Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movep18/

October 29, 2018

Overview

Introduction

2 PCTL Syntax

- **③** PCTL Semantics
- PCTL Model Checking

5 Complexity

Overview

Introduction

2 PCTL Syntax

- **3 PCTL Semantics**
- PCTL Model Checking

5 Complexity

Summary of previous lecture

Reachability probabilities

Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal

The probability of satisfying an ω -regular property P in a Markov chain \mathcal{D} = reachability probability of accepting BSCCs in the product of \mathcal{D} with a DRA for P.

Aim of this lecture

Introduce probabilistic CTL. Provide a polynomial-time model-checking algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

- 1. Syntax and formal semantics of probabilistic CTL.
- 2. Model checking algorithm for probabilistic CTL on Markov chains.
- 3. Time complexity analysis.

Overview

Introduction

2 PCTL Syntax

- 3 PCTL Semantics
- PCTL Model Checking

5 Complexity

PCTL is a language for formally specifying properties over DTMCs.

- PCTL is a language for formally specifying properties over DTMCs.
- It is a branching-time temporal logic (based on CTL).

- PCTL is a language for formally specifying properties over DTMCs.
- It is a branching-time temporal logic (based on CTL).
- Formula interpretation is Boolean, i.e., a formula is satisfied or not.

$$P_r(\gamma) > \frac{1}{2} \leq \frac{4}{5}$$

- PCTL is a language for formally specifying properties over DTMCs.
- It is a branching-time temporal logic (based on CTL).
- Formula interpretation is Boolean, i.e., a formula is satisfied or not.
- The main operator is $\mathbb{P}_{\mathbf{J}}(\varphi)$
 - where φ constrains the paths and J is a threshold on the probability.

$$f = \Diamond \alpha \qquad \qquad \exists = [0, \frac{1}{2}]$$

$$P_{(0, \frac{1}{2}]}(\Diamond \alpha) = P_{r} \partial \alpha \qquad \qquad \exists paths \models \Diamond \alpha \\ \in [0, \frac{1}{2}]^{\circ}$$

- PCTL is a language for formally specifying properties over DTMCs.
- It is a branching-time temporal logic (based on CTL).
- Formula interpretation is Boolean, i.e., a formula is satisfied or not.
- The main operator is $\mathbb{P}_{\mathbf{J}}(\varphi)$
 - where φ constrains the paths and J is a threshold on the probability.
 - it is the probabilistic counterpart of \exists and \forall path-quantifiers in CTL.

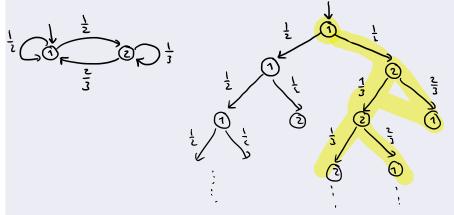
$$\approx \mathbb{P}_{0}(\mathbf{v}) \approx \mathbb{P}_{1}(\mathbf{v})$$

PCTL syntax

[Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.



PCTL syntax

[Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

PCTL state formulas over the set AP obey the grammar:

$$\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \wedge \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \mathbb{P}_J(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

PCTL path formulae are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Phi_1 \cup ^{\leq n} \Phi_2 \quad \Im = \begin{pmatrix} 1 \\ 1 \\ 2 \\ 1 \end{pmatrix}$$

here Φ , Φ_1 , and Φ_2 are state formulae and $n \in \mathbb{N}$.
$$P_{>\frac{1}{2}} \begin{pmatrix} \diamondsuit \alpha \end{pmatrix} \qquad P_{=1} \begin{pmatrix} \alpha \cup P_{>\frac{1}{2}} (\diamondsuit b) \end{pmatrix}$$

w

PCTL state formulas over the set AP obey the grammar:

$$\Phi ::= \mathsf{true} \ \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \wedge \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \mathbb{P}_J(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

PCTL path formulae are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Phi_1 \cup ^{\leqslant n} \Phi_2 \text{ where } n \in \mathbb{N}.$$

Intuitive semantics

► $s_0 s_1 s_2 ... \models \Phi \bigcup^{\leq n} \Psi$ if Φ holds until Ψ holds within *n* steps. $s_0 s_1 s_2 ... s_k \cdot \Theta \quad S_k \models \Psi \quad O k \leq n$ $\otimes \forall i \leq k \cdot s_i \models \Phi$

