
Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movep18/

October 29, 2018

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/45

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/45

Introduction

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 3/45

Introduction

Summary of previous lecture

Reachability probabilities
Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal
The probability of satisfying an Ê-regular property P in a Markov chain D

= reachability probability of accepting BSCCs in the product of D with a
DRA for P.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 4/45

Introduction

Aim of this lecture

Introduce probabilistic CTL. Provide a polynomial-time model-checking
algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

1. Syntax and formal semantics of probabilistic CTL.
2. Model checking algorithm for probabilistic CTL on Markov chains.
3. Time complexity analysis.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 5/45

PCTL Syntax

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 6/45

PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.

I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(Ï)

I where Ï constrains the paths and J is a threshold on the probability.
I it is the probabilistic counterpart of ÷ and ’ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/45

LTL formula if Pr (D the)

PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic (based on CTL).

I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(Ï)

I where Ï constrains the paths and J is a threshold on the probability.
I it is the probabilistic counterpart of ÷ and ’ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/45

-

↳ LTL : infinitetraces
I w - regular)

Petri infinite trees

PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.

I The main operator is PJ(Ï)
I where Ï constrains the paths and J is a threshold on the probability.
I it is the probabilistic counterpart of ÷ and ’ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/45

Pr Ce) > I s I

PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(Ï)

I where Ï constrains the paths and J is a threshold on the probability.

I it is the probabilistic counterpart of ÷ and ’ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/45

7=0 a D= To , 's]

Peo
,

(Oa) =

"

Pr { all paths t Oa } E Co , 's]
"

PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.
I It is a branching-time temporal logic (based on CTL).
I Formula interpretation is Boolean, i.e., a formula is satisfied or not.
I The main operator is PJ(Ï)

I where Ï constrains the paths and J is a threshold on the probability.
I it is the probabilistic counterpart of ÷ and ’ path-quantifiers in CTL.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/45

- -

- \
= Aso he) e III. I e)

PCTL Syntax

PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.

I PCTL state formulas over the set AP obey the grammar:

� ::= true
--- a

--- �1 · �2
--- ¬�

--- PJ(Ï)

where a œ AP, Ï is a path formula and J ™ [0, 1], J ”= ? is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

Ï ::= • �
--- �1 U �2

--- �1 U6n �2

where �, �1, and �2 are state formulae and n œ IN.
Abbreviate P[0,0.5](Ï) by P60.5(Ï) and P]0,1](Ï) by P>0(Ï).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/45

'

as
&

no

⇐ ¥¥.

¥
⑦ ①

.

: :

PCTL Syntax

PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax
PCTL consists of state- and path-formulas.

I PCTL state formulas over the set AP obey the grammar:

� ::= true
--- a

--- �1 · �2
--- ¬�

--- PJ(Ï)

where a œ AP, Ï is a path formula and J ™ [0, 1], J ”= ? is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

Ï ::= • �
--- �1 U �2

--- �1 U6n �2

where �, �1, and �2 are state formulae and n œ IN.

Abbreviate P[0,0.5](Ï) by P60.5(Ï) and P]0,1](Ï) by P>0(Ï).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 9/45

3- HD

GOI =
true VI

Elo

113 I (Oa) Ben I a U P
, I Cob))

PCTL Syntax

Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

� ::= true
--- a

--- �1 · �2
--- ¬�

--- PJ(Ï)

where a œ AP, Ï is a path formula and J ™ [0, 1], J ”= ? is a
non-empty interval.

I PCTL path formulae are formed according to the following grammar:

Ï ::= • �
--- �1 U �2

--- �1 U6n �2 where n œ IN.

Intuitive semantics
I s0s1s2 . . . |= � U6n � if � holds until � holds within n steps.

I s |= PJ(Ï) if probability that paths starting in s fulfill Ï lies in J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 10/45

Sos , Esg - - - . . .sk .

① She 1=4 ③ Ksn

② tick
. sit $

PCTL Semantics

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 11/45

PCTL Semantics

Semantics of P-operator

I s |= PJ(Ï) if:
I the probability of all paths starting in s fulfilling Ï lies in J .

I Example: s |= P> 1
2
(⌃a) if

I the probability to reach an a-labeled state from s exceeds 1
2 .

