Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movepl18/

October 29, 2018

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/45

Overview

@ Introduction

© PCTL Syntax

© PCTL Semantics

@ PCTL Model Checking
© Complexity

Q@ Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 2/45

Introduction

Overview

@ Introduction

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Summary of previous lecture

Reachability probabilities

Can be obtained as a unique solution of a linear equation system.

Reachability probabilities are pivotal

The probability of satisfying an w-regular property P in a Markov chain D
= reachability probability of accepting BSCCs in the product of D with a
DRA for P.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Introduction

Aim of this lecture

|
Introduce probabilistic CTL. Provide a polynomial-time model-checking
algorithm for verifying a finite Markov chain against a PCTL formula.

Set up of this lecture

1. Syntax and formal semantics of probabilistic CTL.

2. Model checking algorithm for probabilistic CTL on Markov chains.
3. Time complexity analysis.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

PCTL Syntax

Overview

© PCTL Syntax

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Probabilistic Computation Tree Logic

|
» PCTL is a language for formally specifying properties over DTMCs.

LTL fowale P o (D F\e)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/45

Probabilistic Computation Tree Logic

|
» PCTL is a language for formally specifying properties over DTMCs.
» It is a branching-time temporal logic (based on CTL).

L; LTL : whwike haces (w-ms\.\q.)
PerL . wRete vees

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/45

Probabilistic Computation Tree Logic

|
» PCTL is a language for formally specifying properties over DTMCs.
» It is a branching-time temporal logic (based on CTL).
» Formula interpretation is Boolean, i.e., a formula is satisfied or not.

Ple) >L <2

5

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/45

Probabilistic Computation Tree Logic

|
» PCTL is a language for formally specifying properties over DTMCs.
» It is a branching-time temporal logic (based on CTL).
» Formula interpretation is Boolean, i.e., a formula is satisfied or not.

» The main operator is P ()
» where ¢ constrains the paths and J is a threshold on the probability.

“P: O a J= fo,%_]

P09 Pl s moal e (0]

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Probabilistic Computation Tree Logic

v

PCTL is a language for formally specifying properties over DTMCs.

v

It is a branching-time temporal logic (based on CTL).

v

Formula interpretation is Boolean, i.e., a formula is satisfied or not.

v

The main operator is P,(¢)

» where ¢ constrains the paths and J is a threshold on the probability.
> it is the probabilistic counterpart of 3 and V path-quantifiers in CTL.

y S~
~ B, (® ~ B¢

~

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 7/45

PCTL Syntax

PCTL syntax [Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

L) : \ J
C:@/_\FE @)5 o) >

AN

\

=

[

S
~l
~

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Syntax

PCTL syntax

[Hansson & Jonsson, 1994]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

» PCTL state formulas over the set AP obey the grammar:
d = true ’ a ‘ b1 A Dy ‘ L ‘ P, ()

where a € AP, ¢ is a path formula and J C [0,1], J # @ is a
non-empty interval.

» PCTL path formulae are formed according to the following grammar:

p u= OCD ‘ $; U Dy ‘ ¢1U<n¢2 = (%.:“3

where ®, ®1, and @, are state formulae E‘Qod n e IN. CT = e Vg
P (Q"‘) W:r\ (e ‘P> (O\:))

i
>

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

PCTL Syntax

Probabilistic Computation Tree Logic

|
PCTL state formulas over the set AP obey the grammar:

® = true ’ a ‘ d; A Oy ‘ - ‘ Py(p)

where a € AP, ¢ is a path formula and J C [0,1], J # @ is a
non-empty interval.

PCTL path formulae are formed according to the following grammar:

= Qb ‘ ®; U b, ‘ ®;US"®, where n € IN.

Intuitive semantics

> ps152... = @ US" WV if ® holds until W holds within n steps.
LR D scevV Q ksn
: Sk ® Vick. s;¥ $

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Semantics

Overview

© PCTL Semantics

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Semantics

Semantics of P-operator

Modeling and Verification of Probabilistic Systems

Semantics of P-operator

> s = Py(yp) if:
» the probability of all paths starting in s fulfilling ¢ lies in J.
» Example: s = P_1(0a) if
2
» the probability to reach an a-labeled state from s exceeds %

» Formally:
» s =Py(p) if and only if Prs{m € Paths(s) |7 = ¢} € J.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 12/45