Overview

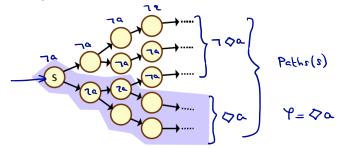
Introduction

2 PCTL Syntax

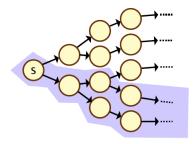
- **③** PCTL Semantics
- PCTL Model Checking

5 Complexity

Semantics of \mathbb{P} -operator



Semantics of \mathbb{P} -operator



- $s \models \mathbb{P}_{J}(\varphi)$ if:
 - the probability of all paths starting in s fulfilling φ lies in J.
- Example: $s \models \mathbb{P}_{>\frac{1}{2}}(\Diamond a)$ if
 - the probability to reach an *a*-labeled state from s exceeds $\frac{1}{2}$.
- ► Formally:

▶ $s \models \mathbb{P}_J(\varphi)$ if and only if $Pr_s\{\pi \in Paths(s) \mid \pi \models \varphi\} \in J$.

Joost-Pieter Katoen

Derived operators

 $\Diamond \Phi = true U \Phi$

 $\Diamond^{\leqslant n} \Phi = \operatorname{true} \mathsf{U}^{\leqslant n} \Phi$

$$\mathbb{P}_{\leq p}(\Box \Phi) = \mathbb{P}_{>1-p}(\Diamond \neg \Phi)$$

$$\square \Phi = \neg \Diamond \neg \Phi$$

Derived operators

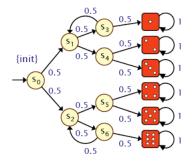
 $\Diamond \Phi = true U \Phi$

 $\Diamond^{\leqslant n} \Phi = \operatorname{true} \mathsf{U}^{\leqslant n} \Phi$

$$\mathbb{P}_{\leqslant
ho}(\Box \Phi) = \mathbb{P}_{>1-
ho}(\Diamond \neg \Phi)$$

$$\mathbb{P}_{(
ho,q)}(\Box^{\leqslant n} \Phi) \,=\, \mathbb{P}_{[1-q,1-p]}(\Diamond^{\leqslant n} \neg \Phi)$$

Correctness of Knuth's die



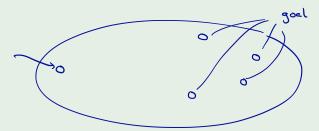
Correctness of Knuth's die

$$\mathbb{P}_{=\frac{1}{6}}(\Diamond 1) \land \mathbb{P}_{=\frac{1}{6}}(\Diamond 2) \land \mathbb{P}_{=\frac{1}{6}}(\Diamond 3) \land \mathbb{P}_{=\frac{1}{6}}(\Diamond 4) \land \mathbb{P}_{=\frac{1}{6}}(\Diamond 5) \land \mathbb{P}_{=\frac{1}{6}}(\Diamond 6)$$

Example properties

Transient probabilities to be in goal state at the fourth epoch:

$$\mathbb{P}_{\geq 0.92}\left(\Diamond^{=4} \textit{goal}\right)$$



Example properties

Transient probabilities to be in goal state at the fourth epoch:

$$\mathbb{P}_{\geqslant\,0.92}\left(\diamondsuit^{=4}$$
 goal $ight)$

• With probability \ge 0.92, a goal state is reached legally:

 $\mathbb{P}_{\geq 0.92}$ (¬ illegal U goal)

Example properties

Transient probabilities to be in goal state at the fourth epoch:

$$\mathbb{P}_{\geqslant\,0.92}\left(\diamondsuit^{=4}$$
 goal $ight)$

• With probability \ge 0.92, a goal state is reached legally:

 $\mathbb{P}_{\geq 0.92}$ (¬ illegal U goal)

▶ ... in maximally 137 steps: $\mathbb{P}_{\geq 0.92}$ (¬ illegal U^{≤ 137} goal)

 $\mathbb{P}_{\geq 0.92} \left(\diamondsuit^{=4} \text{ goal} \right)$

Example properties

Transient probabilities to be in goal state at the fourth epoch:

► With probability ≥ 0.92, a goal state is reached legally: $\mathbb{P}_{\geq 0.92} (\neg illegal \cup goal)$

