Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl fiir Informatik 2
Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movepl18/

November 5, 2018

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 1/36



Introduction

Overview

@ Introduction
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Summary of previous lecture e

Probabilistic CTL

» Allows for path properties, such as (bounded) until and next’

v

State formulas include propositional logic + the operator ()

v

s = P,(y) if the probability of all paths starting in s fulfilling ¢ is in J

v

Model checking is done by a recursive descent over the formula

v

This yields a polynomial-time algorithm (linear in |®]).
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Summary of previous lecture

Probabilistic CTL

» Allows for path properties, such as (bounded) until and next.

» State formulas include propositional logic + the operator P ()

» s |=P,(p) if the probability of all paths starting in s fulfilling ¢ is in J
» Model checking is done by a recursive descent over the formula

» This yields a polynomial-time algorithm (linear in |®]).
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Aim of this lecture

or >0

» Is PCTL, restricted to P_1(¢), equally expressive as CTL?

» What is the expressive power of PCTL? Can repeated reachability be
expressed?
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Introduction

Aim of this lecture

» Is PCTL, restricted to P_1(¢), equally expressive as CTL?

» What is the expressive power of PCTL? Can repeated reachability be
expressed?

Set up of this lecture

1. Qualitative PCTL versus CTL.
2. Qualitative PCTL versus CTL with fairness.
3. Repeated reachability probabilities in PCTL.
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Qualitative PCTL

Overview

© Qualitative PCTL
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Qualitative PCTL

PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

v

_
o
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PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.
» PCTL state formulas over the set AP obey the grammar:

® = true ‘ a ‘ CTRVARO)) ‘ - ‘ P, ()

where a € AP, ¢ is a path formula and J C [0, 1] is an interval.

» PCTL path formulae are formed according to the following grammar:
o = O ‘ ®; U b, ‘ ®; US" 0,

where ®, ®;, and ®, are state formulae and n € IN.
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Qualitative PCTL

Qualitative PCTL

State formulae in the qualitative fragment of PCTL (over AP):

® = true ‘ a ’ ®1 A $y ’ -® ’ P-o(v) ’ P_1(¢)

where a € AP, and ¢ is a path formula
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Qualitative PCTL

Qualitative PCTL

State formulae in the qualitative fragment of PCTL (over AP):

® = true ‘ a ) ®; A Oy ’ -® ’ P~o(¢) ’ P_1(yp)

where a € AP, and ¢ is a path formula formed according to the grammar:

pi=0d ( &1 U b,

The probability bounds = 0 and < 1 can be derived:

Poo(p) = Pso(p) and Poi(p) = ~Poi(y)

So, in qualitative PCTL, there is no bounded until, and only >0, =0, > 1
and = 1 are allowed thresholds.
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Qualitative PCTL

Qualitative PCTL

Qualitative PCTL

State formulae in the qualitative fragment of PCTL (over AP):
® 1= true ‘ a ‘ ®1 A Dy ’ L ‘ P-o(p) ‘ P_1(y)
where a € AP, and ¢ is a path formula formed according to the grammar:

pi=0d } &1 U b,

Ve >0

P-1(0P>0(O a))

olmssy  sore! o el treadl, Mole Gack has
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Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems

8/36



Qualitative PCTL

Qualitative PCTL
Qualitative PCTL
State formulae in the qualitative fragment of PCTL (over AP):
® 1= true ‘ a ‘ ®1 A Dy ’ L ‘ P-o(p) ‘ P_1(y)
where a € AP, and ¢ is a path formula formed according to the grammar:

pi=0d ) &1 U b,

[SETN] S

P_1(0Ps0(O a)) and P1(P~o(¢a) U b) are qualitative PCTL formulas.
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Computation Tree Logic

Overview

© Computation Tree Logic
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Computation Tree Logic

Computation Tree LOgiC [Clarke & Emerson, 1981]

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

» CTL state formulas over the set AP obey the grammar:

where a € AP and ¢ is a path formula

S \= V‘e '\Q—Q W Pe%: ﬁ'&rL\f(\a \~ S SQ‘\\\-’S \P
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Computation Tree LOgiC [Clarke & Emerson, 1981]

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

» CTL state formulas over the set AP obey the grammar:
® = true ‘ a ‘ d; A Py ‘ - ‘ Jp ) Ve

where a € AP and ¢ is a path formula formed by the grammar:

v, (@ T?,O(O;\>= Od | o1U,

Examples

V03 O a and 3(VOa) U b are CTL formulas.
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Computation Tree Logic

Computation Tree LOgiC [Clarke & Emerson, 1981]

Computation Tree Logic: Syntax

CTL consists of state- and path-formulas.

