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Markov Decision Processes

Overview

@ Markov Decision Processes
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Markov decision process (MDP)

Markov decision processes

» In MDPs, both nondeterministic and probabilistic choices coexist.

» MDPs are transition systems in which in any state a nondeterministic
choice between probability distributions exists.

» Once a probability distribution has been chosen nondeterministically,
the next state is selected probabilistically—as in DTMCs.

» Any MC is thus an MDP in which in any state the probability
distribution is uniquely determined.
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Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, t;,;, AP, L) where
» S is a countable set of states with initial distribution ¢;,;, : S — [0, 1]
» Act is a finite set of actions
» P:S X Actx S — [0,1], transition probability function

T’(S,.x) c Diske (S)

MC P(s) ¢ b’\s*(s)
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Markov decision process (MDP)

An MDP M is a tuple (S, Act, P, t;,;, AP, L) where
» S is a countable set of states with initial distribution ¢;,;, : S — [0, 1]
» Act is a finite set of actions
» P:S x Act x S — [0, 1], transition probability function such that:

forall s € Sand € Act: Y P(s,a,s") € {0,1}
s'eS

» AP is a set of atomic propositions and labeling L : S — A

g < nondeterministic choice

3 <---probabilistic choice
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Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, tini, AP, L) where
> S, tinit - S — [0,1], AP and L are as before, i.e., as for DTMCs, and
> Act is a finite set of actions
» P:S x Act x S — [0, 1], transition probability function such that:

foralls€ S and a € Act: ZP(S,(k,S/)G{O,l}
s’eS

Enabled actions
Let Act(s) = {a € Act|3s’ € S.P(s,,s’) > 0} be the set of enabled
actions in state s.
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Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, tini, AP, L) where
> S, tinit - S — [0,1], AP and L are as before, i.e., as for DTMCs, and
> Act is a finite set of actions
» P:S x Act x S — [0, 1], transition probability function such that:

foralls€ S and a € Act: ZP(S,(k,S/)G{O,l}
s’eS

Enabled actions
Let Act(s) = {a € Act|3s’ € S.P(s,,s’) > 0} be the set of enabled
actions in state s. We require Act(s) # @ for any state s.
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Policies

Overview

@ Policies — oracles

@ Positional policies
@ Finite-memory policies
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Policies

Policies

Policy

Let M = (S, Act, P, i, AP, L) be an MDP. A policy for M is a function
G:ST — Act
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Policies

Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy

Let M = (S, Act, P, 5, AP, L) be an MDP and & a policy on M. The
DTMC induced by &, denoted Mg, is given by

MG = (S+1 P6| Linitt AP: L/)

t enty \n‘\a)mm s a Shade
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Policies

Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy

Let M = (S, Act, P, 5, AP, L) be an MDP and & a policy on M. The
DTMC induced by &, denoted Mg, is given by

MG = (S+1 P6| Linitt AP: L/)

—

where for 0 = sps1 ... 550 Pg(0, ospr1) = P(sp 6(0), spt1)
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Policies

Induced DTMC of an MDP by a policy

DTMC of an MDP induced by a policy

Let M = (S, Act, P, t;n5, AP, L) be an MDP and & a policy on M. The
DTMC induced by &, denoted Mg, is given by

MG = (S+1P6|Linit1AP1 L/)

where for 0 = sps1 ... 550 Pg(0, ospr1) = P(sp 6(0), sp41) and
(o) = L(sy).

Mg is infinite, even if the MDP M is finite. Since policy & might select
different actions for finite paths that end in the same state s, a policy as defined
above is also referred to as history-dependent.
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Probability measure on MDP
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Policies

Probability measure on MDP

Probability measure on MDP

Let Prg", or simply Pr®, denote the probability measure Pr™e associated
with the DTMC M.

\"\'D'PM—& QQ\KB o = YN C

\\ > ?\’
Pe (oyNnder 3ehr)
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Policies

Probability measure on MDP

Probability measure on MDP

Let Prg‘, or simply Pr®, denote the probability measure Pr's associated
with the DTMC M.

This measure is the basis for associating probabilities with events in the

MDP M. Let, e.g., P C (22P)“ be an w-regular property. Then Pro(P)
is defined as:

Pe(P) = PMe(P) = Pry {n € Paths(Msg) | trace(r) € P}.
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Positional policy

Y
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Policies

Positional policy

Positional policy

Let M be an MDP with state space S. Policy & on M is positional (or:

memoryless) iff for each sequence sps; ...s, and toty ... tm € ST with
Sp =ty

6(50 S1 ... Sn) = G(to ty... tm).