- ► ... in maximally 137 steps: $\mathbb{P}_{\geq 0.92}$ (¬ illegal U^{≤137} goal)
- ... once there, remain there almost surely for the next 31 steps:

$$\mathbb{P}_{\geq 0.92}\left(\neg \textit{illegal } \cup {}^{\leq 137} \mathbb{P}_{=1}(\Box^{[0,31]} \textit{ goal})\right)$$

PCTL semantics (1)

Notation

 \mathcal{D} , $s \models \Phi$ iff state-formula Φ holds in state s of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

Satisfaction relation for state formulas

The satisfaction relation \models is defined for PCTL state formulas by:

$$\begin{array}{ll} s \models a & \text{iff} \quad a \in L(s) \\ s \models \neg \Phi & \text{iff} \quad \text{not} \ (s \models \Phi) \\ s \models \Phi \land \Psi & \text{iff} \quad (s \models \Phi) \ \text{and} \ (s \models \Psi) \end{array}$$

PCTL semantics (1)

Notation

 \mathcal{D} , $s \models \Phi$ iff state-formula Φ holds in state s of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

Satisfaction relation for state formulas

The satisfaction relation \models is defined for PCTL state formulas by:

$$s \models a \qquad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \qquad \text{iff} \quad \text{not} \ (s \models \Phi)$$

$$s \models \Phi \land \Psi \qquad \text{iff} \quad (s \models \Phi) \text{ and} \ (s \models \Psi)$$

$$s \models \mathbb{P}_{J}(\varphi) \qquad \text{iff} \quad Pr(s \models \varphi) \in J$$
where $Pr(s \models \varphi) = Pr_{s}\{\pi \in Paths(s) \mid \pi \models \varphi\}$

PCTL semantics (2)

PCTL semantics (2)

Satisfaction relation for path formulas

Let $\pi = s_0 s_1 s_2 \dots$ be an infinite path in (possibly infinite) DTMC \mathcal{D} . Recall that $\pi[i] = s_i$ denotes the (i+1)-st state along π .

The satisfaction relation \models is defined for state formulas by:

$$\pi \models \bigcirc \Phi \qquad \text{iff} \quad s_1 \models \Phi$$

$$\pi \models \Phi \cup \Psi \qquad \text{iff} \quad \exists k \ge 0.(\pi[k] \models \underbrace{\Psi}_{=} \text{ and } \forall 0 \le i < k.\pi[i] \models \Phi)$$

PCTL semantics (2)

Satisfaction relation for path formulas

Let $\pi = s_0 s_1 s_2 \dots$ be an infinite path in (possibly infinite) DTMC \mathcal{D} . Recall that $\pi[i] = s_i$ denotes the (i+1)-st state along π .

The satisfaction relation \models is defined for state formulas by:

 $\pi \models \bigcirc \Phi \quad \text{iff} \quad s_1 \models \Phi$ $\begin{cases} \pi \models \Phi \cup \Psi \quad \text{iff} \quad \exists k \ge 0.(\pi[k] \models \Psi \text{ and } \forall 0 \le i < k.\pi[i] \models \Phi) \\ \pi \models \Phi \cup^{\le n} \Psi \quad \text{iff} \quad \exists k \ge 0.(\underbrace{k \le n}_{\forall 0 \le i < k.\pi[i]}_{\forall i < k,\pi[i]}_{\forall i < j < k,\pi[i]}_{\forall i < j < k,\pi[i]}_{\forall i < j < j,\pi[i]}_{\forall i$

Examples

Measurability

PCTL measurability

For PCTL path formula φ and state *s* of DTMC \mathcal{D} , $\{ \pi \in Paths(s) \mid \pi \models \varphi \}$ is measurable.

Proof (sketch):

Three cases:

- 1. ()Ф:
 - cylinder sets constructed from paths of length one.
- 2. ΦU[≤]*n*Ψ:
 - (finite number of) cylinder sets from paths of length at most *n*.
- 3. ΦUΨ:
 - countable union of paths satisfying $\Phi \cup \mathbb{I}^{\leq n} \Psi$ for all $n \geq 0$.

Overview

Introduction

2 PCTL Syntax

- **3 PCTL Semantics**
- PCTL Model Checking

5 Complexity

PCTL model checking

PCTL model checking problem

Input: a finite DTMC $D = (S, \mathbf{P}, \iota_{init}, AP, L)$, state $s \in S$, and PCTL state formula Φ

Output: yes, if $s \models \Phi$; no, otherwise.