I Formally:
I s |= PJ(Ï) if and only if Prs{ fi œ Paths(s) | fi |= Ï } œ J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/45

2E

Ta
.

- a

"

, .

a foal→

a za

na)
Paths (s)

} O a 7=0 a

PCTL Semantics

Semantics of P-operator

I s |= PJ(Ï) if:
I the probability of all paths starting in s fulfilling Ï lies in J .

I Example: s |= P> 1
2
(⌃a) if

I the probability to reach an a-labeled state from s exceeds 1
2 .

I Formally:
I s |= PJ(Ï) if and only if Prs{ fi œ Paths(s) | fi |= Ï } œ J .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/45

PCTL Semantics

Derived operators

⌃� = true U �

⌃6n� = true U 6n�

P6p(⇤�) = P>1≠p(⌃¬�)

P(p,q)(⇤6n�) = P[1≠q,1≠p](⌃6n
¬�)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/45

in

DIE TONE
T

PCTL Semantics

Derived operators

⌃� = true U �

⌃6n� = true U 6n�

P6p(⇤�) = P>1≠p(⌃¬�)

P(p,q)(⇤6n�) = P[1≠q,1≠p](⌃6n
¬�)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 13/45

PCTL Semantics

Correctness of Knuth’s die

Correctness of Knuth’s die
P= 1

6
(⌃1) · P= 1

6
(⌃2) · P= 1

6
(⌃3) · P= 1

6
(⌃4) · P= 1

6
(⌃5) · P= 1

6
(⌃6)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/45

PCTL Semantics

Example properties

I Transient probabilities to be in goal state at the fourth epoch:

P> 0.92
1
⌃=4 goal

2

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 steps: P> 0.92
!
¬ illegal U6 137 goal"

I . . . once there, remain there almost surely for the next 31 steps:

P> 0.92
1
¬ illegal U 6 137 P=1(⇤[0,31] goal)

2

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/45

←

PCTL Semantics

Example properties

I Transient probabilities to be in goal state at the fourth epoch:

P> 0.92
1
⌃=4 goal

2

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 steps: P> 0.92
!
¬ illegal U6 137 goal"

I . . . once there, remain there almost surely for the next 31 steps:

P> 0.92
1
¬ illegal U 6 137 P=1(⇤[0,31] goal)

2

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/45

.

"

PCTL Semantics

Example properties

I Transient probabilities to be in goal state at the fourth epoch:

P> 0.92
1
⌃=4 goal

2

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 steps: P> 0.92
!
¬ illegal U6 137 goal"

I . . . once there, remain there almost surely for the next 31 steps:

P> 0.92
1
¬ illegal U 6 137 P=1(⇤[0,31] goal)

2

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/45

PCTL Semantics

Example properties

I Transient probabilities to be in goal state at the fourth epoch:

P> 0.92
1
⌃=4 goal

2

I With probability > 0.92, a goal state is reached legally:

P> 0.92 (¬ illegal U goal)

I . . . in maximally 137 steps: P> 0.92
!
¬ illegal U6 137 goal"

I . . . once there, remain there almost surely for the next 31 steps:

P> 0.92
1
¬ illegal U 6 137 P=1(⇤[0,31] goal)

2

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 15/45

q
illegal god

PCTL Semantics

PCTL semantics (1)

Notation
D, s |= � i� state-formula � holds in state s of (possibly infinite) DTMC
D. As D is known from the context we simply write s |= �.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a i� a œ L(s)
s |= ¬ � i� not (s |= �)
s |= � · � i� (s |= �) and (s |= �)

s |= PJ(Ï) i� Pr(s |= Ï) œ J

where Pr(s |= Ï) = Prs{ fi œ Paths(s) | fi |= Ï }

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/45

PCTL Semantics

PCTL semantics (1)

Notation
D, s |= � i� state-formula � holds in state s of (possibly infinite) DTMC
D. As D is known from the context we simply write s |= �.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

s |= a i� a œ L(s)
s |= ¬ � i� not (s |= �)
s |= � · � i� (s |= �) and (s |= �)
s |= PJ(Ï) i� Pr(s |= Ï) œ J

where Pr(s |= Ï) = Prs{ fi œ Paths(s) | fi |= Ï }

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/45

* .

