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What are Discrete-Time Markov Chains?

Geometric distribution

Geometric distribution

Let X be a discrete random variable, natural k > 0 and 0 < p 6 1. The
mass function of a geometric distribution is given by:

Pr{ X = k } = (1 ≠ p)k≠1·p

We have E [X ] = 1
p and Var[X ] = 1≠p

p2 and cdf Pr{ X 6 k } = 1 ≠ (1≠p)k .

Geometric distributions and their cdf’s
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What are Discrete-Time Markov Chains?

Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

Pr{X = k + m | X > m} = Pr{X = k} for any m œ T , k > 1

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically
distributed.

Proof:

Exercise.
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What are Discrete-Time Markov Chains?

Andrei Andrejewitsch Markow
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What are Discrete-Time Markov Chains?

Markov property

The conditional probability distribution of future states of a Markov process only
depends on the current state and not on its further history.

Markov process

A discrete-time stochastic process { X (t) | t œ T } over state space
{ d0, d1, . . . } is a Markov process if for any t0 < t1 < . . . < tn < tn+1 :

Pr{ X (tn+1) = dn+1 | X (t0) = d0, X (t1) = d1, . . . , X (tn) = dn }
=

Pr{ X (tn+1) = dn+1 | X (tn) = dn }

The distribution of X (tn+1), given the values X (t0) through X (tn), only
depends on the current state X (tn).
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What are Discrete-Time Markov Chains?

Invariance to time-shifts

Time homogeneity

Markov process { X (t) | t œ T } is time-homogeneous i� for any t Õ < t:

Pr{ X (t) = d | X (t Õ) = d Õ } = Pr{ X (t ≠ t Õ) = d | X (0) = d Õ }.

A time-homogeneous stochastic process is invariant to time shifts.

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space.
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What are Discrete-Time Markov Chains?

Discrete-time Markov chain

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probabilities

The (one-step) transition probability from s œ S to s Õ œ S at epoch n œ N
is given by:

p(n)(s, s Õ) = Pr{ Xn+1 = s Õ | Xn = s } = Pr{ X1 = s Õ | X0 = s }

where the last equality is due to time-homogeneity.
Since p(n)(·) = p(k)(·), the superscript (n) is omitted, and we write p(·).
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What are Discrete-Time Markov Chains?

Transition probability matrix

Discrete-time Markov chain

A discrete-time Markov chain (DTMC) is a time-homogeneous Markov
process with discrete parameter T and discrete state space S.

Transition probability matrix

Let P be a function with P(si , sj) = p(si , sj). For finite state space S,
function P is called the transition probability matrix of the DTMC with
state space S.

Properties

1. P is a (right) stochastic matrix, i.e., it is a square matrix, all its
elements are in [0, 1], and each row sum equals one.

2. P has an eigenvalue of one, and all its eigenvalues are at most one.

3. For all n œ N, P
n is a stochastic matrix.
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What are Discrete-Time Markov Chains?

DTMCs — A transition system perspective

Discrete-time Markov chain

A DTMC D is a tuple (S, P, ÿinit, AP, L) with:
I S is a countable nonempty set of states
I P : S◊S æ [0, 1], transition probability function s.t.

q
sÕ P(s, s Õ) = 1

I ÿinit : S æ [0, 1], the initial distribution with
q

sœS
ÿinit(s) = 1

I AP is a set of atomic propositions.
I L : S æ 2AP, the labeling function, assigning to state s, the set L(s)

of atomic propositions that are valid in s.

Initial states

I ÿinit(s) is the probability that DTMC D starts in state s
I the set { s œ S | ÿinit(s) > 0 } are the possible initial states.
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What are Discrete-Time Markov Chains?

Simulating a die by a fair coin [Knuth & Yao]

Heads = “go left”; tails = “go right”.

Does this DTMC adequately model a fair
six-sided die?
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What are Discrete-Time Markov Chains?

Craps
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What are Discrete-Time Markov Chains?

Craps

I Roll two dice and bet

I Come-out roll (“pass line” wager):
I outcome 7 or 11: win
I outcome 2, 3, or 12: lose (“craps”)
I any other outcome: roll again (outcome is “point”)

I Repeat until 7 or the “point” is thrown:
I outcome 7: lose (“seven-out”)
I outcome the point: win

I any other outcome: roll again
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What are Discrete-Time Markov Chains?

A DTMC model of Craps

I Come-out roll:
I 7 or 11: win
I 2, 3, or 12:

lose
I else: roll

again

I Next roll(s):
I 7: lose
I point: win
I else: roll

again
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DTMCs and Geometric Distributions

Overview

1 What are Discrete-Time Markov Chains?

2 DTMCs and Geometric Distributions

3 Transient Probability Distribution

4 Long Run Probability Distribution

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 16/29



DTMCs and Geometric Distributions

State residence time distribution

Let Ts be the number of epochs of DTMC D to stay in state s:

Pr{ Ts = 1 } = 1 ≠ P(s, s)
Pr{ Ts = 2 } = P(s, s) · (1 ≠ P(s, s))

. . . . . . . . . . . . . . .