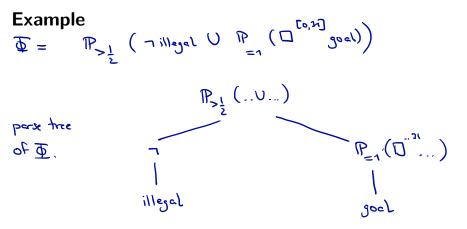
Basic algorithm

In order to check whether $s \models \Phi$ do:

- 1. Compute the satisfaction set $Sat(\Phi) = \{ s \in S \mid s \models \Phi \}$.
- 2. This is done recursively by a bottom-up traversal of Φ 's parse tree.
 - The nodes of the parse tree represent the subformulae of Φ .
 - For each node, i.e., for each subformula Ψ of Φ , determine $Sat(\Psi)$.
 - Determine $Sat(\Psi)$ as function of the satisfaction sets of its children:

e.g., $Sat(\Psi_1 \land \Psi_2) = Sat(\Psi_1) \cap Sat(\Psi_2)$ and $Sat(\neg \Psi) = S \setminus Sat(\Psi)$.

3. Check whether state *s* belongs to $Sat(\Phi)$.



Core model-checking algorithm

Propositional formulas

 $Sat(\cdot)$ is defined by structural induction as follows:

$$\begin{array}{rcl} Sat(\operatorname{true}) &=& S\\ Sat(a) &=& \{s \in S \mid a \in L(s)\}, \text{ for any } a \in AP\\ Sat(\Phi \wedge \Psi) &=& Sat(\Phi) \cap Sat(\Psi)\\ Sat(\neg \Phi) &=& S \setminus Sat(\Phi). \end{array}$$

Probabilistic operator \mathbb{P}

In order to determine whether $s \in Sat(\mathbb{P}_J(\varphi))$, the probability $Pr(s \models \varphi)$ for the event specified by φ needs to be established. Then

$$Sat(\mathbb{P}_{J}(\varphi)) = \{s \in S \mid Pr(s \models \varphi) \in J\}.$$

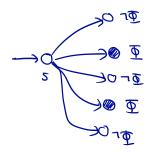
Let us consider the computation of $Pr(s \models \varphi)$ for all possible φ .

The next-step operator

Recall that: $s \models \mathbb{P}_J(\bigcirc \Phi)$ if and only if $Pr(s \models \bigcirc \Phi) \in J$.

Lemma

$$Pr(s \models \bigcirc \Phi) = \sum_{s' \in Sat(\Phi)} \mathbf{P}(s, s').$$



The next-step operator

Recall that: $s \models \mathbb{P}_J(\bigcirc \Phi)$ if and only if $Pr(s \models \bigcirc \Phi) \in J$.

Lemma

$$Pr(s \models \bigcirc \Phi) = \sum_{s' \in Sat(\Phi)} \mathbf{P}(s, s').$$

Algorithm

Considering the above equation for all states simultaneously yields:

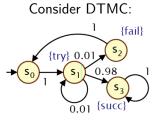
$$(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{P} \cdot \mathbf{b}_{\Phi}$$

with \mathbf{b}_{Φ} the characteristic vector of $Sat(\Phi)$, i.e., $b_{\Phi}(s) = 1$ iff $s \in Sat(\Phi)$.

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen

Example



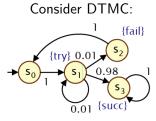
and PCTL-formula:

$$\mathbb{P}_{\geq 0.9} \left(\bigcirc \left(\neg try \lor succ \right) \right)$$

- 1. $Sat(\neg try \lor succ) = (S \setminus Sat(try)) \cup Sat(succ) = \{s_0, s_2, s_3\}$
- 2. We know: $(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{P} \cdot \mathbf{b}_{\Phi}$ where $\Phi = \neg try \lor succ$
- 3. Applying that to this example yields:

$$\left(\Pr(s\models\bigcirc\Phi)\right)_{s\in S} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{pmatrix}$$

Example



and PCTL-formula:

$$\mathbb{P}_{\geq 0.9} \left(\bigcirc \left(\neg try \lor succ \right) \right)$$

- 1. $Sat(\neg try \lor succ) = (S \setminus Sat(try)) \cup Sat(succ) = \{s_0, s_2, s_3\}$
- 2. We know: $(Pr(s \models \bigcirc \Phi))_{s \in S} = \mathbf{P} \cdot \mathbf{b}_{\Phi}$ where $\Phi = \neg try \lor succ$
- 3. Applying that to this example yields:

$$\left(\Pr(s\models\bigcirc\Phi)\right)_{s\in S} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0.01 & 0.01 & 0.98 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0.99 \\ 1 \\ 1 \end{pmatrix}$$

