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Recall: continuous-time Markov chains

Continuous-time Markov chain

Continuous-time Markov chain

A CTMC is a tuple (S, P, r , ÿinit, AP, L) where

I (S, P, ÿinit, AP, L) is a DTMC, and

I r : S æ R>0, the exit-rate function

Let R(s, s Õ
) = P(s, s Õ

) · r(s) be the transition rate of transition (s, s Õ
)

Interpretation

I residence time in state s is exponentially distributed with rate r(s).

I phrased alternatively, the average residence time of state s is
1

r(s) .
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Recall: continuous-time Markov chains

CTMC semantics

Enabledness

The probability that transition s æ s Õ
is enabled in [0, t] is 1 ≠ e≠R(s,sÕ)·t .

State-to-state timed transition probability

The probability to move from non-absorbing s to s Õ
in [0, t] is:

R(s, s Õ
)

r(s)
·
1
1 ≠ e≠r(s)·t

2
.

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:

⁄ t

0
r(s)·e≠r(s)·x dx = 1 ≠ e≠r(s)·t
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Recall: continuous-time Markov chains

Paths in a CTMC

Timed paths

Paths in CTMC C are maximal (i.e., infinite) paths of alternating states

and time instants:

fi = s0
t0≠≠æ s1

t1≠≠æ s2 · · ·

such that si œ S and ti œ R>0.

Let Paths(C) be the set of paths in C and

Pathsú
(C) the set of finite prefixes thereof.

Time instant ti is the amount of time spent in state si .

Notations

I Let fi[i ] := si denote the (i+1)-st state along the timed path fi.

I Let fiÈiÍ := ti the time spent in state si .

I Let fi@t be the state occupied in fi at time t œ R>0, i.e. fi@t := fi[i ]
where i is the smallest index such that

qi
j=0 fiÈjÍ > t.
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Probability measure on CTMC paths

Paths and probabilities

To reason quantitatively about the behavior of a CTMC, we need to define

a probability space over its paths.

Intuition

For a given state s in CTMC C:

I Sample space := set of all interval-timed paths s0 I0 . . . Ik≠1 sk with

s = s0

I Events := sets of interval-timed paths starting in s

I Basic events := cylinder sets

I Cylinder set of finite interval-timed paths := set of all infinite timed

paths with a prefix in the finite interval-timed path
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Probability measure on CTMC paths

Timed cylinder sets

Timed cylinder set

Let s0, . . ., sk œ S with P(si , si+1) > 0 for 0 6 i < k and I0, . . ., Ik≠1 non-empty

intervals in R>0 with rational bounds.

The cylinder set of s0 I0 s1 I1 . . . Ik≠1 sk is

defined by:

Cyl(s0, I0, . . ., Ik≠1, sk) =
)

fi œ Paths(C) | ’0 6 i 6 k. fi[i ] = si
and i < k ∆ fiÈiÍ œ Ii

*

The cylinder set spanned by s0, I0, . . ., Ik≠1, sk thus consists of all infinite timed

paths that have a prefix fî that lies in s0, I0, . . ., Ik≠1, sk . Cylinder sets serve as

basic events of the smallest ‡-algebra on Paths(C).

‡-algebra over timed cylinders

The ‡-algebra associated with CTMC C is the smallest ‡-algebra F(Paths(s0))

that contains all cylinder sets Cyl(s0, I0, . . ., Ik≠1, sk) where s0 . . . sk is a path in

the state graph of C (starting in s0) and I0, . . ., Ik≠1 range over all sequences of

non-empty intervals in R>0.
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Probability measure on CTMC paths

Probability measure on CTMCs

Cylinder set

The cylinder set Cyl(s0, I0, . . ., Ik≠1, sk) of s0 I0 . . . Ik≠1 sk is defined by:

)
fi œ Paths(C) | ’0 6 i 6 k. fi[i ] = si and i < k ∆ fiÈiÍ œ Ii

*

Probability measure

Pr is the unique probability measure on the ‡-algebra F(Paths(s0)) defined

by induction on k as follows: Pr(Cyl(s0)) = ÿinit(s0) and for k > 0:

Pr
!
Cyl(s0, I0, . . ., Ik≠1, sk)

"
= Pr

!
Cyl(s0, I0, . . ., Ik≠2, sk≠1)

"
·

⁄

Ik≠1

R(sk≠1, sk)·e≠r(sk≠1)·· d·.