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let fi = s0 s1 s2 . . . be an infinite path in (possibly infinite) DTMC D.
Recall that fi[i] = si denotes the (i+1)-st state along fi.
The satisfaction relation |= is defined for state formulas by:

fi |= •� i� s1 |= �
fi |= � U � i� ÷k > 0.(fi[k] |= � and ’0 6 i < k. fi[i] |= �)
fi |= � U6n � i� ÷k > 0.(k 6 n and fi[k] |= � and

’0 6 i < k. fi[i] |= �)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/45

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let fi = s0 s1 s2 . . . be an infinite path in (possibly infinite) DTMC D.
Recall that fi[i] = si denotes the (i+1)-st state along fi.
The satisfaction relation |= is defined for state formulas by:

fi |= •� i� s1 |= �
fi |= � U � i� ÷k > 0.(fi[k] |= � and ’0 6 i < k. fi[i] |= �)

fi |= � U6n � i� ÷k > 0.(k 6 n and fi[k] |= � and
’0 6 i < k. fi[i] |= �)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/45

=

Sos , Sz - - - Sk

I IT

y
Y

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas
Let fi = s0 s1 s2 . . . be an infinite path in (possibly infinite) DTMC D.
Recall that fi[i] = si denotes the (i+1)-st state along fi.
The satisfaction relation |= is defined for state formulas by:

fi |= •� i� s1 |= �
fi |= � U � i� ÷k > 0.(fi[k] |= � and ’0 6 i < k. fi[i] |= �)
fi |= � U6n � i� ÷k > 0.(k 6 n and fi[k] |= � and

’0 6 i < k. fi[i] |= �)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/45

{
-

PCTL Semantics

Examples

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 18/45

PCTL Semantics

Measurability

PCTL measurability
For PCTL path formula Ï and state s of DTMC D,
{ fi œ Paths(s) | fi |= Ï } is measurable.

Proof (sketch):

Three cases:
1. • �:

I cylinder sets constructed from paths of length one.
2. � U6n �:

I (finite number of) cylinder sets from paths of length at most n.
3. � U �:

I countable union of paths satisfying � U6n � for all n > 0.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 19/45

PCTL Model Checking

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/45

PCTL Model Checking

PCTL model checking
PCTL model checking problem

Input: a finite DTMC D = (S, P, ÿinit, AP, L), state s œ S, and
PCTL state formula �

Output: yes, if s |= �; no, otherwise.

Basic algorithm
In order to check whether s |= � do:

1. Compute the satisfaction set Sat(�) = { s œ S | s |= � }.
2. This is done recursively by a bottom-up traversal of �’s parse tree.

I The nodes of the parse tree represent the subformulae of �.
I For each node, i.e., for each subformula � of �, determine Sat(�).
I Determine Sat(�) as function of the satisfaction sets of its children:

e.g., Sat(�1 · �2) = Sat(�1) fl Sat(�2) and Sat(¬�) = S \ Sat(�).
3. Check whether state s belongs to Sat(�).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/45

o

PCTL Model Checking

Example

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/45

E
= Psi (n illegal U II

,

(D
" "

god))

Ps ;
C

. .

u
. . .)

parse tree I \p→fD "
"

. . .)of OI
.

7

I I
illegal goal

PCTL Model Checking

Core model-checking algorithm
Propositional formulas
Sat(·) is defined by structural induction as follows:

Sat(true) = S
Sat(a) = { s œ S | a œ L(s) }, for any a œ AP

Sat(� · �) = Sat(�) fl Sat(�)
Sat(¬�) = S \ Sat(�).

Probabilistic operator P
In order to determine whether s œ Sat(PJ(Ï)), the probability Pr(s |= Ï)
for the event specified by Ï needs to be established. Then

Sat(PJ(Ï)) =
)s œ S | Pr(s |= Ï) œ J*

.

Let us consider the computation of Pr(s |= Ï) for all possible Ï.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/45

PCTL Model Checking

The next-step operator

Recall that: s |= PJ(• �) if and only if Pr(s |= • �) œ J .

Lemma
Pr(s |= • �) =

q
sÕœSat(�) P(s, s Õ).

Algorithm
Considering the above equation for all states simultaneously yields:

!Pr(s |= • �)
"

sœS = P · b�

with b� the characteristic vector of Sat(�), i.e., b�(s) = 1 i� s œ Sat(�).