4. Thus: $Sat(\mathbb{P}_{\geq 0.9}(\bigcirc (\neg try \lor succ)) = \{ s_1, s_2, s_3 \}.$

25/45

Bounded until (1)

Recall that: $s \models \mathbb{P}_J(\Phi \cup \mathbb{Q}^{\leq n} \Psi)$ if and only if $Pr(s \models \Phi \cup \mathbb{Q}^{\leq n} \Psi) \in J$.

Lemma

Let
$$S_{=1} = Sat(\Psi)$$
, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:

$$Pr(s \models \Phi \cup \mathbb{S}^{n}\Psi) = \begin{cases} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \\ 0 & \text{if } s \in S_{?} \land n=0 \\ \sum_{s' \in S} \underline{\mathsf{P}(s,s')} \cdot \Pr(s' \models \Phi \cup \mathbb{S}^{n-1}\Psi) & \text{otherwise} \end{cases}$$

Bounded until (2)

Let $S_{=1} = Sat(\Psi)$, $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi))$, and $S_? = S \setminus (S_{=0} \cup S_{=1})$. Then:

$$Pr(s \models \Phi \cup^{\leq n} \Psi) = \begin{cases} 1 & \text{if } s \in S_{=1} \\ 0 & \text{if } s \in S_{=0} \\ 0 & \text{if } s \in S_? \land n=0 \\ \sum_{s' \in S} \mathsf{P}(s, s') \cdot Pr(s' \models \Phi \cup^{\leq n-1} \Psi) & \text{otherwise} \end{cases}$$

Algorithm

- 1. Let $\mathbf{P}_{\Phi,\Psi}$ be the probability matrix of $\mathcal{D}[S_{=0} \cup S_{=1}]$.
- 2. Then $(Pr(s \models \Phi \cup \forall))_{s \in S} = \mathbf{b}_{\Psi}$
- 3. And $(\Pr(s \models \Phi \cup U^{\leq i+1} \Psi))_{s \in S} = \mathbf{P}_{\Phi, \Psi} \cdot (\Pr(s \models \Phi \cup U^{\leq i} \Psi))_{s \in S}$.
- 4. This requires *n* matrix-vector multiplications in total.

Bounded until (3)

Algorithm

- 1. Let $\mathbf{P}_{\Phi,\Psi}$ be the probability matrix of $\mathcal{D}[S_{=0} \cup S_{=1}]$.
- 2. Then $(Pr(s \models \Phi \cup \forall))_{s \in S} = \mathbf{b}_{\Psi}$
- 3. And $(\Pr(s \models \Phi \cup U^{\leqslant i+1} \Psi))_{s \in S} = \mathbf{P}_{\Phi, \Psi} \cdot (\Pr(s \models \Phi \cup U^{\leqslant i} \Psi))_{s \in S}$.
- 4. This requires *n* matrix-vector multiplications in total.

Remarks

- 1. In terms of matrix powers: $(Pr(s \models \Phi \cup U^{\leq n} \Psi))_{s \in S} = \mathbf{P}^{n}_{\Phi, \Psi} \cdot \mathbf{b}_{\Psi}$.
 - Computing $\mathbf{P}_{\Phi,\Psi}^n$ in $\log_2 n$ steps is inefficient due to fill-in.
 - That is to say, $\mathbf{P}_{\Phi,\Psi}^n$ is much less sparse than $\mathbf{P}_{\Phi,\Psi}$.
- 2. $\mathbf{P}^n_{\Phi,\Psi} \cdot \mathbf{b}_{\Psi} = (\Pr(s \models \bigcirc^{=n} \Psi))_{s \in S_?}$ in $\mathcal{D}[S_{=0} \cup S_{=1}]$.
 - Where $\bigcirc^{0} \Psi = \Psi$ and $\bigcirc^{i+1} \Psi = \bigcirc (\bigcirc^{i} \Psi)$.
 - This thus amounts to a transient analysis in DTMC $\mathcal{D}[S_{=0} \cup S_{=1}]$.