Derived operators

OP = trueUd

OS"d = trueU S0

IED<p(D¢) = P>1,p(<>—|d>)
—v—
-

g = 1@~ T

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Derived operators

OP = trueUd

OS"d = trueU S0

IED<p(D¢) = P>1,p(<>—|d>)

P(o,q)(O5"®) = Pp_g1p)(0S"=9)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Correctness of Knuth’s die

{init}

Correctness of Knuth’s die

P_1(01) A P_1(02) A P_1(03) A P_y(04) A P_1(05) A P_3(06)

1 1
6 6

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/45

PCTL Semantics

Example properties
-]

» Transient probabilities to be in goal state at the fourth epoch:

P> 0.02 (0:4 goal)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Semantics

Example properties
-]

» Transient probabilities to be in goal state at the fourth epoch:

P> 0.02 (0:4 goal)

> With probability > 0.92, a goal state is reached legally:

P~ 0.92 (—illegal U goal)

M C

\‘\\QDQ.L

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Semantics

Example properties
-]

» Transient probabilities to be in goal state at the fourth epoch:

P> 0.02 (0:4 goal)

> With probability > 0.92, a goal state is reached legally:

P~ 0.92 (—illegal U goal)

> ... in maximally 137 steps: P> .02 (—illegal us137 goal)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Example properties

» Transient probabilities to be in goal state at the fourth epoch:

N N
(P77

» With probability > 0.92, a goal state is reached legally: Mgel 3“_

P~ 0.92 (—illegal U goal)

> ... in maximally 137 steps: P> .02 (—illegal us137 goal)

> ... once there, remain there almost surely for the next 31 steps:

Ps g.02 (ﬁ illegal U <137 p_ (O3 goa/))

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Semantics

PCTL semantics (1)

D, s = ¢ iff state-formula ® holds in state s of (possibly infinite) DTMC
D. As D is known from the context we simply write s = &.

Satisfaction relation for state formulas
The satisfaction relation |= is defined for PCTL state formulas by:

skEa iff ae L(s)
sE o iff not (s = @)
sEP AV iff (sE®)and (s = V)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/45

PCTL Semantics

PCTL semantics (1)

D, s = o iff state-formula ® holds in state s of (possibly infinite) DTMC
D. As D is known from the context we simply write s |= ®.

Satisfaction relation for state formulas

The satisfaction relation |= is defined for PCTL state formulas by:
skEa iff ae L(s)
sE o iff not (s = @)
sEP AV iff (sE®)and (s = V)
sEP)(p) iff PsEy¢)ed

where Pr(s |=) = Prs{m € Paths(s) | 7 = ¢ } s /%(’
-Pc\—\.s

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/45

PCTL semantics (2)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas

Let m = sps1 52 ... be an infinite path in (possibly infinite) DTMC D.
Recall that 7[i] = s; denotes the (i+1)-st state along .

The satisfaction relation = is defined for state formulas by:

T E QO iff s =&
Tl ®UW iff 3k >0.(alk] W and Y0 < < k.afi] = @)

S48

-~

- -__Sk

L
e T
¥ A ¢

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas

Let m = sps1 52 ... be an infinite path in (possibly infinite) DTMC D.
Recall that 7[i] = s; denotes the (i+1)-st state along .

The satisfaction relation = is defined for state formulas by:

T E QO iff s =&

Y):cbuw iff 3k > 0.(7[k] =W and YO < i < k.7[i] £ ®)
7= U W iff 3k >0.(k < nand7[k] = ¥ and

VO < i< k.r[i] =)

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/45

Examples

PCTL Semantics

Measurability

PCTL measurability

For PCTL path formula ¢ and state s of DTMC D,
{7 € Paths(s) | m = ¢ } is measurable.

Proof (sketch):

Three cases:

1. Oo:
> cylinder sets constructed from paths of length one.
2. dUS"V:

> (finite number of) cylinder sets from paths of length at most n.

3. dUV:
» countable union of paths satisfying ® US" W for all n > 0.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

PCTL Model Checking

Overview

@ PCTL Model Checking

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL model checking

PCTL model checking problem

Input: a finite DTMC D = (S, P, t4, AP, L), state s € S, and
PCTL state formula ¢

Output: yes, if s = ®; no, otherwise.

Basic algorithm

In order to check whether s = ® do:

fet Sat(P) ={seS|s=o}.
2. This is done recursively by a bottor aversal-of$-sparse tree.