1
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Policies

Positional policy

Positional policy

Let M be an MDP with state space S. Policy & on M is positional (or:
memoryless) iff for each sequence sps; ...s, and toty ... tm € ST with
Sp =ty

6(50 S1 ... Sn) = 6(1‘0 ty... tm).

In this case, G can be viewed as a function & : S — Act.

Mof poViey "
M ¥
(>3
\ 0\4‘9\_*
-
CIRDs
sie S OFA

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems



Policies

Positional policy

Positional policy

Let M be an MDP with state space S. Policy & on M is positional (or:
memoryless) iff for each sequence sps; ...s, and toty ... tm € ST with
Sp =ty

6(50 S1 ... Sn) = 6(1‘0 ty... tm).

In this case, & can be viewed as a function & : S — Act.

Policy G is positional if it always selects the same action in a given state. This

choice is independent of what has happened in the history, i.e., which path led to
the current state.
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Policies

Finite-memory policies
» Finite-memory policies (shortly: fm-policies) are a generalisation of
positional policies.

» The behavior of an fm-policy is described by a deterministic finite
automaton (DFA).

» The selection of the action to be performed in the MDP M depends
on the current state of M (as before) and the current state (called
mode) of the policy, i.e., the DFA.
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Finite-memory policy

Finite-memory policy

Let M be an MDP with state space S and action set Act.
A finite-memory policy & for M is a tuple & = (Q, act, A, start) with:

> @ is a finite set of modes,
» A: @ xS — Q@ is the transition function,

> act: @ x S — Act is a function that selects an action
act(q, s) € Act(s) for any mode g € Q and state s € S of M,

> start: S — Q is a function that selects a starting mode for state
seS.
\L g:o\;:a Q\'kn\q"}s\'a
k
0T T e v
:l ] and Sreen
T

3\1%
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Policies

An MDP under a finite-memory policy

The behavior of an MDP M under fm-policy & = (Q, act, A, start) is:

> Initially, a starting state sp is randomly determined according to the
initial distribution ¢, i.€., tini(s0) > 0.

» The fm-policy & initializes its DFA to the mode qo = start(sp) € Q.

> If M isin state@)and the current mode of G is g, then the decision
of G, i.e., the selected action, is o« = act(q, s) € Act(s).

S, o0& 70
q’
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Policies

An MDP under a finite-memory policy

The behavior of an MDP M under fm-policy & = (Q, act, A, start) is:

> Initially, a starting state sp is randomly determined according to the
initial distribution ¢, i.€., tini(s0) > 0.

» The fm-policy & initializes its DFA to the mode qo = start(sp) € Q.

» If M is in state s and the current mode of & is g, then the decision
of G, i.e., the selected action, is o« = act(q, s) € Act(s).

» The policy changes to mode A(g, s), while M performs the selected
action « and randomly moves to the next state according to the
distribution P(s, o, -).

Modeling and Verification of Probabilistic Systems
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Policies

Finite-memory policies

Relation fm-policy to definition policy

An fm-policy & = (Q, act, A, start) is identified with policy,
&' : Paths* — Act which is defined as follows.

1. For the starting state sg, let &'(sp) = act(start(so), o).
2. For path fragment 7 = sgs1...s, let

&'(7) = act(qn, sn)

where go = start(sg) and gi+1 = A(qg;, s;) for 0 < i < n.

DFR
™MDP - a
)o N\/_J\J‘) O @ q n X
S S n s, "

X = O\Ck(ﬂn’s“)
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Policies

Finite-memory policies

Relation fm-policy to definition policy

An fm-policy & = (Q, act, A, start) is identified with policy,
&' : Paths* — Act which is defined as follows.

1. For the starting state sg, let &'(sp) = act(start(so), o).
2. For path fragment 7 = sgs1...s, let

&'(7) = act(qn, sn)

where go = start(sg) and gi+1 = A(qg;, s;) for 0 < i < n.

Positional policies can be considered as fm-policies with just a single mode.
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Policies

Positional versus fm-policies

Positional policies are insufficient for w-regular properties

Consider the MDP:

s L

@CQ
t 80 u
« ~

Positional policy &, always chooses « in state sy
Positional policy G5 always chooses /3 in state s5. Then:

Prga(SO ): 2‘? AN 2[2) = Prgﬁ(so ): Qa A _<>_[?) = 0.
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Policies

Positional versus fm-policies

Positional policies are insufficient for w-regular properties

Consider the MDP:

b s Py

olBoWso
Kf/i\ S0 u
o ~

Positional policy &, always chooses « in state sy
Positional policy G5 always chooses /3 in state s5. Then:

Prga(SO ): Oa N <>b) = PrGS(So ): Oa N <>b) = 0.