» CTL state formulas over the set AP obey the grammar:

CD:::true)a’d)l/\Cbg‘ w‘:@‘w

where a € AP and ¢ is a path formula ¢ = O® ‘ $; U P,

Intuition

» s =V if all paths starting in s fulfill ¢
» s |= Jp if some path starting in s fulfill ¢

Question: are CTL and qualitative PCTL equally expressive? No.
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CTL semantics

Voo = 30 & -30d

e T e e el
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CTL semantics (1)

Notation

D, s = & if and only if state-formula ® holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write

s = o.
Satisfaction relation for state formulas

The satisfaction relation = is defined for CTL state formulas by:

skEa iff ae L(s)

sE -0 iff not (s = @)

sEP AV iff (sEP)and (s = V)

sEJe iff there exists m € Paths(s).7 |= ¢
sEVe iff for all m € Paths(s).7 = ¢

where the semantics of CTL path-formulas is the same as for PCTL

Joc;s;-Pi:eter kat;en B Modeling and Verification of Probabilistic Systems




CTL versus qualitative PCTL

Overview

@ CTL versus qualitative PCTL
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CTL versus qualitative PCTL

Equivalence of PCTL and CTL Formulae

The PCTL formula @ is equivalent to the CTL formula W, denoted
® =V, if Sat($) = Sat(V) for each DTMC D.

SSCER
(2
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CTL versus qualitative PCTL

Equivalence of PCTL and CTL Formulae

The PCTL formula @ is equivalent to the CTL formula W, denoted
® =V, if Sat($) = Sat(V) for each DTMC D.

The simplest such cases are path formulae involving the next-step operator:
P_1(Oa) = VQOa
P.o(Oa) = 30a

And for 3¢ and V[ we have:

Poo(0a) = 3Fa
P_y(0a) = VOa.
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CTL versus qualitative PCTL

(1) P>o(02) G) 302 and (2) P—y(0a) = Vla.

(1) Consider the first statement.
= Assume s = P5o(0a).

— = Sak (B, (©e) & set(300)
~———
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CTL versus qualitative PCTL

|
(1) Pso(Ca) = 30a and (2) P—_1(0a) = VOa.

Proof:
(1) Consider the first statement.

= Assume s = P5o(0a). By the PCTL semantics, Pr(s = ¢a) > 0.
Thus, {7 € Paths(s) | 7 = ¢a} # &, and hence, s E J0a.

sc Sek (32 °~)
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CTL versus qualitative PCTL

|
(1) Pso(Ca) = 30a and (2) P—_1(0a) = VOa.

Proof:
(1) Consider the first statement.
= Assume s = P5o(0a). By the PCTL semantics, Pr(s = ¢a) > 0.
Thus, {7 € Paths(s) | 7 = ¢a} # &, and hence, s E J0a.

< Assume s = 30a, i.e., there is a finite path & = sp 51 ... s, with

so=sand s a. — —
0 n): =5 .
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CTL versus qualitative PCTL

|
(1) Pso(Ca) = 30a and (2) P—_1(0a) = VOa.

Proof:
(1) Consider the first statement.

= Assume s = P5o(0a). By the PCTL semantics, Pr(s = ¢a) > 0.
Thus, {7 € Paths(s) | 7 = ¢a} # &, and hence, s E J0a.

< Assume s = 30a, i.e., there is a finite path & = sp 51 ... s, with
so = s and s, = a. It follows that all paths in the cylinder set Cyl(7)
fulfill Oa.

CyL (7))
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CTL versus qualitative PCTL

|
(1) Pso(Ca) = 30a and (2) P—_1(0a) = VOa.

Proof:
(1) Consider the first statement.
= Assume s = P5o(0a). By the PCTL semantics, Pr(s = ¢a) > 0.
Thus, {7 € Paths(s) | 7 = ¢a} # &, and hence, s E J0a.

< Assume s = 30a, i.e., there is a finite path & = sp 51 ... s, with
so = s and s, = a. It follows that all paths in the cylinder set Cyl(7)

fulfill ¢a. Thus:
Pr(s = ¢a) > Prs(Cyl(spsi...sn)) = P(sos1...sp) > 0.
VN N———Y\—’
= ~
=M =
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CTL versus qualitative PCTL

|
(1) Pso(Ca) = 30a and (2) P—_1(0a) = VOa.

Proof:
(1) Consider the first statement.

