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Introduction

Summary of previous lecture

Reachability probabilities
Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal
The probability of satisfying an Ê-regular property P in a Markov chain D

= reachability probability of accepting BSCCs in the product of D with a
DRA for P.
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Introduction

Aim of this lecture

Introduce probabilistic CTL. Provide a polynomial-time model-checking
algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

1. Syntax and formal semantics of probabilistic CTL.
2. Model checking algorithm for probabilistic CTL on Markov chains.
3. Time complexity analysis.
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PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.

I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(Ï)

I where Ï constrains the paths and J is a threshold on the probability.
I it is the probabilistic counterpart of ÷ and ’ path-quantifiers in CTL.
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PCTL Syntax

PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.

I PCTL state formulas over the set AP obey the grammar:

� ::= true
--- a

--- �1 · �2
--- ¬�

--- PJ(Ï)

where a œ AP, Ï is a path formula and J ™ [0, 1], J ”= ? is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

Ï ::= • �
--- �1 U �2

--- �1 U6n �2

where �, �1, and �2 are state formulae and n œ IN.
Abbreviate P[0,0.5](Ï) by P60.5(Ï) and P]0,1](Ï) by P>0(Ï).
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PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

� ::= true
--- a

--- �1 · �2
--- ¬�

--- PJ(Ï)

where a œ AP, Ï is a path formula and J ™ [0, 1], J ”= ? is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

Ï ::= • �
--- �1 U �2

--- �1 U6n �2 where n œ IN.

Intuitive semantics
I s0s1s2 . . . |= � U6n � if � holds until � holds within n steps.

I s |= PJ(Ï) if probability that paths starting in s fulfill Ï lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/45

Sos , Esg - - - . . .sk .

① She 1=4 ③ Ksn

② tick
. sit  $



PCTL Semantics

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/45



PCTL Semantics

Semantics of P-operator

I s |= PJ(Ï) if:
I the probability of all paths starting in s fulfilling Ï lies in J .

I Example: s |= P> 1
2
(⌃a) if

I the probability to reach an a-labeled state from s exceeds 1
2 .

I Formally:
I s |= PJ(Ï) if and only if Prs{ fi œ Paths(s) | fi |= Ï } œ J .
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PCTL Semantics

Derived operators

⌃� = true U �

⌃6n� = true U 6n�

P6p(⇤�) = P>1≠p(⌃¬�)

P(p,q)(⇤6n�) = P[1≠q,1≠p](⌃6n
¬�)
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PCTL Semantics

Correctness of Knuth’s die

Correctness of Knuth’s die
P= 1

6
(⌃1) · P= 1

6
(⌃2) · P= 1

6
(⌃3) · P= 1

6
(⌃4) · P= 1

6
(⌃5) · P= 1

6
(⌃6)
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PCTL Semantics

Example properties

I Transient probabilities to be in goal state at the fourth epoch:

P> 0.92
1
⌃=4 goal

2

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 steps: P> 0.92
!
¬ illegal U6 137 goal"

I . . . once there, remain there almost surely for the next 31 steps:

P> 0.92
1
¬ illegal U 6 137 P=1(⇤[0,31] goal)

2
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PCTL Semantics

PCTL semantics (1)

Notation
D, s |= � i� state-formula � holds in state s of (possibly infinite) DTMC
D. As D is known from the context we simply write s |= �.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a i� a œ L(s)
s |= ¬ � i� not (s |= �)
s |= � · � i� (s |= �) and (s |= �)

s |= PJ(Ï) i� Pr(s |= Ï) œ J

where Pr(s |= Ï) = Prs{ fi œ Paths(s) | fi |= Ï }
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PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let fi = s0 s1 s2 . . . be an infinite path in (possibly infinite) DTMC D.
Recall that fi[i ] = si denotes the (i+1)-st state along fi.
The satisfaction relation |= is defined for state formulas by:

fi |= •� i� s1 |= �
fi |= � U � i� ÷k > 0.( fi[k] |= � and ’0 6 i < k. fi[i ] |= � )
fi |= � U6n � i� ÷k > 0.( k 6 n and fi[k] |= � and

’0 6 i < k. fi[i ] |= � )
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PCTL Semantics

Examples
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PCTL Semantics

Measurability

PCTL measurability
For PCTL path formula Ï and state s of DTMC D,
{ fi œ Paths(s) | fi |= Ï } is measurable.

Proof (sketch):

Three cases:
1. • �:

I cylinder sets constructed from paths of length one.
2. � U6n �:

I (finite number of) cylinder sets from paths of length at most n.
3. � U �:

I countable union of paths satisfying � U6n � for all n > 0.
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PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S, P, ÿinit, AP, L), state s œ S, and
PCTL state formula �

Output: yes, if s |= �; no, otherwise.

Basic algorithm
In order to check whether s |= � do:

1. Compute the satisfaction set Sat(�) = { s œ S | s |= � }.
2. This is done recursively by a bottom-up traversal of �’s parse tree.