Now consider fm-policy &, which alternates between selecting o and /.
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Policies

Positional versus fm-policies

Positional policies are insufficient for w-regular properties

Consider the MDP:

b s Py

Positional policy &, always chooses « in state sy
Positional policy G5 always chooses /3 in state s5. Then:
Prga(SO ): Oa N <>b) = PrGS(So ): Oa N <>b) = 0.

Now consider fm-policy &, which alternates between selecting o and /.
Then: Prs_,(so = Oa A Ob) = 1.
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Positional versus fm-policies

Positional policies are insufficient for w-regular properties

Consider the MDP: W —rey\ar >

fay T o T UL

Positional policy &, always chooses « in state sy
Positional policy G5 always chooses /3 in state s5. Then:

Prea(SO ): Oa N <>b) = PrGS(So ): Oa N <>b) = 0.
Now consider fm-policy &, which alternates between selecting o and /.
Then: Prs_,(so = Oa A Ob) = 1.

Thus, the class of positional policies is insufficiently powerful to
characterise minimal (or maximal) probabilities for w-regular properties.
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P&}\b ~ Q\, . "Q\‘. (3

» Counting policies that base their decigion on the nymber of visits to a
state, or the length of the history (i.e.| number of \isits to all states)

Other kinds of policies

. . =~
mﬁA F\N‘"‘\b
» Partial-observation policies that b base their decision on the trace
L(so) ... L(sp) of the history sp...sp

» Randomised policies. This is applicable to all (deterministic) policies.
For instance, a randomised positional policy & : S — Dist(Act), where
Dist(X) is the set of probability distributions on X, such that
&(s)(a) > 0iff € Act(s). Similar can be done for fm-policies and
history-dependent policies etc..

» There is a strict hierarchy of policies, showing their expressiveness
(black board).
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Overview
MOP

© Reachability probabilities
@ Mathematical characterisation
@ Value iteration
@ Linear programming G
@ Policy iteration

LOMS\ i — Ynax. veach — %\;a\o\\ﬂa

— &\ . reocch -~ P\'b\:t\awub
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Reachability probabilities

Reachability probabilities

Reachability probabilities

Let M be an MDP with state space S and & be a policy on M. The
reachability probability of G C S from state s € S under policy S is:

PR(s | 06) = P 1« € Paths(s) | 7 k= 0G )

nduted TIMC of ™M & T
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Reachability probabilities
Reachability probabilities

Let M be an MDP with state space S and & be a policy on M. The
reachability probability of G C S from state s € S under policy S is:

PrS(s = 0G) = PrMe{r e Paths(s) | m = 0G}

Maximal and minimal reachability probabilities

The minimal reachability probability of G C S from s € S is:

Prin(s = 0G) = infg Pro(s = OG)

M\s)w:)—o\wéz.¥ ‘(’a\,‘c‘\;l
S /// G
A
2
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Reachability probabilities
Reachability probabilities

Let M be an MDP with state space S and & be a policy on M. The
reachability probability of G C S from state s € S under policy S is:

PrS(s = 0G) = PrMe{r e Paths(s) | m = 0G}

Maximal and minimal reachability probabilities

The minimal reachability probability of G C S from s € S is:

Prmin(s = 0G) = infe PS(s = 0G) ——F——+F

min [5G S

Ll
In a similar way, the maximal reachability probability of G C S is:
Pr"®(s = 0G) = supg Pro(s = 0G).

where policy & ranges over all, infinitely (countably) many, policies.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems



Examples

P (s 4= ©) =0 hecouse

W8 R (s Qa) =0 o
g

o
?r‘s (% o) =o0

P (s, o) =4
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Maximal reachability probabilities

MInimal guarantees for safety properties

Reasoning about the maximal probabilities for (G is needed, e.g., for
showing that Pr®(s = OG) < ¢ for all policies & and some small upper
bound 0 < € < 1. Then:

or all policies &.

The task to compute Pr"®(s = O G) can thus be understood as showing
that a safety property (namely [0=G) holds with sufficiently large
probability, viz. 1 — ¢, regardless of the resolution of nondeterminism.
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Equation system for max-reach probabilities

!Richard Bellman, an american mathematician (1920-1984), also known from the
Bellman-Forag shortest path algorithm.
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Reachability probabilities

Equation system for max-reach probabilities

Equation system for max-reach probabilities

Let M be a finite MDP with state space S, s € S and G C S. The vector

(xs)ses with xs = Pr™®(s = O G) yields the unique solution of the
following equation system:

» If s € G, then xs = 1.