1. Compute the satisfaction
-up

» The nodes of the parse tree represent the subformulae of .
» For each node, i.e., for each subformula W of ®, determine Sat(V).
» Determine Sat(W) as function of the satisfaction sets of its children:

e.g., Sat(V1 A W,) = Sat(W1) N Sat(W2) and Sat(—W¥) = S\ Sat(V).
3. Check whether state s belongs to Sat(®).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 21/45

PCTL Model Checking

Example

T = (Mgl O ‘” (‘:\ " 3‘“\))

>\
P

ISR GAVIN

l

perse e / \ a

oF D . A “):1'('\3)

| \

\\\2(5&\’ ch\.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Core model-checking algorithm

Propositional formulas

Sat(-) is defined by structural induction as follows:

Sat(true) S

Sat(a) = {seS|aecl(s)}, foranyac AP
Sat(P AWV) = Sat(®) N Sat(V)
Sat(—=®) = S\ Sat(®).

Probabilistic operator P

In order to determine whether s € Sat(P,(y)), the probability Pr(s = ¢)
for the event specified by ¢ needs to be established. Then

Sat(Py(¢)) = {s€S|Prsl=¢) € J}.

Let us consider the computation of Pr(s |= ¢) for all possible .

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 23/45

PCTL Model Checking

The next-step operator

Recall that: s |=P,(O ®) if and only if P(s = O ®) € J.

P(s=0O®) = zs'eSat(cb) P(s,s).

'« Pat)

——20 %
S (VAT
)

L

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

PCTL Model Checking

The next-step operator

Recall that: s |=P,(O ®) if and only if P(s = O ®) € J.

Lemma

P(s=0O®) = zs'eSat(cb) P(s,s).

Algorithm

Considering the above equation for all states simultaneously yields:

(Pr(s):Qd)))seS = P-by

with be the characteristic vector of Sat(®), i.e., bo(s) = 1 iff s € Sat(P).

Checking the next-step operator reduces to a single matrix-vector multiplication.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Model Checking
Example

Consider DTMC:

1 ffail} and PCTL-formula:

P>0.9 (O (—try V succ))

0.01 fsucc}
1. Sat(—try V succ) = (S)\ Sat(try)) U Sat(succ) = {so,52,53}
2. We know: (Pr(s [O®)),.¢ = P:be where & = —try V succ
3. Applying that to this example yields:

0 1 0 0 1 0

0 001 001 098 0 0.99
(Pris =O®)), s = 1 0 0 0 1 - 1

0 0 0 1 1 1

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/45

PCTL Model Checking

Example

Consider DTMC:

1 ffail} and PCTL-formula:

P>0.9 (O (—try V succ))

0.01 fsucc}
1. Sat(—try V succ) = (S)\ Sat(try)) U Sat(succ) = {so, 52,53}
2. We know: (Pr(s [O®)),.¢ = P-be where & = —try V succ
3. Applying that to this example yields:

0 1 0 0 1 0

0 001 001 098 0 0.99
(Pris =O®)), s = 1 0 0 0 1 - 1

0 0 0 1 1 1

4. Thus: Sat(P>0.9(O (—try V succ)) = {s1,5,53}.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

25/45

Bounded until (1)

|
Recall that: s = P,(® US" V) if and only if Pr(s | ®US"V) € J.

Let S—y = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S; = S\ (S=0US—-1). Then:

if565:1
if s e S_p
if se€ S, An=0 ~

P(s,s')- Pr(s’ = ®US" 1 W) otherwise

?

Pr(s|:d>L@\U) =

@Q, O O =
0]
0

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Bounded until (2)

|
Let Sy = Sat(V), S—o = S\ (Sat(P) U Sat(V)), and S; = S\ (S=0US_1). Then:

1 if s € 5:1
0 if se S_g
Pis =®US"V) = { 0 if s € S; A n=0
Z P(s,s') - Pr(s’ = ®US""1 W) otherwise
FES n
Fon * Oy

Algorithm
1. Let Py y be the probability matrix of D[S—¢ U 5-;1].
2. Then (Pr(s |z ® USO V). s = by
3. And (Pr(s | ¢ USiHL \IJ))Ses = Pou - (Prs E ®US \U))Ses.
4. This requires n matrix-vector multiplications in total.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 27/45

Bounded until (3)

Algorithm

1. Let Py be the probability matrix of D[S—o U S—1].

2. Then (Prs £ ®USCW)) . = by

3. And (Pr(s = ®US™IV)) ¢ = Poy - (Prs = ®US'V))
4

. This requires n matrix-vector multiplications in total.

seS’

L. In terms of matrix powers: (Pr(s = ®US"V)) o = P§y - by,

» Computing Pg in log, n steps is inefficient due to fill-in.
» That is to say, Pg, is much less sparse than Pg y.