Solving the integral

Pr
!
Cyl(s0, I0, . . ., Ik≠2, sk≠1)

"
· P(sk≠1, sk)·

!
e≠r(sk≠1)· inf Ik≠1 ≠ e≠r(sk≠1)· sup Ik≠1

"
.
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Probability measure on CTMC paths

Zeno theorem

Zeno path

Path s0
t0≠≠æ s1

t1≠≠æ s2
t2≠≠æ s3 . . . . . . is called Zeno

1
if

q
i ti converges.

Intuition

In case
q

i ti does not diverge, the timed path represents an“unrealistic”

computation where infinitely many transitions are taken in a finite amount of

time. Example:

s0
1≠æ s1

1
2≠≠æ s2

1
4≠≠æ s3 . . . si

1
2i≠≠æ si+1 . . .

In real-time systems, such executions are typically excluded from the analysis.

Thanks to the following theorem, Zeno paths do not harm for CTMCs.

Zeno theorem

For all states s in any CTMC, Pr{ fi œ Paths(s) | fi is Zeno } = 0.

1Zeno of Elea (490–430 BC), philosopher, famed for his paradoxes.
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Probability measure on CTMC paths

Proof of Zeno theorem

Zeno theorem

For all states s in any CTMC, Pr{ fi œ Paths(s) | fi is Zeno } = 0.

Proof:

On the blackboard.
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Reachability probabilities

Reachability events

Let CTMC C with (possibly infinite) state space S.

(Simple) reachability

Eventually reach a state in G ™ S. Formally:

⌃G = { fi œ Paths(C) | ÷i œ N. fi[i ] œ G }

Invariance, i.e., always stay in state in G :

⇤G = { fi œ Paths(C) | ’i œ N. fi[i ] œ G } = ⌃G .

Constrained reachability

Or “reach-avoid” properties where states in F ™ S are forbidden:

F U G = { fi œ Paths(C) | ÷i œ N. fi[i ] œ G · ’j < i . fi[j] ”œ F }
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Reachability probabilities

Reachability events
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Reachability probabilities

Measurability

Measurability theorem

Events ⌃G , ⇤G , F U G , ⇤⌃G and ⌃⇤G are measurable on any CTMC.

Proof:

Consider ⌃G . ⌃G is the union of all cylinders Cyl(s0, [0, Œ), . . ., [0, Œ), sn) where

s0, . . . , sn≠1 ”œ G and sn œ G . As the set of state sequences s0 . . . sn is countable,

⌃G is a countable union of cylinders. Thus ⌃G is measurable. The proof for

⇤⌃G goes along similar lines, using the proof principle for DTMCs.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 14/30



Reachability probabilities

Reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s œ S and G ™ S.

Aim: determine Pr(s |= ⌃G) = Prs(⌃G) = Prs{ fi œ Paths(s) | fi |= ⌃G }
where Prs is the probability measure in C with single initial state s.

Characterisation of reachability probabilities

I Let variable xs = Pr(s |= ⌃G) for any state s
I if G is not reachable from s, then xs = 0

I if s œ G then xs = 1

I For any state s œ Preú
(G) \ G :

xs =
ÿ

tœS\G
P(s, t) · xt

¸ ˚˙ ˝
reach G via t œ S \ G

+
ÿ

uœG
P(s, u)

¸ ˚˙ ˝
reach G in one step
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Reachability probabilities

Verifying CTMCs

Verifying untimed properties

So, computing reachability probabilities is exactly the same as for DTMCs.

The same holds for constrained reachability, persistence and repeated

reachability. In fact, all PCTL and LTL formulas can be checked on the

embedded DTMC (S, P, ÿinit, AP, L) using the techniques described before

in these lecture slides.

