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Summary of previous lecture

Reachability probabilities

Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal

The probability of satisfying an w-regular property P in a Markov chain D
= reachability probability of accepting BSCCs in the product of D with a
DRA for P.
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Introduction

Aim of this lecture

|
Introduce probabilistic CTL. Provide a polynomial-time model-checking
algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

1. Syntax and formal semantics of probabilistic CTL.

2. Model checking algorithm for probabilistic CTL on Markov chains.
3. Time complexity analysis.
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PCTL Syntax

Overview

© PCTL Syntax
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Probabilistic Computation Tree Logic

|
» PCTL is a language for formally specifying properties over DTMCs.

LTL  fowale P o (D F\e)
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Probabilistic Computation Tree Logic

|
» PCTL is a language for formally specifying properties over DTMCs.
» It is a branching-time temporal logic (based on CTL).

L; LTL : whwike haces (w-ms\.\q.)
PerL . wRete  vees
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Probabilistic Computation Tree Logic

|
» PCTL is a language for formally specifying properties over DTMCs.
» It is a branching-time temporal logic (based on CTL).
» Formula interpretation is Boolean, i.e., a formula is satisfied or not.

Ple) >L <2

5
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Probabilistic Computation Tree Logic

|
» PCTL is a language for formally specifying properties over DTMCs.
» It is a branching-time temporal logic (based on CTL).
» Formula interpretation is Boolean, i.e., a formula is satisfied or not.

» The main operator is P ()
» where ¢ constrains the paths and J is a threshold on the probability.

“P: O a J= fo,%_]

P09 Pl s moal e (0]
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Probabilistic Computation Tree Logic

v

PCTL is a language for formally specifying properties over DTMCs.

v

It is a branching-time temporal logic (based on CTL).

v

Formula interpretation is Boolean, i.e., a formula is satisfied or not.

v

The main operator is P,(¢)

» where ¢ constrains the paths and J is a threshold on the probability.
> it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.

y S~
~ B, (® ~ B¢

~
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PCTL Syntax

PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

L) : \ J
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PCTL Syntax

PCTL syntax

[Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

» PCTL state formulas over the set AP obey the grammar:
d = true ’ a ‘ b1 A Dy ‘ L ‘ P, ()

where a € AP, ¢ is a path formula and J C [0,1], J # @ is a
non-empty interval.

» PCTL path formulae are formed according to the following grammar:

p u= OCD ‘ $; U Dy ‘ ¢1U<n¢2 = (%.:“3

where ®, ®1, and @, are state formulae E‘Qod n e IN. CT = e Vg
P (Q"‘) W:r\ (e ‘P> (O\:))

i
>
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PCTL Syntax

Probabilistic Computation Tree Logic

|
PCTL state formulas over the set AP obey the grammar:

® = true ’ a ‘ d; A Oy ‘ - ‘ Py(p)

where a € AP, ¢ is a path formula and J C [0,1], J # @ is a
non-empty interval.

PCTL path formulae are formed according to the following grammar:

= Qb ‘ ®; U b, ‘ ®;US"®, where n € IN.

Intuitive semantics

> ps152... = @ US" WV if ® holds until W holds within n steps.
LR D scevV Q ksn
: Sk ® Vick. s;¥ $
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PCTL Semantics

Overview

© PCTL Semantics
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PCTL Semantics

Semantics of P-operator
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Semantics of P-operator

> s = Py(yp) if:
» the probability of all paths starting in s fulfilling ¢ lies in J.
» Example: s = P_1(0a) if
2
» the probability to reach an a-labeled state from s exceeds %

» Formally:
» s =Py(p) if and only if Prs{m € Paths(s) |7 = ¢} € J.
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Derived operators

OP = trueUd

OS"d = trueU S0

IED<p(D¢) = P>1,p(<>—|d>)
—v—
-

g = 1@~ T

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Derived operators

OP = trueUd

OS"d = trueU S0

IED<p(D¢) = P>1,p(<>—|d>)

P(o,q)(O5"®) = Pp_g1p)(0S"=9)
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Correctness of Knuth’s die

{init}

Correctness of Knuth’s die

P_1(01) A P_1(02) A P_1(03) A P_y(04) A P_1(05) A P_3(06)

1 1
6 6
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PCTL Semantics

Example properties
-]

» Transient probabilities to be in goal state at the fourth epoch:

P> 0.02 (0:4 goal)
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PCTL Semantics

Example properties
-]

» Transient probabilities to be in goal state at the fourth epoch:

P> 0.02 (0:4 goal)

> With probability > 0.92, a goal state is reached legally:

P~ 0.92 (—illegal U goal)

M C

\‘\\QDQ.L
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PCTL Semantics

Example properties
-]

» Transient probabilities to be in goal state at the fourth epoch:

P> 0.02 (0:4 goal)

> With probability > 0.92, a goal state is reached legally:

P~ 0.92 (—illegal U goal)

> ... in maximally 137 steps: P> .02 (—illegal us137 goal)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Example properties

» Transient probabilities to be in goal state at the fourth epoch:

N N
(P77

» With probability > 0.92, a goal state is reached legally: Mgel 3“\_

P~ 0.92 (—illegal U goal)

> ... in maximally 137 steps: P> .02 (—illegal us137 goal)

> ... once there, remain there almost surely for the next 31 steps:

Ps g.02 (ﬁ illegal U <137 p_ (O3 goa/))
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PCTL Semantics

PCTL semantics (1)

D, s = ¢ iff state-formula ® holds in state s of (possibly infinite) DTMC
D. As D is known from the context we simply write s = &.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

skEa iff ae L(s)
sE o iff not (s = @)
sEP AV iff (sE®)and (s = V)
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PCTL Semantics

PCTL semantics (1)

D, s = o iff state-formula ® holds in state s of (possibly infinite) DTMC
D. As D is known from the context we simply write s |= ®.

Satisfaction relation for state formulas

The satisfaction relation |= is defined for PCTL state formulas by:
skEa iff ae L(s)
sE o iff not (s = @)
sEP AV iff (sE®)and (s = V)
sEP)(p) iff PsEy¢)ed

where Pr(s |= ) = Prs{m € Paths(s) | 7 = ¢ } s /%(’
-Pc\—\.s
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PCTL semantics (2)
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PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas

Let m = sps1 52 ... be an infinite path in (possibly infinite) DTMC D.
Recall that 7[i] = s; denotes the (i+1)-st state along .

The satisfaction relation = is defined for state formulas by:

T E QO iff s =&
Tl ®UW  iff 3k >0.(alk] W and Y0 < < k.afi] = @)

S48

-~

- -__Sk

L
e T
¥ A ¢
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PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas

Let m = sps1 52 ... be an infinite path in (possibly infinite) DTMC D.
Recall that 7[i] = s; denotes the (i+1)-st state along .

The satisfaction relation = is defined for state formulas by:

T E QO iff s =&

Y):cbuw iff 3k > 0.(7[k] =W and YO < i < k.7[i] £ ®)
7= U W iff 3k >0.(k < nand7[k] = ¥ and

VO < i< k.r[i] = )
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Examples




PCTL Semantics

Measurability

PCTL measurability

For PCTL path formula ¢ and state s of DTMC D,
{7 € Paths(s) | m = ¢ } is measurable.

Proof (sketch):

Three cases:

1. Oo:
> cylinder sets constructed from paths of length one.
2. dUS"V:

> (finite number of) cylinder sets from paths of length at most n.

3. dUV:
» countable union of paths satisfying ® US" W for all n > 0.

Joost-Pieter Katoen
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PCTL Model Checking

Overview

@ PCTL Model Checking
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PCTL model checking

PCTL model checking problem

Input: a finite DTMC D = (S, P, t4, AP, L), state s € S, and
PCTL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ® do:

fet Sat(P) ={seS|s=o}.
2. This is done recursively by a bottor aversal-of$-sparse tree.

1. Compute the satisfaction
-up

» The nodes of the parse tree represent the subformulae of .
» For each node, i.e., for each subformula W of ®, determine Sat(V).
» Determine Sat(W) as function of the satisfaction sets of its children:

e.g., Sat(V1 A W,) = Sat(W1) N Sat(W2) and Sat(—W¥) = S\ Sat(V).
3. Check whether state s belongs to Sat(®).
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PCTL Model Checking

Example

T = (Mgl O ‘” (‘:\ " 3‘“\))

>\
P
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Core model-checking algorithm

Propositional formulas

Sat(-) is defined by structural induction as follows:

Sat(true) S

Sat(a) = {seS|aecl(s)}, foranyac AP
Sat(P AWV) = Sat(®) N Sat(V)
Sat(—=®) = S\ Sat(®).

Probabilistic operator P

In order to determine whether s € Sat(P,(y)), the probability Pr(s = ¢)
for the event specified by ¢ needs to be established. Then

Sat(Py(¢)) = {s€S|Prsl=¢) € J}.

Let us consider the computation of Pr(s |= ¢) for all possible .
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PCTL Model Checking

The next-step operator

Recall that: s |=P,(O ®) if and only if P(s = O ®) € J.

P(s=0O®) = zs'eSat(cb) P(s,s).

'« Pat)

——20 %
S (VAT
)

L
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PCTL Model Checking

The next-step operator

Recall that: s |=P,(O ®) if and only if P(s = O ®) € J.

Lemma

P(s=0O®) = zs'eSat(cb) P(s,s).