I The nodes of the parse tree represent the subformulae of �.
I For each node, i.e., for each subformula � of �, determine Sat(�).
I Determine Sat(�) as function of the satisfaction sets of its children:

e.g., Sat(�1 · �2) = Sat(�1) fl Sat(�2) and Sat(¬�) = S \ Sat(�).
3. Check whether state s belongs to Sat(�).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/45

o



PCTL Model Checking

Example
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PCTL Model Checking

Core model-checking algorithm
Propositional formulas
Sat(·) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = { s œ S | a œ L(s) }, for any a œ AP

Sat(� · �) = Sat(�) fl Sat(�)
Sat(¬�) = S \ Sat(�).

Probabilistic operator P
In order to determine whether s œ Sat(PJ(Ï)), the probability Pr(s |= Ï)
for the event specified by Ï needs to be established. Then

Sat(PJ(Ï)) =
)s œ S | Pr(s |= Ï) œ J*

.

Let us consider the computation of Pr(s |= Ï) for all possible Ï.
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PCTL Model Checking

The next-step operator

Recall that: s |= PJ(• �) if and only if Pr(s |= • �) œ J .

Lemma
Pr(s |= • �) =

q
sÕœSat(�) P(s, s Õ).

Algorithm
Considering the above equation for all states simultaneously yields:

!Pr(s |= • �)
"

sœS = P · b�

with b� the characteristic vector of Sat(�), i.e., b�(s) = 1 i� s œ Sat(�).

Checking the next-step operator reduces to a single matrix-vector multiplication.
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PCTL Model Checking

Example
Consider DTMC:

and PCTL-formula:

P>0.9 (• (¬try ‚ succ))

1. Sat(¬try ‚ succ) = (S \ Sat(try)) fi Sat(succ) = { s0, s2, s3 }

2. We know:
!Pr(s |= • �)

"
sœS = P · b� where � = ¬try ‚ succ

3. Applying that to this example yields:

!
Pr(s |= • �)

"
sœS =

Q

ca

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

R

db ·

Q

ca

1
0
1
1

R

db =

Q

ca

0
0.99

1
1

R

db

4. Thus: Sat(P>0.9(• (¬try ‚ succ)) = { s1, s2, s3 }.
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PCTL Model Checking

Bounded until (1)

Recall that: s |= PJ(� U6n �) if and only if Pr(s |= � U6n �) œ J .

Lemma
Let S=1 = Sat(�), S=0 = S \ (Sat(�) fi Sat(�)), and S? = S \ (S=0 fi S=1). Then:

Pr(s |= � U6n �) =

Y
____]

____[

1 if s œ S=1
0 if s œ S=0
0 if s œ S? · n=0ÿ

sÕœS
P(s, s Õ) · Pr(s Õ

|= � U6n≠1 �) otherwise
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PCTL Model Checking

Bounded until (2)

Let S=1 = Sat(�), S=0 = S \ (Sat(�) fi Sat(�)), and S? = S \ (S=0 fi S=1). Then:

Pr(s |= � U6n �) =

Y
____]

____[

1 if s œ S=1
0 if s œ S=0
0 if s œ S? · n=0ÿ

sÕœS
P(s, s Õ) · Pr(s Õ

|= � U6n≠1 �) otherwise

Algorithm

1. Let P�,� be the probability matrix of D[S=0 fi S=1].
2. Then

!Pr(s |= � U60 �)
"

sœS = b�

3. And
!Pr(s |= � U6i+1 �)

"
sœS = P�,� ·

!Pr(s |= � U6i �)
"

sœS .
4. This requires n matrix-vector multiplications in total.
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PCTL Model Checking

Bounded until (3)
Algorithm

1. Let P�,� be the probability matrix of D[S=0 fi S=1].
2. Then

!Pr(s |= � U60 �)
"

sœS = b�

3. And
!Pr(s |= � U6i+1 �)

"
sœS = P�,� ·

!Pr(s |= � U6i �)
"

sœS .
4. This requires n matrix-vector multiplications in total.

Remarks
1. In terms of matrix powers:

!Pr(s |= � U6n �)
"

sœS = Pn
�,� · b�.

I Computing Pn
�,� in log2 n steps is ine�cient due to fill-in.

I That is to say, Pn
�,� is much less sparse than P�,�.

2. Pn
�,� · b� =

!Pr(s |= •
=n �)

"
sœS?

in D[S=0 fi S=1].
I Where •

0 � = � and •
i+1 � = • (•i �).

I This thus amounts to a transient analysis in DTMC D[S=0 fi S=1].
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PCTL Model Checking

Optimization

The above procedure used:
I S=1 = Sat(�), and
I S=0 = S \ (Sat(�) fi Sat(�)) = Sat(¬� · ¬�), and
I perform the matrix-vector multiplications on the remaining states

This can be optimized (in practice) by enlarging S=0 and S=1:
I S=1 = Sat(P=1(� U �)), obtained by a graph analysis
I S=0 = Sat(P=0(� U �)), obtained by a graph analysis too, and
I perform the matrix-vector multiplications on the remaining states.
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PCTL Model Checking

Example
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PCTL Model Checking

Until

Recall that: s |= PJ(� U �) if and only if Pr(s |= � U �) œ J .