Justification:

As the above temporal logic formulas or events do not refer to elapsed

time, it is not surprising that they can be checked on the embedded

DTMC.
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Reachability probabilities

Timed reachability events

Let CTMC C with (possibly infinite) state space S.

(Simple) timed reachability

Eventually reach a state in G ™ S in the interval I. Formally:

⌃I G = { fi œ Paths(C) | ÷t œ I. fi@t œ G }

Invariance, i.e., always stay in state in G in the interval I:

⇤I G = { fi œ Paths(C) | ’t œ I. fi@t œ G } = ⌃I G .

Constrained timed reachability

Or “reach-avoid” properties where states in F ™ S are forbidden:

F U
I G = { fi œ Paths(C) | ÷t œ I. fi@t œ G · ’d < t. fi@d ”œ F }
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Reachability probabilities

Measurability

Measurability theorem

Events ⌃I G , ⇤I G , and F U
I G are measurable on any CTMC.

Proof (sketch):

Consider ⌃I G where I = [0, t]. ⌃6tG is the union of Cyl(s0, I0, . . ., In≠1, sn) with

s0, . . . , sn≠1 ”œ G , sn œ G , and sup(I0) + . . . sup(In≠1)6 t. The set of state

sequences s0 . . . sn is countable and the set of rational bounded intervals

I0, . . . , In≠1 is countable. Thus ⌃6tG is a countable union of cylinders, and thus

is measurable. The proof for the remaining case F U
I G is similar and left as an

exercise.
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Reachability probabilities

Timed reachability probabilities in finite CTMCs

Problem statement

Let C be a CTMC with finite state space S, s œ S, t œ R>0 and G ™ S.

Aim: Pr(s |= ⌃6t G) = Prs(⌃6t G) = Prs{ fi œ Paths(s) | fi |= ⌃6t G }

where Prs is the probability measure in C with single initial state s.

Characterisation of timed reachability probabilities

I Let function xs(t) = Pr(s |= ⌃6t G) for any state s
I if G is not reachable from s, then xs(t) = 0 for all t
I if s œ G then xs(t) = 1 for all t

I For any state s œ Preú
(G) \ G :

xs(t) =

⁄ t

0

ÿ

sÕœS
R(s, s Õ

) · e≠r(s)·x
¸ ˚˙ ˝

probability to move to

state s Õ
at time x

· xsÕ(t≠x)
¸ ˚˙ ˝

prob. to fulfill

⌃6t≠x G from s Õ

dx
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Reachability probabilities

Timed reachability probabilities

Integral equations for ⌃610
2:

I x3(d) = 0 and x2(d) = 1 for all d

I x0(d) =

⁄ d

0
25/4·e≠25·x ·x1(d≠x) + 25/4·e≠25·x ·x2(d≠x) dx

I x1(d) =

⁄ d

0
4/2·e≠4·x ·x0(d≠x) + 4/2·e≠4·x ·x3(d≠x) dx
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Reachability probabilities

Reachability

Reachability probabilities in finite DTMCs and CTMCs

Can be obtained by solving a system of linear equations for which many

e�cient techniques exists.

Timed reachability probabilities in finite CTMCs

Can be obtained by solving a system of Volterra integral equations. This is

in general a non-trivial issue, ine�cient, and has several pitfalls such as

numerical stability.

Solution

Reduce the problem of computing Pr(s |= ⌃6t G) to an alternative

problem for which well-known e�cient techniques exist: computing

transient probabilities (see previous lecture).
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Reachability probabilities

Timed reachability probabilities = transient probabilities

Aim

Compute Pr(s |= ⌃6tG) in CTMC C. Observe that once a path fi reaches

G within t time, then the remaining behaviour along fi is not important.

This suggests to make all states in G absorbing.

Let CTMC C = (S, P, r , ÿinit, AP, L) and G ™ S. The CTMC C[G ] = (S, PG ,

r , ÿinit, AP, L) with PG(s, t) = P(s, t) if s /œ G and PG(s, s) = 1 if s œ G .