Algorithm

Considering the above equation for all states simultaneously yields:

(Pr(s):Qd)))seS = P-by

with be the characteristic vector of Sat(®), i.e., bo(s) = 1 iff s € Sat(P).

Checking the next-step operator reduces to a single matrix-vector multiplication.
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PCTL Model Checking
Example

Consider DTMC:

1 ffail} and PCTL-formula:

P>0.9 (O (—try V succ))

0.01 fsucc}
1. Sat(—try V succ) = (S )\ Sat(try)) U Sat(succ) = {so,52,53}
2. We know: (Pr(s [ O®)),.¢ = P:be where & = —try V succ
3. Applying that to this example yields:

0 1 0 0 1 0

0 001 001 098 0 0.99
(Pris =O®)), s = 1 0 0 0 1 - 1

0 0 0 1 1 1
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PCTL Model Checking

Example

Consider DTMC:

1 ffail} and PCTL-formula:

P>0.9 (O (—try V succ))

0.01 fsucc}
1. Sat(—try V succ) = (S )\ Sat(try)) U Sat(succ) = {so, 52,53}
2. We know: (Pr(s [ O®)),.¢ = P-be where & = —try V succ
3. Applying that to this example yields:

0 1 0 0 1 0

0 001 001 098 0 0.99
(Pris =O®)), s = 1 0 0 0 1 - 1

0 0 0 1 1 1

4. Thus: Sat(P>0.9(O (—try V succ)) = {s1,5,53}.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems
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Bounded until (1)

|
Recall that: s = P,(® US" V) if and only if Pr(s | ®US"V) € J.

Let S—y = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S; = S\ (S=0US—-1). Then:

if565:1
if s e S_p
if se€ S, An=0 ~

P(s,s')- Pr(s’ = ®US" 1 W) otherwise

?

Pr(s|:d>L@\U) =

@Q, O O =
0]
0
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Bounded until (2)

|
Let Sy = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S; = S\ (S=0US_1). Then:

1 if s € 5:1
0 if se S_g
Pis =®US"V) = { 0 if s € S; A n=0
Z P(s,s') - Pr(s’ = ®US""1 W) otherwise
FES n
Fon * Oy

Algorithm
1. Let Py y be the probability matrix of D[S—¢ U 5-;1].
2. Then (Pr(s |z ® USO V). s = by
3. And (Pr(s | ¢ USiHL \IJ))Ses = Pou - (Prs E ®US \U))Ses.
4. This requires n matrix-vector multiplications in total.
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Bounded until (3)

Algorithm

1. Let Py be the probability matrix of D[S—o U S—1].

2. Then (Prs £ ®USCW)) . = by

3. And (Pr(s = ®US™IV)) ¢ = Poy - (Prs = ®US'V))
4

. This requires n matrix-vector multiplications in total.

seS’

L. In terms of matrix powers: (Pr(s = ®US"V)) o = P§y - by,

» Computing Pg  in log, n steps is inefficient due to fill-in.
» That is to say, Pg,  is much less sparse than Pg y.

2. Pgy by = (Pls = O="V)), g in D[S=oU 5]

» Where O°W =WV and Ot W = O (O V).
» This thus amounts to a transient analysis in DTMC D[S—¢ U 54].
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PCTL Model Checking

Optimization

The above procedure used:
» S5_1 = Sat(V), and
» S_o =5\ (Sat(P) U Sat(V)) = Sat(-P A —WV), and
» perform the matrix-vector multiplications on the remaining states

This can be optimized (in practice) by enlarging S—¢ and S_;:
» S_1 = Sat(P_;(P U W)), obtained by a graph analysis
» S_o = Sat(P_o(P UW)), obtained by a graph analysis too, and

» perform the matrix-vector multiplications on the remaining states.
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Example
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PCTL Model Checking
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Until




PCTL Model Checking

Until

|
Recall that: s =P, (® U W) if and only if Pr(s =dUWV) € J.

Algorithm

1. Determine S—; = Sat(P=1(® U V)) by a graph analysis.
2. Determine S—g = Sat(P—o(P U V)) by a graph analysis.

3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.

2. Reduces the number of variables in the linear equation system.

3. Gives exact results for the states in S—; and S—g (i.e., no round-off).
4.

For qualitative properties, no further computation is needed.
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PCTL Model Checking

Example Anide o\ numloers

by Ao
_&3 /@i Sek GP (A= \)L)>

o. Sek (ne) = S\i"’& acke AL a.\asw'\ob X
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sove wieldy
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Complexity

Overview

© Complexity
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Time complexity

Let |®| be the size of ®, i.e., the number of logical and temporal operators in ®.

Time complexity of PCTL model checking

For finite DTMC D and PCTL state-formula ®, the PCTL model-checking
problem can be solved in time

O( poly(size(D)) - Nmax - |P|)

where npna = max{n| W US"W; occurs in ® } with and npay = 1 if ®
does not contain a bounded until-operator.