» If s £ 30G, then x5 = 0. —34LG6
Sy~ .=—
- Formalen NYQAG

4
under no @liy) § can ceach G

!Richard Bellman, an american mathematician (1920-1984), also known from the
Bellman-Form shortest path algorithm.
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Reachability probabilities

Equation system for max-reach probabilities

Equation system for max-reach probabilities

Let M be a finite MDP with state space S, s € S and G C S. The vector

(xs)ses with xs = Pr™®(s = O G) yields the unique solution of the
following equation system:

ok
> If s € G, then x; = 1. e
> If 5 1= 30G, then xs = 0. e
» If s =30G and s € G, then 0 v
L9
xs = max{ > P(s,a,t) x| a€Ac(s) |
teS

!Richard Bellman, an american mathematician (1920-1984), also known from the
Bellman-Form shortest path algorithm.
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Reachability probabilities

Equation system for max-reach probabilities

Equation system for max-reach probabilities

Let M be a finite MDP with state space S, s € S and G C S. The vector

(xs)ses with xs = Pr™®(s = O G) yields the unique solution of the
following equation system:

» If s € G, then xs = 1.
» If s = 30G, then xs = 0.
» If s =30G and s € G, then

xs = max{ > P(s,a,t) x| a€Ac(s) |

tesS

This is a Bellman ! equation as used in dynamic programming.

!Richard Bellman, an american mathematician (1920-1984), also known from the
Bellman-Form shortest path algorithm.
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Example

equation system for reachability objective &{ w } is:
r, = land x, = 0

Ts = max{ ,%;z'u + %(z't } and x; = %xs + 5T
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Value iteration
The previous theorem suggests to calculate the values

xs = PP¥(s = 0G)

by successive approximation.
For the states s = 30G and s € G, we have x; = lim, .o XM
—_—

+nvd case )‘\\oo

S\des oy

X = nex i % P(5,0,5) * Xy \ L€ Bc!c(s)g

T
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Value iteration
The previous theorem suggests to calculate the values
= Pr"*(s = 0G)

by successive approximation.
For the states s = 30G and s € G, we have x; = lim, .o x" where

x® =0 and x{"V) = max{ Z P(s,a,t)- x,f") | a € Act(s) }
tesS

Note that x\¥ < x{" < x{? <.... Thus, the values Pr™®(s = 0G) can
be approximated by successively computing the vectors

D), ), (), ..

b XS(")| is below a certain (typically very small)
threshold. Caveak: as for M™MCs ks dws oo 4o \x und
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Reachability probabilities

Positional policies suffice for reach probabilities

Existence of optimal positional policies

Let M be a finite MDP with state space S, and G C S. There exists a
positional policy & such that for any s € S it holds:

PP(s = 0G) = Pr"™(s = 0G).

Yo W Hwb

— V"o Ytadowvnil ahon
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Reachability probabilities

Positional policies suffice for reach probabilities

Existence of optimal positional policies

Let M be a finite MDP with state space S, and G C S. There exists a
positional policy & such that for any s € S it holds:

PP(s = 0G) = Pr"™(s = 0G).

On the blackboard.
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Reachability probabilities

Equation system for min-reach probabilities

Equation system for min-reach probabilities

Let M be a finite MDP with state space S, s € S and G C S. The vector

(xs)ses with xs = Pr™"(s |= {'G) yields the unique solution of the
following equation system:

» If s € G, then x; = 1.
> If PrMin(s E<G) = 0, then x, = 0.
3“\,\\ eo\elax‘\s
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Reachability probabilities

Equation system for min-reach probabilities

Equation system for min-reach probabilities

Let M be a finite MDP with state space S, s € S and G C S. The vector

(xs)ses with xs = Pr™"(s |= {'G) yields the unique solution of the
following equation system:

> If s hen—x, = 1.

» If PFM"(s = G) >0 and s & G, then

Xs = min{ ZP(s,a,t)-xt | aeAct(s)}

tesS

max
Pe D mcxi -m e —5
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Preprocessing

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Preprocessing

The preprocessing required to compute the set

Smin {565|I3H“i”(s#<>6)‘>:0§

can be performed by graph algorithms.
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Reachability probabilities

Preprocessing
The preprocessing required to compute the set
ST = {seS|PM(s=0G)} =0
can be performed by graph algorithms. The set S™{" is given by S\ T

where
T= T,

n=>0

and To = G and, for n > 0:

Tot1 = ThU{seS|Va€ Act(s)dt € T,.P(s,a,t) >0}.
W
?Q\C cj Canned e ck an
ochon oL € Ack(s) peve iy

s See vco.u‘«::) G
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Preprocessing
The preprocessing required to compute the set
ST = {seS|PM(s=0G)} =0
can be performed by graph algorithms. The set S™{" is given by S\ T

where
T= T,

n=>0

and To = G and, for n > 0:
Tot1 = ThU{seS|VacAct(s)It € T,.P(s,a,t) >0}.