= Assume s = P5o(0a). By the PCTL semantics, Pr(s = ¢a) > 0.
Thus, {7 € Paths(s) | 7 = ¢a} # &, and hence, s E J0a.

< Assume s = 30a, i.e., there is a finite path & = sp 51 ... s, with
so = s and s, = a. It follows that all paths in the cylinder set Cyl(7)
fulfill $a. Thus:

Pr(s = ¢a) > Prs(Cyl(spsi...sn)) = P(sos1...sp) > 0.

So, by the PCTL semantics we have: s = P~o(0a).
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CTL versus qualitative PCTL

|
(1) Pso(Ca) = 30a and (2) P—_1(0a) = VOa.

Proof:
(1) Consider the first statement.

= Assume s = P5o(0a). By the PCTL semantics, Pr(s = ¢a) > 0.
Thus, {7 € Paths(s) | 7 = ¢a} # &, and hence, s E J0a.

< Assume s = 30a, i.e., there is a finite path & = sp 51 ... s, with
so = s and s, = a. It follows that all paths in the cylinder set Cyl(7)
fulfill $a. Thus:

Pr(s = ¢a) > Prs(Cyl(spsi...sn)) = P(sos1...sp) > 0.

So, by the PCTL semantics we have: s = P~o(0a).
(2) The second statement follows by duality.
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CTL versus qualitative PCTL

(nd (2) P_1(0a) = VOa.
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CTL versus qualitative PCTL

CTL versus qualitative PCTL

(1) Pso(Ca) = 30a and (2) P—1(a) = VOa.

£) P_1(0a) # V0a.

(3) Pso(da) # 30a and (

Consider the second statement (4). Let s be a state in a (possibly infinite)

DTMC. Then: s =V0a implies s |=P-1(0a). The reverse direction,
however, does not hold. Consider the example DTMC:

s = P_1(0a) as the probability of
{a} path s* is zero. However, the path

0‘ 1 s“ is possible and violates ¢a. Thus,
s = V0a.

Statement (3) follows by duality.

[

n@GOL
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Almost-sure-reachability not in CTL
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CTL versus qualitative PCTL

Almost-sure-reachability not in CTL

Almost-sure-reachability not in CTL

1. There is no CTL formula that is equivalent to P_;({a).
2. There is no CTL formula that is equivalent to P~ q(0Oa).

We provide the proof of 1.; 2. follows by duality: Ps(0a) = —P—;(0—a). By
contraposition. Assume ® = P_;({a). Consider the infinite DTMC D,:

p P l' p
i
Neo@oS oS okt
1-p 1-p s 1-p
1 ifp<3
The value of p does affect reachability: Pr(s = ¢ sp) = ) 1
<lifp>3
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Almost-sure-reachability not in CTL

|
There is no CTL formula that is equivalent to P—;(0a).

Proof:

: 1

We have: Pr(s = 0 sp) = . 1
<lifp> 3

Thus, in D1 we have s = P_1(0sp) for all states s,
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Almost-sure-reachability not in CTL

|
There is no CTL formula that is equivalent to P—;(0a).

Proof:

: 1

We have: Pr(s = 0 sp) = _ 1
<lifp> 3

Thus, in D1 we have s E P_1(0so) for all states s, while in Ds, eg.,
S1 l?é P=1(<>SO).

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 20/36



Almost-sure-reachability not in CTL

|
There is no CTL formula that is equivalent to P—;(0a).

1 ifp<

We have: Pr(s |= 0 s0) =
<lifp>

Nl= N[

Thus, in D1 we have s E P_1(0so) for all states s, while in D;, eg.,
s1 = P—1(0so). Hence: s; € Satp, (P=1(0s0)) but s1 ¢ Satp, (P=1(0s0) ).
4 4

—
SN @ < S~ T
So S, =
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Almost-sure-reachability not in CTL

|
There is no CTL formula that is equivalent to P—;(0a).

1 ifpg%
We have: Pr(s =0 sp) = . 1
<1pr>§

Thus, in D1 we have s E P_1(0so) for all states s, while in D;, eg.,

s1 = P—1(0so). Hence: s; € Satp, (P=1(0s0)) but s1 ¢ Satp, (P=1(0s0) ).
4 4

For CTL-formula ® —by assumption ® = P_;({sp)— we have:

Satp, (®) = Satp, (P).