— ko‘\']w—u{) howersal o Porse Nee Oq‘—ﬁ ~ \heer \n \Q\
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Complexity

Time complexity

Time complexity of PCTL model checking

For finite DTMC D and PCTL state-formula ®, the PCTL model-checking
problem can be solved in time

O( poly(size(D)) + Nmax - |P]).

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |®|.

2. The worst-case operator is (unbounded) until.

Joost-Pieter Katoen
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Complexity

Time complexity

Time complexity of PCTL model checking

For finite DTMC D and PCTL state-formula ®, the PCTL model-checking
problem can be solved in time

O( poly(size(D)) + Nmax - |P]).

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |®|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S—o and S_; can be done in linear time.
2.2 Direct methods to solve linear equation systems are in ©(|S:|?).
3. Strictly speaking, US" could be more expensive for large n.
But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen
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Complexity

Example: Lost passenger ticket pmblem

N qus-cf\se_rs ot &JQ\E\\\& &o vooard an OC\‘(‘?\Q‘\(_
e \he P\GAQ S g\'\\a‘ booked

o The —Q’rsk (aaSSfr\J-!r \osk \is k@o.—é‘\\,a_ ‘;QSSS
Ve \"Onéow\\a_ P‘\c\cs a SCQSC

e PU cber PONRNGUS \ore fweir boads e3s.
4. vesened seak Qe ! —> s\ 2::7«\
2. Occupied 1 — rcm&w«\a picke o Seat
Q: whak s e pmbu\o“\(\a' ok e \ask e,

qeks his re geak ¢
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Verification results L O S S Y

(&'\TN'MC\’\CO\(&V _og)

N veco. Rre (i~ SQ(O«AS)
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Value iteration - Ax 3% X =0

v

Reachability probabilities are typically obtained iteratively:

x(MD = A .x(" 4 p

v

Then: reachability probability Pr(¢ G) equals lim,_,o x(")

v

Question: when to halt this iterative process?

Typical approach: P G) <
) < e - (26)

)
2

v

for some ¢, e.g., 1070

v

Potential problem: premature convergence
That is: iterations are stopped too early

v

Verification results are obtained without guarantees
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Complexity

Example

> Exact answer: Pr({t) = %

> Value iteration with ¢ = 0, 000001 yields
0.7248

» True error: 0.0252

Modeling and Verification of Probabilistic Systems
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Complexity

Value iteration

Idea: approach P G) by computing Pr(O<KG) for increasing k

100,000 150,000

» Problem: d, is unknown

» Stopping criterion: |PH{OSKTLG) — PHOSKG)| < ¢

» But this is independent from the aim: P G) — P{OSKG) < ¢
Ok

~—
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Complexity

Remedy: bound Pr({ G) from above too

emors

\)

Idea: provide bounds ¢, < &k < Uk for 6, = Pr(O G) — Pr(OSKG)

—

How to obtain these bounds? Towards an upper bound observe:

o = PlOG)—PlOTG) < PAOS:) max Pr(0 G)
ona*t ("‘\'

probability to reach G in > k steps
Ao ve=®
Sq G

Towards a lower bound observe:

b = PAOG)—PA0G) > PAOS,) - min Pr(0 G)

probability to reach G in > k steps
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Complexity

Sound value iteration

Sound value iteration theorem
For DTMC D, goal states G C S and k € N:

PAOSAG) + 4 < PO G) < PH{OSG) + uy
where:

Prs(OSKG)
_ <key. s
ue = PAOY5) - max =5 ks

and

) Pr.(OSKG)
_ <kcy . s
ﬁk - PI’(D 57) snélsrl 1— Prs(D<k57)
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Complexity

Example sound value iteration

Exact answer: Pr(Q t) = 3
Ss={s.51.%}
We have I3 = (0.00003, 0.003, 0.3)

and us = (0.99996, 0.996, 0.6)
63(5) 3

17U3(S) 4

For all s € S5; we have

Thus €3: us :%

Three iterations suffice for the exact answer

Joost-Pieter Katoen
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Overview

Q@ Summary
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Summary

|
» PCTL is a branching-time logic with key operator P,(¢).
» Sets of paths fulfilling PCTL path-formula ¢ are measurable.
» PCTL model checking is performed by a recursive descent over ®.
» The next operator amounts to a single matrix-vector multiplication.
» Bounded until US” amounts to n matrix-vector multiplications.
» The until-operator amounts to solving a linear equation system.
» Time complexity of D |= ® is polynomial in |D| and linear in |®]|.
» Value iteration is sound when upper bounding Pr({ G)

» Variations: long-run operator, conditional probabilities, expected
reward until reaching a set of states.
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