As To C T1 C To C ... C S and S is finite, the sequence (T,)n>0
eventually stabilizes, i.e., forsome n >0, T, =Tpy1=...=T.

It follows: PF™"(s = 0G) >0 ifandonlyif scT.
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Reachability probabilities

Positional policies for min-reach probabilities

Existence of optimal positional policies

Let M be a finite MDP with state space S, and G C S. There exists a
positional policy & such that for any s € S it holds:

Pi(s = 0G) = PF™"(s = 0G).

e R
P& F2G) VNV . N
L o8 oEy
depe~ds \ /
on Fve paliees postionel @akcies
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Reachability probabilities

Positional policies for min-reach probabilities

Existence of optimal positional policies

Let M be a finite MDP with state space S, and G C S. There exists a
positional policy & such that for any s € S it holds:

Pi(s = 0G) = PF™"(s = 0G).

Similar to the case for maximal reachability probabilities.

Joost-Pieter Katoen
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Reachability probabilities

Example value iteration

MoP

Determine Pr™"(s; = O{ 52 }).
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Reachability probabilities

Example value iteration

Determine

PP (s = 0{%})
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Reachability probabilities

Example value iteration

1. G:{SQ},Sr:n(i)n :{53},5\(GU5:6H):{50,51}.

—_—— —e—— —m ———

x§1’= 1 XSJ.: o

Determine

PP (s = 0{%})
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Reachability probabilities

Example value iteration

1. G:{SQ},Sr:n(i)n :{53},5\(GU5r:n(i)n):{50,51}.

T X —
2. (x9) = (0,0,1,0) X5, =0
X =1
In\\:im\R sehon g?.-

oFualue e

Determine

PP (s = 0{%})
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Reachability probabilities

Example value iteration

e L G={s} S0 ={s}3\(GUST) ={s0 s}
2. (x£2)=(0,0,1,0
3. (V) = ¢

fnin(1-0,0.25-040.25-0+0.5-1),

0.1.04-0.5-0+0.4-1,1,0)
NN —— ——

S‘\
; )
mﬂ: Min i 2 P(s):x.k)- Xy \ K € Act (s),}
Determine e
P (s = O{ 52 }) A ()= L)
A 4 A
10 o -\——\6 A 4 o o
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Reachability probabilities

Example value iteration

1. G={s},SmMr={s},S\(GUS™") = {s, s }
2. (x9)=(0,0,1,0)
3. () = (min(1:0,0.25:0+0.25-0+0.5-1),
0.1.04-0.5-0+0.4-1,1,0)
—(0,0.4,1,0)

Determine

PP (s = 0{%})
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Reachability probabilities

. . Q\-\I) -
Example value iteration \ (%) —Qs)\ & &

1. G={s},SmMr={s},S\(GUS™") = {s, s }

2. (x9)=(0,0,1,0)

3. () = (min(1:0,0.25:0+0.25-0+0.5-1),
0.1.04-0.5-0+0.4-1,1,0)

4. (x?) = (@in(1.0.4,0.25-040.25-0+0.5-1

0.1:0+0.5-0.4+0.4-1, 1,0)
\_N—\/

Determine S

PP (s = 0{%})

).

1
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Reachability probabilities

Example value iteration

1. G={s},Smr={s},S\(GUST") = {s,s51}.
2. (x9)=(0,0,1,0)
3. () = (min(1:0,0.25:0+0.25-0+0.5-1),
0.1.04-0.5-0+0.4-1,1,0)
—(0,0.4,1,0)
4. (x?)) = (min(1-0.4,0.25.0+0.25-0+0.5-1),

0.1:0+0.5-0.4+0.4-1, 1, 0)

_Determine = (0.4,0.6,1,0)
P (si = O{ 2 })
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Reachability probabilities

Example value iteration

1. G= {SQ},Srznén :{53},5\(GU5r:n(i)n): {50,51}.
(<9 =(0,0,1,0)

N

(M) = (min(1-0,0.25:040.25-0+0.5-1),

w

0.1.040.5-0+0.4-1,1,0)
=(0,0.4,1,0)
(x)) = (min(1-0.4,0.25:0+0.25-0+0.5-1),

&

0.1:0+0.5-0.4+0.4-1, 1, 0)

_Determine = (0.4,0.6,1,0)
P (si = O{ 2 })

