—~——TN T r——————

Ceepicd \:J QNS )
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Verifying w-regular properties

Measurability
[Vardi 1985]

Measurability theorem for w-regular properties
For any DTMC D and DRA A the set
{7 € Paths(D) | trace(r) € L,(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1, K1), ..., (Lm, Km) }. Let
p;i =00=L; A OO K; and I1; the set of paths satisfying ¢;. Then

=Tl U...UIl.

)

set of O.Cck‘d)l\\\:) pas
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Verifying w-regular properties

Measurability

Measurability theorem for w-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{7 € Paths(D) | trace(r) € L,(A) }

is measurable.
Proof (sketch)
Let DRA A with accept sets { (L1, K1),...,(Lm, Km) }. Let
;i =\00=L; A OO Kj|and I1; the set of paths satisfying ¢;. Then

=Tl @ k. In addition, N; = I'I;>D N FI,.D<> where I'If>D is the set of paths
7 in D such that 7+ = ¢O-L;, and I'I,-D<> is the set of paths 7 in D such that
T ): DQK, L W e ﬁpak\nr(.b.)

T s Yhme Ms‘nf\&\\:j eo\ o T i~ DA
Clwis is wReded , oS T s ﬂj&é\gs; os— ﬂ)
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Verifying w-regular properties

Measurability

Measurability theorem for w-regular properties [Vardi 1985]

For any DTMC D and DRA A the set

{7 € Paths(D) | trace(r) € L,(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1, K1), ..., (Lm, Km) }. Let
p;i =00=L; A OO K; and I1; the set of paths satisfying ¢;. Then

=My U...UMg. In addition, M; = MN%Y N NP where MNP is the set of paths
7 in D such that 7+ = ¢O-L;, and I'I,-D<> is the set of paths 7 in D such that
7t = OO0K;. It remains to show that I'If>D and I'I',-:K> are measurable.
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Verifying w-regular properties

Measurability

Measurability theorem for w-regular properties [Vardi 1985]
For any DTMC D and DRA A the set

{7 € Paths(D) | trace(r) € L,(A) }

is measurable.

Proof (sketch)

Let DRA A with accept sets { (L1, K1), ..., (Lm, Km) }. Let
p;i =00=L; A OO K; and I1; the set of paths satisfying ¢;. Then

=My U... UM _In addition, M; = MN%Y N NP where MNP is the set of paths
7 in D such thaf 7+ = ¢0O0—L;, and I'I,-D<> is the set of paths 7 in D such that
7+ b= OOK;. It remains to show that M® and NP9 are measurable. This goes
along the same lines as proving that O[1 G and OO G are measurable.

Aes.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/49



Linear temporal logic
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Verifying w-regular properties

Linear temporal logic

Linear Temporal Logic: Syntax [Pnueli 1977]

LTL formulas over the set AP obey the grammar:

p = a \ —p ] P1 A P2 ] O¢ ‘ p1U o

where a € AP and ¢, 1, and @3 are LTL formulas.

On the blackboard.
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Verifying w-regular properties

LTL semantics

The LT-property induced by LTL formula ¢ over AP is:

Words(p) = {a € <2A’D)w |o = c,o}, where |= is the smallest relation satisfyin
—~—— -——

se¥ op beces
Neces

salks B\C\.) \P
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LTL semantics

The LT-property induced by LTL formula ¢ over AP is:

Words(y) = {a € <2A’D)w |o = c,o}, where |= is the smallest relation satisfyin

o E true

o FE a iff ac Ay (ie, Ao a)

o E p1 ANy iff ofF¢1and o=@

o E -e iff o~

o E Qe iff ol =A1AAz... o

o ¢iUypy iff 3j>0.0/ =y and o' E 1, 0<i<j
for 0 = ApA1 A, ... we have o' = AjAi11Ai 12 ... is the suffix of o from index i on.
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Verifying w-regular properties

- u\°f
Some facts about LTL g Nf
o DRA

LTL is w-regular

For any LTL formula ¢, the set Words(y) is an w-regular language.

LTL are DRA-definable

For any LTL formula ¢, there exists a DRA A such that £, = Words(y)
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Some facts about LTL

LTL is w-regular

For any LTL formula ¢, the set Words(y) is an w-regular language.

LTL are DRA-definable

For any LTL formula ¢, there exists a DRA A such that £, = Words(y)
where the number of states in A lies in 22
= siecol A A dele C@\e\‘\\‘eL

™~ AP
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Verifying a DTMC against LTL formulas

Complexity of LTL model checking [Vardi 1985]

The qualitative model-checking problem for finite DTMCs against LTL
formula ¢ is PSPACE-complete, i.e., verifying whether Pr(s = ¢) > 0 or
Pr(s = ¢) = 1 is PSPACE-complete.

Recall that the LTL model-checking problem for finite transition systems is
PSPACE-complete.
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Overview

e Summary
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Summary

> Verifying a DTMC D against a DFA A, i.e., determining Pr(D E A),
amounts to computing reachability probabilities of accept states in D ® A.

> For DBA objectives, the probability of infinitely often visiting an accept state
inD® A.

> DBA are strictly less powerful than w-regular languages.
> Deterministic Rabin automata are as expressive as w-regular languages.

> Verifying DTMC D agains DRA 4 amounts to computing reachability
probabilities of accepting BSCCs in D ® A.

Take-home message

Model checking a DTMC against various automata models reduces to computing
reachability probabilities in a product.
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