[
Tined Reac\-\q\o‘\\;\a_ MW~ CT™MCs

Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movepl18/

December 10, 2018

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/30



Recall: continuous-time Markov chains

Overview

@ Recall: continuous-time Markov chains
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Recall: continuous-time Markov chains

Continuous-time Markov chain

A CTMC is a tuple (S, P, r, tini, AP, L) where
> (5,P, tinie, AP, L) is a DTMC, and
> r: S — Ry, the exit-rate function

Let R(s,s’) = P(s,s’) - r(s) be the transition rate of transition (s, s)
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Recall: continuous-time Markov chains

Continuous-time Markov chain

A CTMC is a tuple (S, P, r, Ly, AP, L) where
> (5,P, tinie, AP, L) is a DTMC, and
> r: S — Ry, the exit-rate function

Let R(s,s’) = P(s,s’) - r(s) be the transition rate of transition (s, s)

Interpretation

» residence time in state s is exponentially distributed with rate r(s).

» phrased alternatively, the average residence time of state s is —
r(s)
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Recall: continuous-time Markov chains

CTMC semantics

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e~ R(s:5)t,
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CTMC semantics

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e~ R(s:5)t,

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is:

R(s, s’ r(s)t
%.(1_(3 ().
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Recall: continuous-time Markov chains

CTMC semantics

Enabledness
—R(s;s)-t

The probability that transition s — s is enabled in [0, t] is 1 — e

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is:

R(s, s’ r(s)t
%.(1_(3 ().

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:

t
/ r(s)-e % dx = 1— e ")t
0
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Paths in a CTMC
Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

T = 50%51@52‘”

such that s; € S and t; € Ryg. .
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Recall: continuous-time Markov chains

Paths in a CTMC

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states
and time instants:

™ = 50i>51i>$2”-

such that s; € S and t; € Ryg. Let Paths(C) be the set of paths in C and
Paths*(C) the set of finite prefixes thereof.

Time instant t; is the amount of time spent in state s;.

Notations

» Let 7[i] := s; denote the (i41)-st state along the timed path .

> Let 7 (i) := t; the time spent in state s;.

> Let 7@t be the state occupied in 7 at time t € Rxo, i.e. 7@t := 7]i]
where i is the smallest index such that }7;_,7(j) > t.
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Probability measure on CTMC paths

Overview

@ Probability measure on CTMC paths
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e . Bwned ko \, (3 eT\:
Paths and probabilities ¢cv. — So —$7 — % — -

¢

To reason quantitatively about the behavior of a CTMC, we need to define
a probability space over its pathg.

For a given state s in CTMC C:

» Sample space := set of all infierval-timed paths so ly . .. lk_1 sk with
s =50 I, g, T,

SD rs‘ zsz T s eeee

» Events := sets of interval-timed paths starting in s

_:O I) Ty
) ] S, 38, =8, ... 8,
» Basic events := cylinder sets ~ e

ke Pg‘l\w = cd\i-c)\q

» Cylinder set of finite interval-timed paths := set of all infinite timed
paths with a prefix in the finite interval-timed path
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Timed cylinder sets

Timed cylinder set
Let sp, ..., sk € S with P(s;, s;41) > 0 for 0 < i < k and /o,
intervals in R>¢ with rational bounds.

.oy Ix—1 non-empty
Ia = (i,’\3
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Probability measure on CTMC paths

Timed cylinder sets

Timed cylinder set

Let sp, ..., sk € S with P(s;, s;41) > 0for 0 < i < k and y, ..., [k_1 non-empty

intervals in R>o with rational bounds. The cylinder set of sy lysi hy ... lx—1 5k is
defined by:

Cyl(so, fo, .- Ik—1,5¢) = {m€ Paths(C) | VO< i< k.w[i]=s
—_— and i<k = w(i)el}
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<t
Timed cylinder sets Pr (O 6)

Timed cylinder set

Let sp,..., 5k € S with P(s;,s;i+1) >0for 0 </ < k and Iy, ..., [x—1 non-empty
intervals in R>o with rational bounds. The cylinder set of sy lysi hy ... lx—1 5k is
defined by:

Cyl(so, fo, .- Ik—1,5¢) = {m€ Paths(C) | VO< i< k.[i]=s
and i < k = w(i) € l;}

The cylinder set spanned by sp, lo, - - -, Ik—1, Sk thus consists of all infinite timed
paths that have a prefix & that lies in sg, fo, . . ., lk_1, Sk. Cylinder sets serve as
basic events of the smallest o-algebra on Paths(C).

o-algebra over timed cylinders

The o-algebra associated with CTMC C is the smallest o-algebra F(Paths(sp))
that contains all cylinder sets Cyl(so, lo, - - -, lk—1, Sx) where sq... sk is a path in
the state graph of C (starting in sp) and I, ..., [—1 range over all sequences of
non-empty intervals in R>g.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/30