Hence, state s; either fulfills the CTL formula ® in both DTMCs or in none of
them. This, however, contradicts ® = P_;(0sp).
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CTL versus qualitative PCTL

The proof relies on the fact that the satisfaction g
may depend on the precise value of the transition prob
refers to the underlying graph of a DTMC.

or infinite DTMCs
bilities, while CTL just
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CTL versus qualitative PCTL

The proof relies on the fact that the satisfaction ¢f P—;({a))for infinite DTMCs
may depend on the precise value of the transition probabilities, while CTL just

refers to the underlying graph of a DTMC. For finite DTMCs, the previous result
does not hold.
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CTL versus qualitative PCTL

The proof relies on the fact that the satisfaction of P_;({a) for infinite DTMCs
may depend on the precise value of the transition probabilities, while CTL just

refers to the underlying graph of a DTMC. For finite DTMCs, the previous result
does not hold.

For each finite DTMC D it holds that: | O
——

P_1(0a) = V((3F0a)Wa)

where W is the weak until operator defined by WV = (dU V) v O¢.

aWb = oaUb V Qa

e~
wseak eni\:j Per{:
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CTL versus qualitative PCTL

The proof relies on the fact that the satisfaction of P_;({a) for infinite DTMCs
may depend on the precise value of the transition probabilities, while CTL just
refers to the underlying graph of a DTMC. For finite DTMCs, the previous result
does not hold.

|
For each finite DTMC D it holds that:

P_1(0a) = V((3F0a)Wa)

where W is the weak until operator defined by WV = (dU V) v O¢.

Exercise.
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V{ is not expressible in qualitative PCTL

|
1. There is no qualitative PCTL formula that is equivalent to V{a.
2. There is no qualitative PCTL formula that is equivalent to d]a.

qualitetve PcL _J0a = Bp(0a)
< CcTL

[
NV Qa

., (@e)
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V{ is not expressible in qualitative PCTL

|
1. There is no qualitative PCTL formula that is equivalent to V{a.
2. There is no qualitative PCTL formula that is equivalent to d]a.

Proof of the first claim on the black board. The second claim follows by
duality since V0a = —~d-a.
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Qualitative PCTL versus CTL

Incomparable expressiveness

Qualitative PCTL and CTL have incomparable expressiveness; e.g., V0a
cannot be expressed in qualitative PCTL and P_;({a) cannot be
expressed in CTL.
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Overview

© Fair CTL versus qualitative PCTL

Joost-Pieter Katoen

Fair CTL versus qualitative PCTL
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Fairness (oops Wt ek . O

The existence of unfair computations is vital (in particular s¥ in the proof of the
result that V¢ is not expressible in qualitative PCTL.)
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Fairness

The existence of unfair computations is vital (in particular s¥ in the proof of the
result that V¢ is not expressible in qualitative PCTL.) In fact, under appropriate
fairness constraints, we yield V0a = P_;(0a).

Strong fairness

Assume D is a finite DTMC and that any state s in D is uniquely
characterized by an atomic proposition, say s.
Os

<Cs
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Fairness

The existence of unfair computations is vital (in particular s¥ in the proof of the
result that V¢ is not expressible in qualitative PCTL.) In fact, under appropriate
fairness constraints, we yield Y0a = P_;(0a).

Strong fairness

Assume D is a finite DTMC and that any state s in D is uniquely
characterized by an atomic proposition, say s. The (strong) fairness t\
3,08

constraint fair is defined by: Tosk (s)=
3
fair = A N\ (00s - O01). :
SE€S t € Post(s) O

Qk,
Q&
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Fair CTL versus qualitative PCTL

Fairness

The existence of unfair computations is vital (in particular s¥ in the proof of the
result that V¢ is not expressible in qualitative PCTL.) In fact, under appropriate
fairness constraints, we yield Y0a = P_;(0a).

Strong fairness

Assume D is a finite DTMC and that any state s in D is uniquely
characterized by an atomic proposition, say s. The (strong) fairness
constraint fair is defined by:

fair = N\ A\ (@O0s — 0O0t).

SE€S t € Post(s)

It asserts that when a state s is visited infinitely often, then every of its direct
successors is visited infinitely often too.
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Fair CTL Qo

In fair CTL, path formulas are interpreted over fair infinite paths, i.e.,
paths 7 that satisfy

fair = /\ /\ (O0s — O01).
s€S t € Post(s)

—
(Say Pormul e
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Fair CTL
Fair paths

In fair CTL, path formulas are interpreted over fair infinite paths, i.e.,
paths 7 that satisfy

fair = /\ /\ (O0s — O01).

s€S t € Post(s)

A path 7 such that 7 |= fair is called fair. Let Pathsg; (s) be the set of
fair paths starting in s.