Optimization

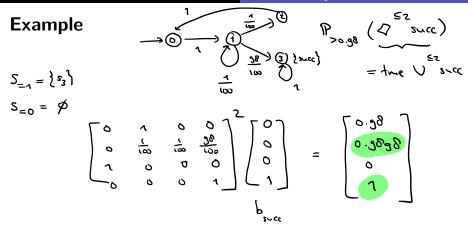
The above procedure used:

- $S_{=1} = Sat(\Psi)$, and
- $S_{=0} = S \setminus (Sat(\Phi) \cup Sat(\Psi)) = Sat(\neg \Phi \land \neg \Psi)$, and
- perform the matrix-vector multiplications on the remaining states

This can be optimized (in practice) by enlarging $S_{=0}$ and $S_{=1}$:

- $S_{=1} = Sat(\mathbb{P}_{=1}(\Phi \cup \Psi))$, obtained by a graph analysis
- $S_{=0} = Sat(\mathbb{P}_{=0}(\Phi \cup \Psi))$, obtained by a graph analysis too, and
- > perform the matrix-vector multiplications on the remaining states.

PCTL Model Checking



PCTL Model Checking

Until

Until

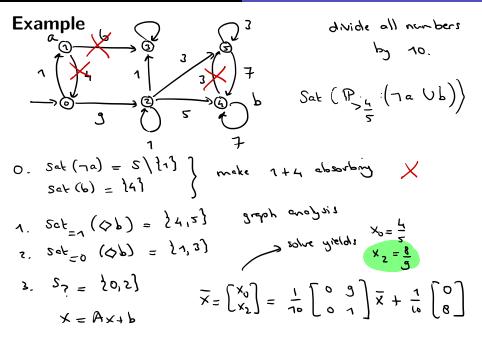
Recall that: $s \models \mathbb{P}_{J}(\Phi \cup \Psi)$ if and only if $Pr(s \models \Phi \cup \Psi) \in J$.

Algorithm

- 1. Determine $S_{=1} = Sat(\mathbb{P}_{=1}(\Phi \cup \Psi))$ by a graph analysis.
- 2. Determine $S_{=0} = Sat(\mathbb{P}_{=0}(\Phi \cup \Psi))$ by a graph analysis.
- 3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

- 1. Ensures unique solution to linear equation system.
- 2. Reduces the number of variables in the linear equation system.
- 3. Gives exact results for the states in $S_{=1}$ and $S_{=0}$ (i.e., no round-off).
- 4. For qualitative properties, no further computation is needed.



Overview

Introduction

2 PCTL Syntax

- **3 PCTL Semantics**
- PCTL Model Checking

5 Complexity

6 Summary

Time complexity

Let $|\Phi|$ be the size of Φ , i.e., the number of logical and temporal operators in Φ .

Time complexity of PCTL model checking

For finite DTMC \mathcal{D} and PCTL state-formula Φ , the PCTL model-checking problem can be solved in time

$$\mathcal{O}(poly(size(\mathcal{D})) \cdot n_{\max} \cdot |\Phi|)$$

where $n_{\max} = \max\{n \mid \Psi_1 \cup \mathbb{Q}^{\leq n} \Psi_2 \text{ occurs in } \Phi\}$ with and $n_{\max} = 1$ if Φ does not contain a bounded until-operator.

Time complexity

Time complexity of PCTL model checking

For finite DTMC ${\cal D}$ and PCTL state-formula $\Phi,$ the PCTL model-checking problem can be solved in time

$$\mathcal{O}(\operatorname{poly}(\operatorname{size}(\mathcal{D})) \cdot n_{\max} \cdot |\Phi|).$$

Proof (sketch)

- 1. For each node in the parse tree, a model-checking is performed; this yields a linear complexity in $|\Phi|$.
- 2. The worst-case operator is (unbounded) until.

Time complexity

Time complexity of PCTL model checking

For finite DTMC ${\cal D}$ and PCTL state-formula $\Phi,$ the PCTL model-checking problem can be solved in time

$$\mathcal{O}(\operatorname{poly}(\operatorname{size}(\mathcal{D})) \cdot n_{\max} \cdot |\Phi|).$$

Proof (sketch)

- For each node in the parse tree, a model-checking is performed; this yields a linear complexity in |Φ|.
- 2. The worst-case operator is (unbounded) until.
 - 2.1 Determining $S_{=0}$ and $S_{=1}$ can be done in linear time.
 - 2.2 Direct methods to solve linear equation systems are in $\Theta(|S_2|^3)$.
- 3. Strictly speaking, $U^{\leq n}$ could be more expensive for large *n*.