Probability measure on CTMC paths

Probability measure on CTMCs
Cylinder set

The cylinder set Cyl(so, lo, - - ., Ix—1,5k) of splp ... lk_1 Sk is defined by:

{7 e Paths(C) | VO i< k.w[i]=s;and i < k = (i) € I;}

Probability measure

Pr is the unique probability measure on the o-algebra F(Paths(sg)) defined
by induction on k as follows: Pr(Cyl(sp)) = tini(s0) and for k > 0:

Pr(Cy/(so, Io, oo og Ik—lx Sk)) = Pr(CyI(so, Io, o o op Ik—2: sk—l))'
7
/ R(Sk_l, Sk)'e_r(sk_l)'T dr.
le—1
s To T‘L I:.g :\t-'.
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Probability measure on CTMCs

Cylinder set

The cylinder set Cyl(so, lo, - - ., Ix—1,5k) of splp ... lk_1 Sk is defined by:

{7 e Paths(C) | VO i< k.w[i]=s;and i < k = (i) € I;}

Probability measure

Pr is the unique probability measure on the o-algebra F(Paths(sg)) defined
by induction on k as follows: Pr(Cyl(sp)) = tini(s0) and for k > 0:

Pr(Cy/(so,Io,...,Ik_l,sk)) = Pr(Cy/(So,/0,...,Ik_2,5k_1))'
:[L" = (ll "\] / R(Sk_l, Sk)'e_r(sk_l)'T dr.
l—1

Solving the integral
Pr(Cyl(so, lo, . - ., Ik—2, Sk—1)) - P(sk—1, sk)- (e7 (k-1 inflicr — g=r(sin)-suphis) |
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Probability measure on CTMC paths

Zeno theorem

Path sp 2551 Ly sp 2vs3...... is called Zeno ! if >, ti converges.

Intuition

In case ), t; does not diverge, the timed path represents an“unrealistic”
computation where infinitely many transitions are taken in a finite amount of

time. Example:
1 i 1 o
Sp —>S1 >S5 —>53...5—=>Sj41...

In real-time systems, such executions are typically excluded from the analysis.
Thanks to the following theorem, Zeno paths do not harm for CTMCs.

For all states s in any CTMC, Pr{m € Paths(s) | m is Zeno } = 0.

1Zeno of Elea (490-430 BC), philosopher, famed for his paradoxes.
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Proof of Zeno theorem <\
€6

= sek of Hvned peb

For all states s in any CTMC, Pr{ 7 € Paths(s) | 7 is Zeno } = 0.

Proof:
On the blackboard.
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Reachability probabilities

Overview

© Reachability probabilities i CTMCs
@ Untimed reachability <SG
@ Timed reachability
@ Reduction to transient analysis
@ Bisimulation and timed reachability
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Reachability probabilities

Reachability events

Let CTMC C with (possibly infinite) state space S.
(Simple) reachability

Eventually reach a state in G C S. Formally:

O0G = {7 € Paths(C) | Jie N.xn[i]e G}

= tiwe ?Q\\,.Es o.\o«é T ace

vot  \evert

PR
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Reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G C S. Formally:

O0G = {7 € Paths(C) | Jie N.xn[i]e G}

Invariance, i.e., always stay in state in G:
0OG = {r € Paths(C) | Vi e N.x[i] € G} = 0G.
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Reachability probabilities

Reachability events os o TINGs
Let CTMC C with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G C S. Formally:
0G = {m € Paths(C) | 3i € N.7[i] € G}

Invariance, i.e., always stay in state in G:

0OG = {r € Paths(C) | Vi e N.x[i] € G} = 0G.

Constrained reachability

Or “reach-avoid” properties where states in F C S are forbidden:
FUG = {mePaths(C)|JieN.w[i]e G AVj<inr[]€F}

Joost-Pieter Katoen
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Measurability

Measurability theorem

Events OG, OG, FU G, J0G and OOIG are measurable on any CTMC.

Consider 0G. G is the union of all cylinders Cyl(sp, [0, 20), ..., [0, 00), s,) where
So,---:Sn—1 € G and s, € G. As the set of state sequences sy ... s, is countable,
QG is a countable union of cylinders. Thus (G is measurable. The proof for
OO G goes along similar lines, using the proof principle for DTMCs.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Reachability probabilities

Reachability probabilities in finite CTMCs

Let C be a CTMC with finite state space S, s€ S and G C S.

Aim: determine Pr(s = 0G) = Prs(0G) = Prs{m € Paths(s) | m E 0G }

where Pr; is the probability measure in C with single initial state s.