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Reachability probabilities

Example value iteration

[ Xo(n),xl(n)’xz(n),xa(n) ]
=0: [O()(m . ; 1,01

[ 0.000000, 0.400000, 1, 0]
[ 0.400000, 0.600000, 1, 0]
[ 0.600000, 0.740000, 1, 0]
[ 0.650000, 0.830000, 1, 0]
[ 0.662500, 0.880000, 1, 0]
[ 0.665625, 0.906250, 1, 0]
[ 0.666406, 0.919688, 1, 0]
[ 0.666602, 0.926484, 1, 0]

S5 3 35 3 35 S5 3 3
Il
XNV R WN SO

Determine
anin(si Eo0{s)}) n=20: [0.666667, 0.933332,1,0]

= n=21: [0.666667,0.933332,1,0]
~[2/3,14/15,1,0]
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Reachability probabilities

Optimal positional policy

P05|t|ona| pohae.an@hus yield:

PrSmin (s |= OG) PrMin(s = OG) for all states s € S
PrPm(s = 0G) = PrMm*(s|=0G) forallstatesse S

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Optimal positional policy

Positional policies Gnin and Sax thus yield:

Premin(s = OG) = Pr""(s = OG) forall statesse S
Prom(s = 0G) = PrMm*(s|=0G) forall statesse S

These policies are obtained as follows:

Gmin(s) = argmin{ Z P(s, a, t)-Pr""(t = 0G) | o € Act }
tes

Gmax(s) = arg max{ Z P(s,a,t)-Pr**(t = 0G) | a € Act }
tes
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Reachability probabilities

Optimal positional policy

> Outcome of the value iteration (x5 ) = (3, Iz, 1,0)

» How to obtain the optimal policy from this result?
{a} Sat(a)
) > x5, = min(1-32,0.5:1 + 0.25:0+0.25-2)
1

AN

Smin=0
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Reachability probabilities

Optimal positional policy

Joost-Pieter Katoen

Smin=0

v

v

v

v

v

Outcome of the value iteration (x;) = (3, 12, 1,0)

How to obtain the optimal policy from this result?

Xs, = min(1-1%,0.5:1 4 0.25-040.25-2)
min(%, %
Thus the optimal policy always selects red in s

Note that the minimal reach-probability is unique;
the optimal policy need not to be unique.

Modeling and Verification of Probabilistic Systems



Induced DTMC

v

Outcome of the value iteration (x,) = (3, 12, 1,0)

v

How to obtain the optimal policy from this results?

X5, = min(1-1%,0.5-1 4 0.5-0+0.25-3)

v

14 2

mm(15 3

v

Thus the optimal policy always selects red.
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Some experimental results

Reachability probabilities

TO/MO -
10000
.
L}
.
1000 s
a e
N
.
~ e
7 100 R
<
»
® N
g H
=l
=
10 o
t .
R
0 .
.
5$ e
1 4 Consensus
H
o n CsMA
. + Firewire
a N * Wian
] 3 hd + Zeroconf
3
P IO . L
% %, 2, 2, % ) A % B
%
No. states °

Using the explicit engine of the storm model checker.
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Modeling and Verification of Probabilistic Systems




An alternative approach

|
A viable alternative to value iteration is linear programming.
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Linear programming

Linear programming

Optimisation of a linear objective function subject to linear (in)equalities.

Let xi, ..., x, be non-negative real-valued variables. Maximise (or
minimise) the objective function: Mmax CULx
Cc1-xy + Cxo+ ...+ cp-x, forconstants ci,...,c, € R

subject to the constraints

COANEA air-xy+anxe+ ...+ anxn < b

polyope Ax <b

am1-X1+amex2+ ...+ amp'Xp < bm.

Solution techniques: e.g., Simplex, ellipsoid method, interior point method.
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Reachability probabilities

Maximal reach probabilities as a linear program

Linear program for max-reach probabilities

Consider a finite MDP with state space S, and G C S. The values
xs = Pr"®(s = 0 G) are the unique solution of the /inear program:
» If s € G, then xs = 1.

> If s £ 30G, then xs = 0.
» If s=30G and s € G, then 0 < x; < 1 and for all @ € Act(s):

Xs = Z P(s,a,t) - x
teS

where g Xs IS minimal.
seS

Xy = MCME ? ?(s,o(\k}x\\ Le aeus)B

Joost-Pieter Katoen
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Reachability probabilities

Maximal reach probabilities as a linear program

Linear program for max-reach probabilities

Consider a finite MDP with state space S, and G C S. The values
xs = Pr"®(s = 0 G) are the unique solution of the /inear program:
» If s € G, then xs = 1.