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/45

-

yo
IE

→ o -3 I

s ↳ O - E

⑦ E

Choi

PCTL Model Checking

The next-step operator

Recall that: s |= PJ(• �) if and only if Pr(s |= • �) œ J .

Lemma
Pr(s |= • �) =

q
sÕœSat(�) P(s, s Õ).

Algorithm
Considering the above equation for all states simultaneously yields:

!Pr(s |= • �)
"

sœS = P · b�

with b� the characteristic vector of Sat(�), i.e., b�(s) = 1 i� s œ Sat(�).

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/45

PCTL Model Checking

Example
Consider DTMC:

and PCTL-formula:

P>0.9 (• (¬try ‚ succ))

1. Sat(¬try ‚ succ) = (S \ Sat(try)) fi Sat(succ) = { s0, s2, s3 }

2. We know:
!Pr(s |= • �)

"
sœS = P · b� where � = ¬try ‚ succ

3. Applying that to this example yields:

!
Pr(s |= • �)

"
sœS =

Q

ca

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

R

db ·

Q

ca

1
0
1
1

R

db =

Q

ca

0
0.99

1
1

R

db

4. Thus: Sat(P>0.9(• (¬try ‚ succ)) = { s1, s2, s3 }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/45

PCTL Model Checking

Example
Consider DTMC:

and PCTL-formula:

P>0.9 (• (¬try ‚ succ))

1. Sat(¬try ‚ succ) = (S \ Sat(try)) fi Sat(succ) = { s0, s2, s3 }

2. We know:
!Pr(s |= • �)

"
sœS = P · b� where � = ¬try ‚ succ

3. Applying that to this example yields:

!
Pr(s |= • �)

"
sœS =

Q

ca

0 1 0 0
0 0.01 0.01 0.98
1 0 0 0
0 0 0 1

R

db ·

Q

ca

1
0
1
1

R

db =

Q

ca

0
0.99

1
1

R

db

4. Thus: Sat(P>0.9(• (¬try ‚ succ)) = { s1, s2, s3 }.
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/45

PCTL Model Checking

Bounded until (1)

Recall that: s |= PJ(� U6n �) if and only if Pr(s |= � U6n �) œ J .

Lemma
Let S=1 = Sat(�), S=0 = S \ (Sat(�) fi Sat(�)), and S? = S \ (S=0 fi S=1). Then:

Pr(s |= � U6n �) =

Y
____]

____[

1 if s œ S=1
0 if s œ S=0
0 if s œ S? · n=0ÿ

sÕœS
P(s, s Õ) · Pr(s Õ

|= � U6n≠1 �) otherwise

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 26/45

O .

- P

PCTL Model Checking

Bounded until (2)

Let S=1 = Sat(�), S=0 = S \ (Sat(�) fi Sat(�)), and S? = S \ (S=0 fi S=1). Then:

Pr(s |= � U6n �) =

Y
____]

____[

1 if s œ S=1
0 if s œ S=0
0 if s œ S? · n=0ÿ

sÕœS
P(s, s Õ) · Pr(s Õ

|= � U6n≠1 �) otherwise

Algorithm

1. Let P�,� be the probability matrix of D[S=0 fi S=1].
2. Then

!Pr(s |= � U60 �)
"

sœS = b�

3. And
!Pr(s |= � U6i+1 �)

"
sœS = P�,� ·

!Pr(s |= � U6i �)
"

sœS .
4. This requires n matrix-vector multiplications in total.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/45

BE
, y

. by

PCTL Model Checking

Bounded until (3)
Algorithm

1. Let P�,� be the probability matrix of D[S=0 fi S=1].
2. Then

!Pr(s |= � U60 �)
"

sœS = b�

3. And
!Pr(s |= � U6i+1 �)

"
sœS = P�,� ·

!Pr(s |= � U6i �)
"

sœS .
4. This requires n matrix-vector multiplications in total.

Remarks
1. In terms of matrix powers:

!Pr(s |= � U6n �)
"

sœS = Pn
�,� · b�.

I Computing Pn
�,� in log2 n steps is ine�cient due to fill-in.

I That is to say, Pn
�,� is much less sparse than P�,�.

2. Pn
�,� · b� =

!Pr(s |= •
=n �)

"
sœS?

in D[S=0 fi S=1].
I Where •

0 � = � and •
i+1 � = • (•i �).