Characterisation of reachability probabilities

» Let variable xs = Pr(s = O G) for any state s
» if G is not reachable from s, then x; =0
» if se G then x; =1

» For any state s € Pre"(G) \ G:

xs = ) Plst)xe + Y P(su)
teS\G ueG

%,_/

reach Gviat € S\ G reach G in one step
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Verifying CTMCs

Verifying untimed properties

So, computing reachability probabilities is exactly the same as for DTMCs.
The same holds for constrained reachability, persistence and repeated
reachability. In fact, all PCTL and LTL formulas can be checked on the
embedded DTMC (S, P, ¢y, AP, L) using the techniques described before
in these lecture slides.

Justification:

As the above temporal logic formulas or events do not refer to elapsed

time, it is not surprising that they can be checked on the embedded
DTMC.
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Reachability probabilities

Timed reachability events
Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G C S in the interval /. Formally:
O'G = {mw e Paths(C) | 3t € . 7@t € G }

Invariance, i.e., always stay in state in G in the interval /:

0'G = {n € Paths(C) |Vt € I.7@t € G} = ¢O!G.

Constrained timed reachability

Or “reach-avoid” properties where states in F C S are forbidden:

FU'G = {mePaths(C) |3t € . 7Ot € G AVd < t.7@d ¢ F }
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Measurability

Measurability theorem

Events O/ G, O/ G, and F U’ G are measurable on any CTMC.

Proof (sketch):

Consider ¢/ G where | = [0, t]. OSG is the union of Cy/(s, lo, - - -, In—1, S») with
S0, -1 Sn—1 & G, s, € G, and sup(lp) + .. .sup(/,—1) < t. The set of state
sequences Sy . . . S, is countable and the set of rational bounded intervals

lo, ..., l,_1 is countable. Thus {S!G is a countable union of cylinders, and thus
is measurable. The proof for the remaining case F U’ G is similar and left as an

exercise.
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Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryp and G C S.
Aim: Pr(s | Ot G) = Pry(0StG) = Pr{m € Paths(s) | m = 0t G}

where Prg is the probability measure in C with single initial state s.

Characterisation of timed reachability probabilities

» Let function xs(t) = Pr(s = O~ G) for any state s
» if G is not reachable from s, then x;(t) = 0 for all ¢
» if s € G then x;(t) =1 for all ¢

» For any state s € Pre*(G) \ G:

xs(t) = /OtZ R(s,s')- e "> . xy(t—x) dx

N—_——
s’'eS .
probability to move to prob. to fulfill
q <t—
state s’ at time x OSEX G from s’
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Reachability probabilities

Timed reachability probabilities

4 25 i
/\ — T~
\_’/@‘— O3 O—

@ ®: ® ©)

v U U v

1 1 100 2

Integral equations for Os10 2.
» x3(d) =0 and xo(d) =1 for all d

d
> xo(d) :/0 25/4.€725%.x (d—x) + 25/4-e"2%*.xp(d—x) dx

d
> x1(d) :/0 4/2-€"**.xo(d—x) + 4/2-e" " x3(d—x) dx
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Reachability probabilities

Reachability

Reachability probabilities in finite DTMCs and CTMCs

Can be obtained by solving a system of linear equations for which many
efficient techniques exists.

Timed reachability probabilities in finite CTMCs

Can be obtained by solving a system of Volterra integral equations. This is
in general a non-trivial issue, inefficient, and has several pitfalls such as
numerical stability.

Reduce the problem of computing Pr(s = 0= G) to an alternative
problem for which well-known efficient techniques exist: computing
transient probabilities (see previous lecture).
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Reachability probabilities

Timed reachability probabilities = transient probabilities

Compute Pr(s |= 0S'G) in CTMC C. Observe that once a path 7 reaches
G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

|
Let CTMC C = (S, P, 1, tuse, AP, L) and G C S. The CTMC C[G] = (S, P,
r, Linits AP, L) with Pg(s, t) = P(s, t) if s ¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Pr(s = 0S'G) =
———

timed reachability in C

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 22/30



Reachability probabilities

Timed reachability probabilities = transient probabilities

Compute Pr(s |= 0S'G) in CTMC C. Observe that once a path 7 reaches
G within t time, then the remaining behaviour along 7 is not important.
This suggests to make all states in G absorbing.

|
Let CTMC C = (S, P, 1, tuse, AP, L) and G C S. The CTMC C[G] = (S, P,
r, Linits AP, L) with Pg(s, t) = P(s, t) if s ¢ G and Pg(s,s) =1if s € G.

All outgoing transitions of s € G are replaced by a single self-loop at s.

Lemma

P(s =0S'G) = PsE0T'G) = > py(t)with p(0) =1,
—_————— —_———— ; -
timed reachability in C timed reachability in C[G] gee

transient prob. in C[G]
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Reachability probabilities

Constrained timed reachability probabilities

Problem statement
Let C be a CTMC with finite state space S, s € S, t € Ryp and G, F C S.