All outgoing transitions of s œ G are replaced by a single self-loop at s.

Lemma

Pr(s |= ⌃6tG)
¸ ˚˙ ˝

timed reachability in C

=

Pr(s |= ⌃=tG)
¸ ˚˙ ˝

timed reachability in C[G]

=
ÿ

sÕœG
psÕ(t) with p(0) = 1s

¸ ˚˙ ˝
transient prob. in C[G]
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Reachability probabilities

Example
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Reachability probabilities

Constrained timed reachability probabilities

Problem statement

Let C be a CTMC with finite state space S, s œ S, t œ R>0 and G , F ™ S.

Aim: Pr(s |= F U
6t G) = Prs(F U

6t G)

= Prs{ fi œ Paths(s) | fi |= F U
6t G }.

Characterisation of timed reachability probabilities

I Let function xs(t) = Pr(s |= F U
6t G) for any state s

I if G is not reachable from s via F , then xs(t) = 0 for all t
I if s œ G then xs(t) = 1 for all t

I For any state s œ Preú
(G) \ (F fi G):

xs(t) =

⁄ t

0

ÿ

sÕœS
R(s, s Õ

) · e≠r(s)·x
¸ ˚˙ ˝

probability to move to

state s Õ
at time x

· xsÕ(t≠x)
¸ ˚˙ ˝

prob. to fulfill

F U
6t≠x G from s Õ

dx
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Reachability probabilities

Constrained timed reachability probabilities
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Reachability probabilities

Constrained timed reachability = transient probabilities

Aim

Compute Pr(s |= F U
6t G) in CTMC C. Observe (as before) that once a

path fi reaches G within time t via F , then the remaining behaviour along

fi is not important. Now also observe that once s œ F \ G is reached

within time t, then the remaining behaviour along fi is not important.

This suggests to make all states in G and F \ G absorbing.

Lemma

Pr(s |= F U
6t G)¸ ˚˙ ˝

timed reachability in C

= Pr(s |= ⌃=tG)¸ ˚˙ ˝
timed reachability

in C[F fi G]

=

ÿ

sÕœG
psÕ(t) with p(0) = 1s

¸ ˚˙ ˝
transient prob. in C[F fi G]

.
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Reachability probabilities

Strong and weak bisimulation

Bisimulation preserves timed reachability events

Let C be a CTMC with state space S, s, u œ S, t œ R>0 and G , F ™ S.

Then:

1. s ≥m u implies Pr(s |= F U
6t G) = Pr(u |= F U

6t G)

2. s ¥m u implies Pr(s |= F U
6t G) = Pr(u |= F U

6t G)

provided F and G are closed under ≥m and ¥m, respectively.

Proof:

Left as an exercise.
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Reachability probabilities
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Reachability probabilities
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Reachability probabilities

Example
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Reachability probabilities

Other Properties on CTMCs

I Expected time objectives

Can be characterised as solution of set of linear equations

I Long-run average objectives

1. Determine the limiting distribution in any terminal SCC

2. Take weighted sum with reachability probabilities terminal SCCs

I Probabilistic timed CTL model checking

recursive descent over parse tree

I Deterministic timed automata objectives

1. Take product of the MC and the Zone automaton of the DTA
2

2. Determine the probability to reach an accepting zone

2This yields a piecewise deterministic Markov process.
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Summary

Overview

1 Recall: continuous-time Markov chains

2 Probability measure on CTMC paths

3 Reachability probabilities

Untimed reachability

Timed reachability

Reduction to transient analysis

Bisimulation and timed reachability

4 Summary
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Summary

Summary

Main points

I Cylinder sets in a CTMC are paths that share interval-timed path

prefixes.

I Reachability, persistence and repeated reachability can be checked as

on DTMCs.

I Timed reachability probabilities can be characterised as Volterra

integral equation system.

I Computing timed reachability probabilities can be reduced to

transient probabilities.

I Weak and strong bisimilarity preserve timed reachability probabilities.
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