Algorithm

1. Determine S=1 = Sat(P=1(� U �)) by a graph analysis.
2. Determine S=0 = Sat(P=0(� U �)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-o�).
4. For qualitative properties, no further computation is needed.
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2. Determine S=0 = Sat(P=0(� U �)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-o�).
4. For qualitative properties, no further computation is needed.
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PCTL Model Checking

Example
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Complexity

Time complexity

Let |�| be the size of �, i.e., the number of logical and temporal operators in �.

Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula �, the PCTL model-checking
problem can be solved in time

O
! poly(size(D)) · nmax · |�|

"

where nmax = max{ n | �1 U 6n�2 occurs in � } with and nmax = 1 if �
does not contain a bounded until-operator.
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Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula �, the PCTL model-checking
problem can be solved in time

O
! poly(size(D)) · nmax · |�|

"
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |�|.

2. The worst-case operator is (unbounded) until.

2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in �(|S?|

3).
3. Strictly speaking, U6n could be more expensive for large n.

But it remains polynomial, and n is small in practice.
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Time complexity
Time complexity of PCTL model checking
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2.1 Determining S=0 and S=1 can be done in linear time.
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Complexity

Example: Lost passenger ticket
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problem
-

• N passengers
are  waiting to board an  airplane .

• The plane  is fully booked

• The first passenger
lost his boarding pass ;

he randomly picks a seat

• ALL other passengers
have their boarding pass .

r .

reserved seat free ? → sit down

free

z
.

occupied ? → randomly pick a seat

Q :  what  is the probability that the lastpassenger ?
gets his  reserved seat



Complexity

Verification results

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 37/45

storm  model checker

( storm  checker
. org )

N ver .
Line ( in  seconds )

100 0.1

1000 0.1

10,000 0.2

1,000,000 6.4

10,000,000
66.8



Complexity

Value iteration

I Reachability probabilities are typically obtained iteratively:

x(n+1) = A · x(n) + b

I Then: reachability probability Pr(⌃G) equals limnæŒ x(n)

I Question: when to halt this iterative process?
I Typical approach:

|x(n+1)
≠ x(n)

| 6 Á

for some Á, e.g.,10≠6

I Potential problem: premature convergence
That is: iterations are stopped too early

I Verification results are obtained without guarantees
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Complexity

Example

I Exact answer: Pr(⌃ t) = 3
4

I Value iteration with Á = 0, 000001 yields
0.7248

I True error: 0.0252
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Complexity

Value iteration
Idea: approach Pr(⌃G) by computing Pr(⌃6kG) for increasing k

I Problem: ”k is unknown
I Stopping criterion: |Pr(⌃6k+1G) ≠ Pr(⌃6kG)| 6 Á

I But this is independent from the aim: Pr(⌃G) ≠ Pr(⌃6kG)
¸ ˚˙ ˝

”k

6 Á
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Complexity

Remedy: bound Pr(⌃G) from above too

Idea: provide bounds ¸k 6 ”k 6 uk for ”k = Pr(⌃G) ≠ Pr(⌃6kG)

How to obtain these bounds? Towards an upper bound observe:

”k = Pr(⌃G) ≠ Pr(⌃6kG)
¸ ˚˙ ˝

probability to reach G in > k steps

6 Pr(⇤6kS?) · max
sœS?

Prs(⌃G)

Towards a lower bound observe:

”k = Pr(⌃G) ≠ Pr(⌃6kG)
¸ ˚˙ ˝

probability to reach G in > k steps

> Pr(⇤6kS?) · min
sœS?

Prs(⌃G)
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Complexity

Sound value iteration

Sound value iteration theorem
For DTMC D, goal states G ™ S and k œ N:

Pr(⌃6kG) + ¸k 6 Pr(⌃G) 6 Pr(⌃6kG) + uk

where:
uk = Pr(⇤6kS?) · max

sœS?

Prs(⌃6kG)
1 ≠ Prs(⇤6kS?)

and
¸k = Pr(⇤6kS?) · min

sœS?

Prs(⌃6kG)
1 ≠ Prs(⇤6kS?)
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Complexity

Example sound value iteration

I Exact answer: Pr(⌃ t) = 3
4

I S? = { s0, s1, s2 }

I We have l3 = (0.00003, 0.003, 0.3)
I and u3 = (0.99996, 0.996, 0.6)

I For all s œ S? we have ¸3(s)
1≠u3(s) = 3

4

I Thus ¸3 = u3 = 3
4

I Three iterations su�ce for the exact answer
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Summary

Summary

I PCTL is a branching-time logic with key operator PJ(Ï).
I Sets of paths fulfilling PCTL path-formula Ï are measurable.
I PCTL model checking is performed by a recursive descent over �.
I The next operator amounts to a single matrix-vector multiplication.
I Bounded until U6n amounts to n matrix-vector multiplications.
I The until-operator amounts to solving a linear equation system.
I Time complexity of D |= � is polynomial in |D| and linear in |�|.
I Value iteration is sound when upper bounding Pr(⌃G)
I Variations: long-run operator, conditional probabilities, expected

reward until reaching a set of states.
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