Aim: Pr(s = FUS!G) = Pr,(FUS!G)
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Constrained timed reachability probabilities

Problem statement

Let C be a CTMC with finite state space S, s € S, t € Ryp and G, F C S.
Aim: Pr(s E FUS' G) = Pry(FUS'G) = Pri{m € Paths(s) | 7 = FUS' G }.

Characterisation of timed reachability probabilities

» Let function xs(t) = Pr(s = F USt G) for any state s
» if G is not reachable from s via F, then x(t) = 0 for all ¢
> if s € G then xs(t) =1 for all ¢

» For any state s € Pre*(G) \ (F U G):

xs(t) = /OtZ R(s,s)-e "> . Xo' (t—x) dx

s'eS — —
probability to move to prob. to fulfill
state s’ at time x FUSt X G from s’
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Reachability probabilities

Constrained timed reachability = transient probabilities

Compute Pr(s = FUS! G) in CTMC C. Observe (as before) that once a
path 7 reaches G within time t via F, then the remaining behaviour along
7 is not important. Now also observe that once s € F \ G is reached
within time t, then the remaining behaviour along 7 is not important.
This suggests to make all states in G and F \ G absorbing.

Lemma

P(sEFUS'G) = Prsk=07'G) = ) _ po(t) with p(0) = 1.
—_— —— —_———— - -
timed reachability in C timed reachability N
in C[F U G] transient prob. in C[F U G]
FanG=g¢
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Strong and weak bisimulation

Bisimulation preserves timed reachability events

Let C be a CTMC with state space S, s,ue S, t € Ryg and G, F C S.

€t ~_ = w(s & 6)
o»rd G \A G~ Ql, c\ass = ?(Q s \t O G)
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Reachability probabilities

Strong and weak bisimulation

Bisimulation preserves timed reachability events

Let C be a CTMC with state space S, s,ue S, t € Ryg and G, F C S.
Then:

1. s ~m uimplies Pr(s = FUS!G) = Prlu = FUSEG)
/s ~m u implies Pr(s | FUS' G) = Pru = FUS!G)

> R E5xS W an eguivalee WV (s) €R.

~ Le)= WE)  and R(Q)=R(kc) Ve S/&
o - e VC&S/R‘C%/D]
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Strong and weak bisimulation

Bisimulation preserves timed reachability events

Let C be a CTMC with state space S, s,ue S, t € Ryg and G, F C S.
Then:

1. s ~m uimplies Pr(s = FUSt G) = Pr(u = FUSG)
2. s~y uimplies Pr(s = FUSt G) = Pr{u = FUS!G)

provided F and G are closed under ~p, and ~,,, respectively.

Left as an exercise.
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Example
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Reachability probabilities

Other Properties on CTMCs

» Expected time objectives
Can be characterised as solution of set of linear equations

\

expeckd residence Meme W Sele s = )

s4G6
ET(£6)

—\' A Z_ (P(S’S')‘ é—s/

\3'3 = r( S) s ae -S'

2This yields a piecewise deterministic Markov process.
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Other Properties on CTMCs

» Expected time objectives
Can be characterised as solution of set of linear equations

» Long-run average objectives

1. Determine the limiting distribution in any terminal SCC
2. Take weighted sum with reachability probabilities terminal SCCs

2This yields a piecewise deterministic Markov process.
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Other Properties on CTMCs

» Expected time objectives
Can be characterised as solution of set of linear equations

» Long-run average objectives

1. Determine the limiting distribution in any terminal SCC
2. Take weighted sum with reachability probabilities terminal SCCs

csL

» Probabilistic timed CTL model checking
recursive descent over parse tree

l ( .\.W< Us‘\o “):1 (DS’\owo ue\)

— e\ Pe- >l)., one Can readh Wtk A0 hwae umbs
o shele nak s we a\ewos) Su\‘e\s
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Other Properties on CTMCs

» Expected time objectives
Can be characterised as solution of set of linear equations

» Long-run average objectives

1. Determine the limiting distribution in any terminal SCC
2. Take weighted sum with reachability probabilities terminal SCCs

» Probabilistic timed CTL model checking
recursive descent over parse tree

» Deterministic timed automata objectives

1. Take product of the MC and the Zone automaton of the DTA?
2. Determine the probability to reach an accepting zone

2This yields a piecewise deterministic Markov process.
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Overview

Q@ Summary
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Summary

» Cylinder sets in a CTMC are paths that share interval-timed path
prefixes.

» Reachability, persistence and repeated reachability can be checked as
on DTMCs.

» Timed reachability probabilities can be characterised as Volterra
integral equation system.

» Computing timed reachability probabilities can be reduced to
transient probabilities.

» Weak and strong bisimilarity preserve timed reachability probabilities.
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