I This thus amounts to a transient analysis in DTMC D[S=0 fi S=1].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 28/45

-
-

PCTL Model Checking

Optimization

The above procedure used:
I S=1 = Sat(�), and
I S=0 = S \ (Sat(�) fi Sat(�)) = Sat(¬� · ¬�), and
I perform the matrix-vector multiplications on the remaining states

This can be optimized (in practice) by enlarging S=0 and S=1:
I S=1 = Sat(P=1(� U �)), obtained by a graph analysis
I S=0 = Sat(P=0(� U �)), obtained by a graph analysis too, and
I perform the matrix-vector multiplications on the remaining states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/45

PCTL Model Checking

Example

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/45

Pso
.gg

(0
"

sue)
→ O→0→ -

'

se 02sue)
= fine U

⇐

s - cc

£
, =L 's) I

i w O
100 2

⇐ '

÷.÷÷j¥! .

PCTL Model Checking

Until

Recall that: s |= PJ(� U �) if and only if Pr(s |= � U �) œ J .

Algorithm

1. Determine S=1 = Sat(P=1(� U �)) by a graph analysis.
2. Determine S=0 = Sat(P=0(� U �)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-o�).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/45

PCTL Model Checking

Until

Recall that: s |= PJ(� U �) if and only if Pr(s |= � U �) œ J .

Algorithm

1. Determine S=1 = Sat(P=1(� U �)) by a graph analysis.
2. Determine S=0 = Sat(P=0(� U �)) by a graph analysis.
3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.
2. Reduces the number of variables in the linear equation system.
3. Gives exact results for the states in S=1 and S=0 (i.e., no round-o�).
4. For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/45

PCTL Model Checking

Example

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 32/45

3 divide all numbers

qq.ee#dof
by no

.

^ Aa 7

→ Oog- b SatC.Psgif Taub))
I 7

o .

Sat Cna) = SI In)

set Cb) =
La) } make its absorbing y

1
. Satan (Ob) =

24 ,
s) graph analysis

a
. Sato Cob) = Ls

,
3)

y
solve yields

% = I
Xz = I

g

3- s
?

-
do ' "

E- I I:] = [I9) It I :]
X = Axtb

Complexity

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/45

Complexity

Time complexity

Let |�| be the size of �, i.e., the number of logical and temporal operators in �.

Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula �, the PCTL model-checking
problem can be solved in time

O
! poly(size(D)) · nmax · |�|

"

where nmax = max{ n | �1 U 6n�2 occurs in � } with and nmax = 1 if �
does not contain a bounded until-operator.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/45

- bottom - up traversal on pose the of OI → linear in 101

Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula �, the PCTL model-checking
problem can be solved in time

O
! poly(size(D)) · nmax · |�|

"
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |�|.

2. The worst-case operator is (unbounded) until.

2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in �(|S?|

3).
3. Strictly speaking, U6n could be more expensive for large n.

But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/45

Complexity

Time complexity
Time complexity of PCTL model checking
For finite DTMC D and PCTL state-formula �, the PCTL model-checking
problem can be solved in time

O
! poly(size(D)) · nmax · |�|

"
.

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |�|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S=0 and S=1 can be done in linear time.
2.2 Direct methods to solve linear equation systems are in �(|S?|

3).
3. Strictly speaking, U6n could be more expensive for large n.

But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 35/45

Complexity

Example: Lost passenger ticket

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 36/45

problem
-

• N passengers
are waiting to board an airplane .

• The plane is fully booked

• The first passenger
lost his boarding pass ;

he randomly picks a seat

• ALL other passengers
have their boarding pass .

r .

reserved seat free ? → sit down

free

z
.

occupied ? → randomly pick a seat

Q : what is the probability that the lastpassenger ?
gets his reserved seat

Complexity

Verification results

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 37/45

storm model checker

(storm checker
. org)

N ver .
Line (in seconds)

100 0.1

1000 0.1

10,000 0.2

1,000,000 6.4

10,000,000
66.8

Complexity

Value iteration

I Reachability probabilities are typically obtained iteratively:

x(n+1) = A · x(n) + b

I Then: reachability probability Pr(⌃G) equals limnæŒ x(n)