> If s £ 30G, then xs = 0.
» If s=30G and s € G, then 0 < x; < 1 and for all @ € Act(s):
Xs = Z P(s,a,t) - x

tes

where g Xs IS minimal.
seS

See lecture notes.
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Minimal reach probabilities as a linear program

Linear program for min-reach probabilities

Consider a finite MDP with state space S, and G C S. The values
xs = Pr""(s = OG) are the unique solution of the linear program:
» If s € G, then xs = 1.
> If PFM"(s = 0G) =0, then x5 = 0.
> If PF""(s = OG) > 0and s ¢ G then 0 < x; < 1 and for all
a € Act(s):
Xs < Z P(s,a,t) - x

? tesS

where Y xs is maximal.
seS —

Xy = E\_C_n { % PCs, o k) - Ky \ xe At (5‘)5
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Minimal reach probabilities as a linear program

Linear program for min-reach probabilities

Consider a finite MDP with state space S, and G C S. The values
xs = Pr""(s = OG) are the unique solution of the linear program:
» If s € G, then xs = 1.
> If PFM"(s = 0G) =0, then x5 = 0.
> If PF""(s = OG) > 0and s ¢ G then 0 < x; < 1 and for all
a € Act(s):

Xs < Z P(s,a,t) - x
teS

where Y xs is maximal.
seS

See lecture notes.
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Reachability probabilities

Example linear programming

> G:{SQ},S""(S”={53},5\(GU5mci)")

> Maximise xg + x; subject to the constraints:

o X < X %S 1%,
o x0 < 3ix+3
o x1 < xotixitl
Determine
Pr(s, = 012 }) A U s e s
- o
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Reachability probabilities

Example linear programming

> G={%},ST ={s}S\(GUST) ={s, 51}

> Maximise xg + x; subject to the constraints:

X < X1

2
X S 3

1 4
x1 < §X+t3

Joost-Pieter Katoen
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Reachability probabilities

Example linear programming

> G={%},ST ={s}S\(GUST) ={s, 51}

> Maximise xg + x; subject to the constraints:

e X < X1
e Xp < %
e x1 < %'Xo —I-g
Xy Xy Xy
1 1 1
Xo < X3 1 0.81
Xo < 2/3 1 x; <0.2-x,
] +0.8
0 X, O X, 0
0 ° 1 0 ° 2/3 1 0 o 1

Joost-Pieter Katoen
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Example linear programming

X, X, X,
1 1 1
Xo < X4 0.8
Xo =< 2/3 X; < 0.2-%x¢
+ 0.8
0 X 0 X 0
0 1 0 0 23 1 ° 0 1
B XS ><°+><
X1 1
3
1
0.8 | Solution:

ma% (XO’ X])

(2/3,14/15)

0 ——— X
0
0 2/3 1
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Reachability probabilities

Value iteration vs. linear programming
A O

[ XO("),X]("),XZ("),X3(”) ]

X, / n=0-  [0.000000, 0.000000, 1, 0]

1 n=1 [ 0.000000, 0.400000, 1, 0 ]

n=2:  [0.400000, 0.600000, 1, 0]

1 X n=3:  [0.600000, 0.740000, 1, 0 ]

\, n=4:  [0.650000, 0.830000, 1, 0]

x® N~ xm n=5.  [0.662500, 0.880000, 1, 0]
~. n=6:  [0.665625, 0.906250, 1, 0]
n=7:  [0.666406, 0.919688, 1,0 ]

| n=8:  [0.666602, 0.926484, 1,0 ]

— Y . n=20- [0.666667,0.933332,1,0]

0 2/3 Xo  n=21: [0.666667,0.933332,1,0]

o ~[2/3,14/15,1,0]

This curve shows how the value iteration approach approximates the solution.
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Reachability probabilities

Time complexity

Time complexity

For finite MDP M with state space S, G C S and s € S, the values

Pr"®(s }= ¢ G) can be computed in time polynomial in the size of M. The same
holds for PF™"(s = 0G).

Proof:

Thanks to the characterisation as a linear program and polynomial-time
techniques to solve such linear programs such as ellipsoid methods.

|
Computing reachability probabilities in finite MDPs is P-complete.

Corollary

For finite MDPs, the question whether PrG(s E 0G) < p for some rational
p € [0, 1] is decidable in polynomial time.
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Yet another alternative approach

MDP : rokoRes (O

|
A viable alternative to value iteration and linear programming is policy
iteration.

—
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Policy iteration

Value iteration

In value iteration, we iteratively attempt to improve the minimal (or maximal)
reachability probabilities by starting with an underestimation, viz. zero for all
states.