But it remains polynomial, and n is small in practice.

Complexity

Example: Lost passenger ticket problem

Verification results

stom	model	checker		
(stormchecker.org)				

N	ver. time	(in seconds)
100	0.1	
1000	0.1	
10,000	0.2	
1,000,000	6.4	
10,000,000	66.8	

Value iteration x = Ax + b = 0

Reachability probabilities are typically obtained iteratively:

$$\mathbf{x}^{(n+1)} = \mathbf{A} \cdot \mathbf{x}^{(n)} + \mathbf{b}$$

- ▶ Then: reachability probability $Pr(\Diamond G)$ equals $\lim_{n\to\infty} \mathbf{x}^{(n)}$
- Question: when to halt this iterative process?
- Typical approach:

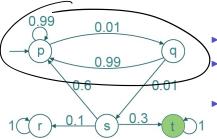
$$|\mathbf{x}^{(n+1)} - \mathbf{x}^{(n)}| \leqslant \varepsilon$$

 $P_{r}(\Diamond G) < \frac{1}{2}$

for some ε , e.g., 10^{-6}

- Potential problem: premature convergence That is: iterations are stopped too early
- Verification results are obtained without guarantees

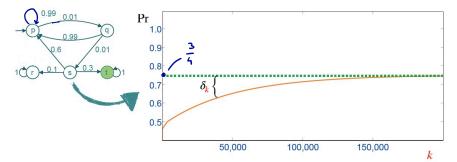
Example



- Exact answer: $Pr(\Diamond t) = \frac{3}{4}$
 - Value iteration with $\varepsilon=$ 0,000001 yields 0.7248
- True error: 0.0252

Value iteration

Idea: approach $Pr(\Diamond G)$ by computing $Pr(\Diamond^{\leq k}G)$ for increasing k



- Problem: δ_k is unknown
- Stopping criterion: $|Pr(\Diamond^{\leq k+1}G) Pr(\Diamond^{\leq k}G)| \leq \varepsilon$
- ▶ But this is independent from the aim: $Pr(\Diamond G) Pr(\Diamond^{\leq k}G) \leq \varepsilon$

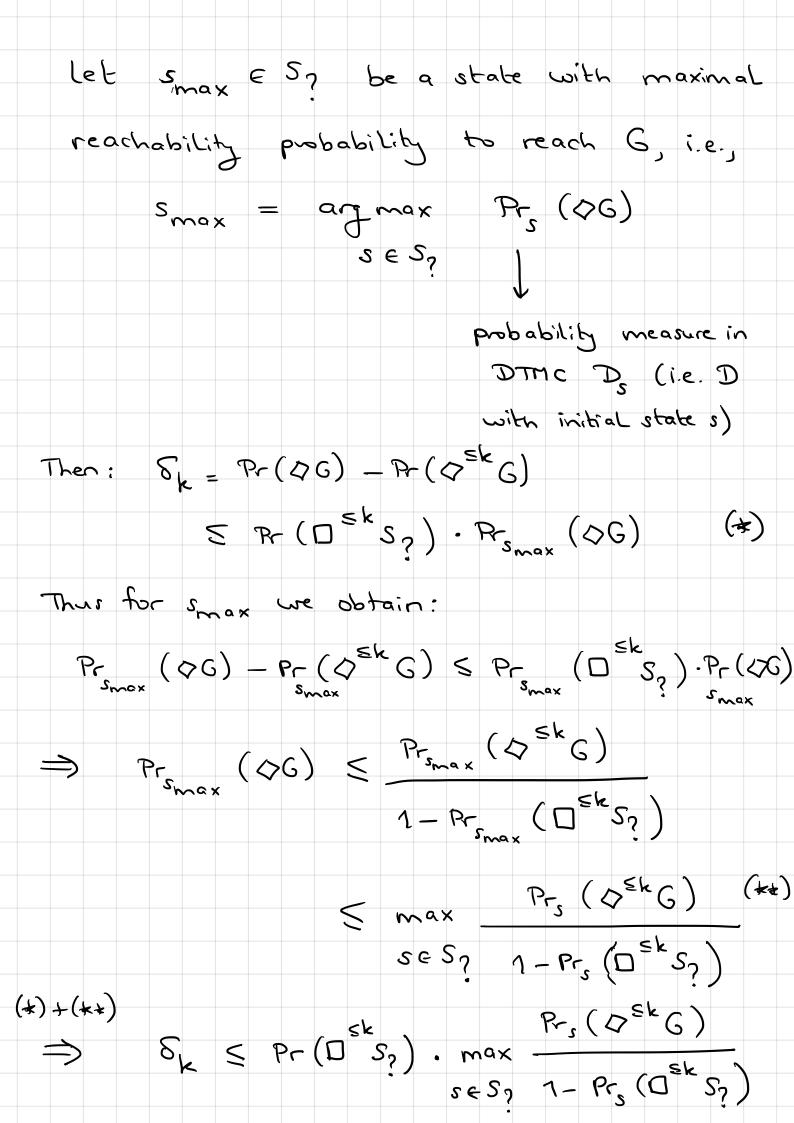
Remedy: bound $Pr(\Diamond G)$ from above too \downarrow Idea: provide bounds $\ell_k \leq \delta_k \leq u_k$ for $\delta_k = Pr(\Diamond G) - Pr(\Diamond^{\leq k}G)$