I Question: when to halt this iterative process?
I Typical approach:

|x(n+1)
≠ x(n)

| 6 Á

for some Á, e.g.,10≠6

I Potential problem: premature convergence
That is: iterations are stopped too early

I Verification results are obtained without guarantees

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 38/45

a- Ax t b Xl "
= e

Pr (06) at

Complexity

Example

I Exact answer: Pr(⌃ t) = 3
4

I Value iteration with Á = 0, 000001 yields
0.7248

I True error: 0.0252

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 39/45

0

Complexity

Value iteration
Idea: approach Pr(⌃G) by computing Pr(⌃6kG) for increasing k

I Problem: ”k is unknown
I Stopping criterion: |Pr(⌃6k+1G) ≠ Pr(⌃6kG)| 6 Á

I But this is independent from the aim: Pr(⌃G) ≠ Pr(⌃6kG)
¸ ˚˙ ˝

”k

6 Á

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 40/45

AgreeageHmmm
.

I

' '
•

•

Complexity

Remedy: bound Pr(⌃G) from above too

Idea: provide bounds ¸k 6 ”k 6 uk for ”k = Pr(⌃G) ≠ Pr(⌃6kG)

How to obtain these bounds? Towards an upper bound observe:

”k = Pr(⌃G) ≠ Pr(⌃6kG)
¸ ˚˙ ˝

probability to reach G in > k steps

6 Pr(⇤6kS?) · max
sœS?

Prs(⌃G)

Towards a lower bound observe:

”k = Pr(⌃G) ≠ Pr(⌃6kG)
¸ ˚˙ ˝

probability to reach G in > k steps

> Pr(⇤6kS?) · min
sœS?

Prs(⌃G)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/45

error

I

- -

E:

Let §ma× E S
? be a stale with maximal

reachability probability to reach G
,

i. e.
,

Smax =

argmax Prs (OG)
S ES

? I
probability measure in

DTMC Ds C i.e
.

D

with initial state s)

Then : 8h =
Pr o) - Pr (EKG)

E Pr CD
' ks

?) . Prsma
,

(OG) ↳)

Thus for Sma ,
we obtain :

Prana
.

(00) - Pran
Eh

G) s Prana
.

(D
'

hes
?

) . Pr COG)
Snax

⇒ Prana
.

(OG) EPrsma×C0s
1- Prana

.

C Does
?)

Prs (Osho) Gate)
f max

-

SE Sp
.

n - Prs (b'ks
?)

(4) that)
Pr

, (OEKG)
⇒ 8h S Pr (Does

?) . max -

s Esp T - Prs (DIS
?)

I

Complexity

Sound value iteration

Sound value iteration theorem
For DTMC D, goal states G ™ S and k œ N:

Pr(⌃6kG) + ¸k 6 Pr(⌃G) 6 Pr(⌃6kG) + uk

where:
uk = Pr(⇤6kS?) · max

sœS?

Prs(⌃6kG)
1 ≠ Prs(⇤6kS?)

and
¸k = Pr(⇤6kS?) · min

sœS?

Prs(⌃6kG)
1 ≠ Prs(⇤6kS?)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 42/45

Complexity

Example sound value iteration

I Exact answer: Pr(⌃ t) = 3
4

I S? = { s0, s1, s2 }

I We have l3 = (0.00003, 0.003, 0.3)
I and u3 = (0.99996, 0.996, 0.6)

I For all s œ S? we have ¸3(s)
1≠u3(s) = 3

4

I Thus ¸3 = u3 = 3
4

I Three iterations su�ce for the exact answer

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 43/45

Summary

Overview

1 Introduction

2 PCTL Syntax

3 PCTL Semantics

4 PCTL Model Checking

5 Complexity

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 44/45

Summary

Summary

I PCTL is a branching-time logic with key operator PJ(Ï).
I Sets of paths fulfilling PCTL path-formula Ï are measurable.
I PCTL model checking is performed by a recursive descent over �.
I The next operator amounts to a single matrix-vector multiplication.
I Bounded until U6n amounts to n matrix-vector multiplications.
I The until-operator amounts to solving a linear equation system.
I Time complexity of D |= � is polynomial in |D| and linear in |�|.
I Value iteration is sound when upper bounding Pr(⌃G)
I Variations: long-run operator, conditional probabilities, expected

reward until reaching a set of states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 45/45