2. Pgy by = (Pls = O="V)), g in D[S=oU 5]

» Where O°W =WV and Ot W = O (O V).
» This thus amounts to a transient analysis in DTMC D[S—¢ U 54].

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Model Checking

Optimization

The above procedure used:
» S5_1 = Sat(V), and
» S_o =5\ (Sat(P) U Sat(V)) = Sat(-P A —WV), and
» perform the matrix-vector multiplications on the remaining states

This can be optimized (in practice) by enlarging S—¢ and S_;:
» S_1 = Sat(P_;(P U W)), obtained by a graph analysis
» S_o = Sat(P_o(P UW)), obtained by a graph analysis too, and

» perform the matrix-vector multiplications on the remaining states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 29/45

Example

U
U
>

]
N/
5
-

Joost-Pieter Katoen

—©®

PCTL Model Checking

s

(0 Succ)
>Q 3&
A
83\9)),Succ\ g2
= I\NQ \) I\ CC
T
o O o o33
Y ;
\;B oo Q _ 0 3&38
Ry le] o o
I\ 1) 1
suce

Modeling and Verification of Probabilistic Systems

Until

PCTL Model Checking

Until

|
Recall that: s =P, (® U W) if and only if Pr(s =dUWV) € J.

Algorithm

1. Determine S—; = Sat(P=1(® U V)) by a graph analysis.
2. Determine S—g = Sat(P—o(P U V)) by a graph analysis.

3. Then solve a linear equation system over all remaining states.

Importance of pre-computation using graph analysis

1. Ensures unique solution to linear equation system.

2. Reduces the number of variables in the linear equation system.

3. Gives exact results for the states in S—; and S—g (i.e., no round-off).
4.

For qualitative properties, no further computation is needed.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

PCTL Model Checking

Example Anide o\ numloers

by Ao
_&3 /@i Sek GP (A= \)L)>

o. Sek (ne) = S\i"’& acke AL a.\asw'\ob X
Sea\ C‘c) = \‘\\

Bﬁ(,\‘ e.,\a\;) NS

sove wieldy

Joost-Pieter Katoen

Complexity

Overview

© Complexity

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Time complexity

Let |®| be the size of ®, i.e., the number of logical and temporal operators in ®.

Time complexity of PCTL model checking

For finite DTMC D and PCTL state-formula ®, the PCTL model-checking
problem can be solved in time

O(poly(size(D)) - Nmax - |P|)

where npna = max{n| W US"W; occurs in ® } with and npay = 1 if ®
does not contain a bounded until-operator.

— ko‘\']w—u{) howersal o Porse Nee Oq‘—ﬁ ~ \heer \n \Q\

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 34/45

Complexity

Time complexity

Time complexity of PCTL model checking

For finite DTMC D and PCTL state-formula ®, the PCTL model-checking
problem can be solved in time

O(poly(size(D)) + Nmax - |P]).

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |®|.

2. The worst-case operator is (unbounded) until.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Complexity

Time complexity

Time complexity of PCTL model checking

For finite DTMC D and PCTL state-formula ®, the PCTL model-checking
problem can be solved in time

O(poly(size(D)) + Nmax - |P]).

Proof (sketch)

1. For each node in the parse tree, a model-checking is performed; this
yields a linear complexity in |®|.

2. The worst-case operator is (unbounded) until.
2.1 Determining S—o and S_; can be done in linear time.
2.2 Direct methods to solve linear equation systems are in ©(|S:|?).
3. Strictly speaking, US" could be more expensive for large n.
But it remains polynomial, and n is small in practice.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Complexity

Example: Lost passenger ticket pmblem

N qus-cf\se_rs ot &JQ\E\\\& &o vooard an OC\‘(‘?\Q‘\(_
e \he P\GAQ S g\'\\a‘ booked

o The —Q’rsk (aaSSfr\J-!r \osk \is k@o.—é‘\\,a_ ‘;QSSS
Ve \"Onéow\\a_ P‘\c\cs a SCQSC

e PU cber PONRNGUS \ore fweir boads e3s.
4. vesened seak Qe ! —> s\ 2::7«\
2. Occupied 1 — rcm&w«\a picke o Seat
Q: whak s e pmbu\o“\(\a' ok e \ask e,

qeks his re geak ¢

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Verification results L O S S Y