How to obtain these bounds? Towards an upper bound observe:

$$\delta_{k} = \underbrace{\Pr(\Diamond G) - \Pr(\Diamond^{\leq k} G)}_{\text{probability to reach } G \text{ in } > k \text{ steps}} \leq \Pr(\Box^{\leq k} S_{?}) \cdot \max_{s \in S_{?}} \Pr_{s}(\Diamond G)$$

Towards a lower bound observe:

$$\delta_{k} = \underbrace{\Pr(\Diamond G) - \Pr(\Diamond^{\leq k} G)}_{\text{probability to reach } G \text{ in } > k} \text{ steps} \geq \Pr(\Box^{\leq k} S_{?}) \cdot \min_{s \in S_{?}} \Pr_{s}(\Diamond G)$$



Sound value iteration

Sound value iteration theorem

For DTMC \mathcal{D} , goal states $G \subseteq S$ and $k \in \mathbb{N}$:

$$\Pr(\Diamond^{\leqslant k}G) + \ell_k \leqslant \Pr(\Diamond G) \leqslant \Pr(\Diamond^{\leqslant k}G) + u_k$$

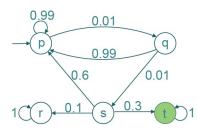
where:

$$u_{k} = Pr(\Box^{\leq k}S_{?}) \cdot \max_{s \in S_{?}} \frac{Pr_{s}(\Diamond^{\leq k}G)}{1 - Pr_{s}(\Box^{\leq k}S_{?})}$$

and

$$\ell_{\mathbf{k}} = \Pr(\Box^{\leqslant \mathbf{k}} S_{?}) \cdot \min_{s \in S_{?}} \frac{\Pr_{s}(\Diamond^{\leqslant \mathbf{k}} G)}{1 - \Pr_{s}(\Box^{\leqslant \mathbf{k}} S_{?})}$$

Example sound value iteration



- Exact answer: $Pr(\Diamond t) = \frac{3}{4}$
- ► $S_? = \{ s_0, s_1, s_2 \}$
- We have $I_3 = (0.00003, 0.003, 0.3)$
- ▶ and $\mathbf{u}_3 = (0.99996, 0.996, 0.6)$

For all
$$s \in S_{?}$$
 we have $\frac{\ell_{3}(s)}{1-u_{3}(s)} = \frac{3}{4}$

• Thus
$$\ell_3 = u_3 = \frac{3}{4}$$

Three iterations suffice for the exact answer

Overview

Introduction

2 PCTL Syntax

- **3 PCTL Semantics**
- PCTL Model Checking

5 Complexity

Summary

- PCTL is a branching-time logic with key operator $\mathbb{P}_{J}(\varphi)$.
- Sets of paths fulfilling PCTL path-formula φ are measurable.
- PCTL model checking is performed by a recursive descent over Φ .
- ► The next operator amounts to a single matrix-vector multiplication.
- ▶ Bounded until $U^{\leq n}$ amounts to *n* matrix-vector multiplications.
- The until-operator amounts to solving a linear equation system.
- Time complexity of $\mathcal{D} \models \Phi$ is polynomial in $|\mathcal{D}|$ and linear in $|\Phi|$.
- ▶ Value iteration is sound when upper bounding $Pr(\Diamond G)$
- Variations: long-run operator, conditional probabilities, expected reward until reaching a set of states.