Policy iteration

In policy iteration, the idea is to start with an arbitrary positional policy and
improve it for each state in a step-by-step fashion, so as to determine the optimal
one.
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Reachability probabilities

Policy iteration pre1 pr=o

Policy iteration

1. Start with an arbitrary positional poticy & that selet§ some
a € Act(s) for each state s € S\(G U S e

2. Compute the reachability probabilities Pr-{s = O G). This amounts

to solving a linear equation system on DTMC M.

3. Improve the policy in every state according to the following rules:

GUH(s) = argmin{ Z P(s, o, t)‘PrG(i)(t = OG) | a€Act} or
teS
S(H(s) = argmax{ > P(s,a,t) SOt = 0G) | a € Act }
teS
4. Repeat steps 2. and 3. until the policy does not change.

5. Termination?: finite number of states and improvement of min/max
probabilities each time.

2For a proof. see Section 6.7 of the book by Tiims on A First Course in Stochastic
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Reachability probabilities

Policy iteration: example

> Let G={s}.

> Consider an arbitrary policy &.

» Compute x; = Pr(s; = 0G) for all i.
> Then: x, =1, x3 =0,

1 1 2
and xp = x1, X1 = 15 X0+5X1+5.

> This yields xg = x; = x» =1 and x3 = 0.

("l qlq'O)
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Reachability probabilities

Policy iteration: example

> Let G={s}.

> Consider an arbitrary policy &.

» Compute x; = Pr(s; = 0G) for all i.
> Then: x, =1, x3 =0,

1 1 2
and xp = x1, X1 = 15 X0+5X1+5.

> This yields xg = x; = x» =1 and x3 = 0.

» Change policy G in sp, yielding policy &’.
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Reachability probabilities

Policy iteration: example

> Let G={s}.
> Consider an arbitrary policy &.
» Compute x; = Pr(s; = 0G) for all i.

> Then: x, =1, x3 =0,

1 1 2
and xp = x1, X1 = 15 X0+5X1+5.

This yields min(1-1, £-1+%-0 + %-1)
N ——
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Reachability probabilities

Policy iteration: example

> Let G={s}.

> Consider an arbitrary policy &.

» Compute x; = Pr(s; = 0G) for all i.
> Then: x, =1, x3 =0,

1 1 2
and xp = x1, X1 = 15 X0+5X1+5.

> This yields xg = x; = x» =1 and x3 = 0.

» Change policy G in sp, yielding policy &’.
> This yields min(1-1, 3-1+1-0 + £-1)

3

that is, min(l,%) = 3.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Reachability probabilities

Policy iteration: example

> let G={s}.
Sat(a) > Consider the adapted policy &’.
>] » Compute x; = Pre’/(s,- = OG) for all i.
» Then: x, =1, x3 =0,
1 and xg = }1~X0+%, X1 = liooxo+%~xl+%.
> > This yields xo = 2, x; = 13, x2 =1 and

Smin=0 x3 = 0. - -

(/\'\403%(3 ‘_3..’\0)
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Reachability probabilities

Policy iteration: example

> let G={s}.
> Consider the adapted policy &’.
» Compute x; = Pre’/(s,- = OG) for all i.

» Then: x, =1, x3 =0,

1 1
and xp = ;- X0+t35, X1 = liooxo+%~xl+%.

14

> This yields xo = 2, x; = 13, x2 =1 and

X3:0.

> This policy is optimal.
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Reachability probabilities

Graphical representation of policy iteration

PRGNS
Ao+ X,
5m|n:U X
1
1% )
X] — O.2'X0 + 0.8 r A
X B X / Al
0 — 1 /
Xo = 2/3 X, 0 > X

0 2/3 1

where A denotes policy & and A’ policy &'.
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Overview

0 Summary
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Summary

Important points

1. Maximal reachability probabilities are suprema over reachability
probabilities for all, potentially infinitely many, policies.

P (s =00 = sp B (:F46)
o

f
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Summary

Important points

1. Maximal reachability probabilities are suprema over reachability
probabilities for all, potentially infinitely many, policies.

2. They are characterised by equation systems with maximal operators.

>(5= rax i 2 P(s, o k). x} \ o(&ﬁr\(&)g
3
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Summary b C;O\)“& @Q

Summary

a

Important points

1.

Maximal reachability probabilities are suprema over reachability
probabilities for all, potentially infinitely many, policies.

They are characterised by equation systems with maximal operators.
There exists a positional policy that yields the maximal reachability
probability.

Such policies can be determined using value or policy iteration.

Or, alternatively, in polynomial time using linear programming.
Positional policies are not powerful enough for arbitrary w-regular

properties. Ca Aol

Thanks to Dave Parker (Birmingham) for the illustrations of value and policy iteration.
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