Pr{ Ts = n } = P(s, s)n≠1 · (1 ≠ P(s, s))

So, the state residence times in a DTMC obey a geometric distribution.
The expected number of time steps to stay in state s equals E [Ts ] = 1

1≠P(s,s) .
The variance of the residence time distribution is Var[Ts ] = P(s,s)

(1≠P(s,s))2 .

Recall: the geometric distribution is the only discrete probability distribution that
is memoryless.
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Transient Probability Distribution

Overview

1 What are Discrete-Time Markov Chains?

2 DTMCs and Geometric Distributions

3 Transient Probability Distribution

4 Long Run Probability Distribution
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Transient Probability Distribution

Evolution of an example DTMC

We want to determine ps,sÕ(n) = Pr{ X (n) = s Õ | X (0) = s } for n œ N.
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Transient Probability Distribution

Determining n-step transition probabilities

n-step transition probabilities

The probability to move from s to s Õ in n œ N steps is inductively defined:

ps,sÕ(0) = 1 if s = s Õ, and 0 otherwise,

ps,sÕ(1) = P(s, s Õ), and for n > 1 by the Chapman-Kolmogorov equation:

ps,sÕ(n) =
ÿ

sÕÕ
ps,sÕÕ(l) · psÕÕ,sÕ(n≠l) for some 0 < l < n

Proof: see black board.

For l = 1 and n > 0 we obtain: ps,sÕ(n) =
ÿ

sÕÕ
ps,sÕÕ(1) · psÕÕ,sÕ(n≠1)

P
(n) = P

(1) · P
(n≠1) = P · P

(n≠1) is the n-step transition probability matrix

Repeating this scheme: P
(n) = P · P

(n≠1) = . . . = P
n≠1 · P

(1) = P
n.
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Transient Probability Distribution
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Transient Probability Distribution

Transient probability distribution

Transient distribution

P
n(s, t) equals the probability of being in state t after n steps given that

the computation starts in s.
The probability of DTMC D being in state t after exactly n transitions is:

�D
n (t) =

ÿ

sœS
ÿinit(s) · P

n(s, t)

�D
n (t) is called the transient state probability at epoch n for state t. The

function �D
n is the transient state distribution at epoch n of DTMC D.

When considering �D
n as vector (�D

n )tœS we have:

�D
n = ÿinit · P · P · . . . · P¸ ˚˙ ˝

n times
= ÿinit · P

n.
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Transient Probability Distribution

Transient probability distribution: example
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Long Run Probability Distribution

Overview

1 What are Discrete-Time Markov Chains?

2 DTMCs and Geometric Distributions

3 Transient Probability Distribution

4 Long Run Probability Distribution
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Long Run Probability Distribution

Evolution of an example DTMC

We want to determine the probability to be in a state on the long run.
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Long Run Probability Distribution

On the long run

The probability mass on the long run is only left in bottom SCCs.
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Long Run Probability Distribution
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Long Run Probability Distribution

Limiting distribution

Ergodic stochastic matrix

Stochastic matrix P is called ergodic if:

P
Œ = limnæŒ

P
n exists and has identical rows

Ergodicity theorem

If the transition probability matrix P of a DTMC is ergodic, then:
1. p(n) converges to a limiting distribution v independent from p(0)
2. each row of P

Œ equals the limiting distribution

Proof.

limnæŒ p(0) · P
n = p(0) · lim

næŒ
P

n

¸ ˚˙ ˝
PŒ

= p(0) ·

Q

a
vs0 . . . vsn
. . . . . . . . .
vs0 . . . vsn

R

b = v
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Long Run Probability Distribution

Limiting distribution

I We also have:

v = limnæŒ
p(n+1) = limnæŒ

p(0) · P
n+1 =

1
limnæŒ

p(0) · P
n
2

· P = v · P

I Thus, limiting probabilities can be obtained by solving the
(homogeneous) system of linear equations:

v = v · P or v · (I ≠ P) = 0 under
q

i v(i) = 1

I vector v is the left Eigenvector of P with Eigenvalue 1
I v is called the limiting state-probability vector

Two interpretations of v(s):
I the long-run proportion of time that the DTMC “spends” in state s
I the probability the DTMC is in s when making a snapshot after a

very long time
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Long Run Probability Distribution

Summary

What are Markov chains?

I A discrete-time Markov chain (DTMC) is a time-homogeneous
Markov process with discrete parameter T and discrete state space S.

I State residence times are geometrically distributed.
I Alternative: a DTMC D is a tuple (S, P, ÿinit, AP, L)

What are transient probabilities?

I �D
n (s) is the probability to be in state s after n steps.

I These transient probabilities satisfy: �D
n = ÿinit · P

n.

What are long-run probabilities?

I v(s) is the probability to be in state s after infinitely many steps.
I long-run probabilities satisfy: v · (I ≠ P) = 0 under

q
i v(i) = 1.
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