(&'\TN'MC\’\CO\(&V _og)

N veco. Rre (i~ SQ(O«AS)
A00 ©.A

4000 oA

AD,000 0.2

/\,000,000 b 4

AD,000,600 .3

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Value iteration - Ax 3% X =0

v

Reachability probabilities are typically obtained iteratively:

x(MD = A .x(" 4 p

v

Then: reachability probability Pr(¢ G) equals lim,_,o x(")

v

Question: when to halt this iterative process?

Typical approach: P G) <
) < e - (26)

)
2

v

for some ¢, e.g., 1070

v

Potential problem: premature convergence
That is: iterations are stopped too early

v

Verification results are obtained without guarantees

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 38/45

Complexity

Example

> Exact answer: Pr({t) = %

> Value iteration with ¢ = 0, 000001 yields
0.7248

» True error: 0.0252

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Complexity

Value iteration

Idea: approach P G) by computing Pr(O<KG) for increasing k

100,000 150,000

» Problem: d, is unknown

» Stopping criterion: |PH{OSKTLG) — PHOSKG)| < ¢

» But this is independent from the aim: P G) — P{OSKG) < ¢
Ok

~—

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Complexity

Remedy: bound Pr({ G) from above too

emors

\)

Idea: provide bounds ¢, < &k < Uk for 6, = Pr(O G) — Pr(OSKG)

—

How to obtain these bounds? Towards an upper bound observe:

o = PlOG)—PlOTG) < PAOS:) max Pr(0 G)
ona*t ("‘\'

probability to reach G in > k steps
Ao ve=®
Sq G

Towards a lower bound observe:

b = PAOG)—PA0G) > PAOS,) - min Pr(0 G)

probability to reach G in > k steps

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 41/45

Lek S c Sf? b{ a s%a& &o;\c\n max‘«'\/\a_

nAa X

rcac\na\s‘\k\b Fw\oa\o\\\‘<§3 ™~ ¢eack G) Q.Q.J

Semax = O«fa_w\mc (Prs (OG)
S e S? \\,

Prqu\c‘n\'.b VAR asSure (N
DTMC ’DS (ie. D
woith wig el stake s)

Then: %) - ®(26) _ (&™)
S B (DSks?) - R, (06G) &)

S~

Thas Foc S ax W Oeyuin:

= <k
IYs - (OGB —Pr;' (O kG) S Pr‘s (D S?>-(Pr(<76>

oA
WA OGX
nAax

sk
»)
= o (00) 5 e (T G)

QX gk
A—o (O S?)

nNa X

<k €
S A X T)\"S (O GB
se S? A - P, <DS\(S7>
(*)-5—(40\:) v ‘P\(S (OS\LG>

= 8\« < PF(D S?) « pax Y
seSq9 - Pfs (a S?>

Complexity

Sound value iteration

Sound value iteration theorem
For DTMC D, goal states G C S and k € N:

PAOSAG) + 4 < PO G) < PH{OSG) + uy
where:

Prs(OSKG)
_ <key. s
ue = PAOY5) - max =5 ks

and

) Pr.(OSKG)
_ <kcy . s
ﬁk - PI’(D 57) snélsrl 1— Prs(D<k57)

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Complexity

Example sound value iteration

Exact answer: Pr(Q t) = 3
Ss={s.51.%}
We have I3 = (0.00003, 0.003, 0.3)

and us = (0.99996, 0.996, 0.6)
63(5) 3

17U3(S) 4

For all s € S5; we have

Thus €3: us :%

Three iterations suffice for the exact answer

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Overview

Q@ Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

Summary

|
» PCTL is a branching-time logic with key operator P,(¢).
» Sets of paths fulfilling PCTL path-formula ¢ are measurable.
» PCTL model checking is performed by a recursive descent over ®.
» The next operator amounts to a single matrix-vector multiplication.
» Bounded until US” amounts to n matrix-vector multiplications.
» The until-operator amounts to solving a linear equation system.
» Time complexity of D |= ® is polynomial in |D| and linear in |®]|.
» Value iteration is sound when upper bounding Pr({ G)

» Variations: long-run operator, conditional probabilities, expected
reward until reaching a set of states.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