Fair CTL semantics

The fair semantics of CTL is defined by the satisfaction =g which is
defined as |= for the CTL semantics, except that:

S Efir Jp  iff there exists m € Pathsg(s). T Efair ¢
s Epir Vo iff for all m € Pathsg(s). m Efir -
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Fairness theorem

Qualitative PCTL versus fair CTL theorem

Let s be an arbitrary state in a finite DTMC. Then:

s = P-1(0a) iff s Epir V0a

s = P-o(0a) iff s Efi 30a
(aUb) iff skpirV(aUb)
(aUb) iff skpi 3(aUb)

Using the fairness theorem (cf. Lecture 4): for (possibly infinite) DTMC D and s, t

states in D:
Ps E00t) = Ps= A\ Dow).
ue Post™ (t)
In addition, we use that from every reachable state at least one fair path starts. Similar

arguments hold for infinite DTMCs (where fair is interpreted as infinitary conjunction.)
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Fair CTL versus qualitative PCTL

Qualitative PCTL versus fair CTL

Comparable expressiveness

Qualitative PCTL and fair CTL are equally expressive for finite Markov
chains.
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Overview VO‘(’ cTL VIV
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@ Repeated reachability and persistence P W>O(Y)
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Almost sure repeated reachability

Almost sure repeated reachability is PCTL-definable

For finite DTMC D, state s € S and G C S:

s EP=; (OP=1(0G)) iff Pr{me Paths(s) | 7 =00G} = 1.

—_——~\— - ——
qua\k&-\~\r( almosy swcre
(PCT\_ \'Ceea\'lé reack.:\:‘.\.\b
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Repeated reachability and persistence

Almost sure repeated reachability

Almost sure repeated reachability is PCTL-definable
For finite DTMC D, state s € S and G C S:

s EP=; (OP=1(0G)) iff Pr{me Paths(s) | 7 =00G} = 1.

We abbreviate P—_; (OP_1(0G)) by P—; (O0G).

Proof:
On the blackboard.
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Repeated reachability and persistence

Almost sure repeated reachability
Almost sure repeated reachability is PCTL-definable
For finite DTMC D, state s € S and G C S:

s EP=; (OP=1(0G)) iff Pro{m e Paths(s) | 7 =F0O0G} = 1.

We abbreviate P—_; (OP_1(0G)) by P—; (O0G).

Proof:
On the blackboard.

For CTL, universal repeated reachability properties can be formalized by the
combination of the modalities V[J and V¢:

s = VOVOG iff m = O0OG for all e Paths(s).
vovae  #f

Joost-Pieter Katoen Modeling anu /<5 Cauon of Probabilistic Systems



Repeated reachability probabilities

Repeated reachability probabilities are PCTL-definable
For finite DTMC D, state s € S, G C S and interval J C [0, 1] we have:

s EPy(OP=1(OP-1(0G)) ifand only if Pr(s =00G) € J.
—P,(00G)

e

r(s¥= GOG) < ]
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Repeated reachability probabilities

Repeated reachability probabilities are PCTL-definable
For finite DTMC D, state s € S, G C S and interval J C [0, 1] we have:

s EPy(OP-1(OP-1(0G)) ifandonly if Pr(s=00G) € J.
—P,(00G)

Proof:

By the long run theorem (cf. Lecture 4), almost surely a BSCC T will be reached
and each of its states will be visited infinitely often. Thus, the probabilities for
0O G agree with the probability to reach a BSCC T that contains a state in G.

qug\'.\&\\r{

By the above theorem, P~ (00 G) is PCTL definable. Note that 300G is not
CTL-definable (but definable in a combination of CTL and LTL, called CTL*).
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Almost sure persistence
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Almost sure persistence

Almost sure persistence is PCTL-definable

For finite DTMC D, state s € S and G C S:

sEP_1(OP=1(HG)) iff Prs{me Paths(s) | # =00G} = 1.
— N —

I e

alerody s»rc\:)

s & &RG6
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Repeated reachability and persistence

Almost sure persistence

Almost sure persistence is PCTL-definable

For finite DTMC D, state s € S and G C S:
sEP_1 (OP=1(0OG)) iff Prs{me Paths(s) | # EQOOG} =
We abbreviate P_; (O P—1(0JG)) by P—; (OOG).

Left as an exercise.

Note that VOOIG is not CTL-definable. OLIG is a well-known example formula in
LTL that cannot be expressed in CTL. But by the above theorem it can be
expressed in PCTL.
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Persistence probabilities

Persistence probabilities are PCTL-definable
For finite DTMC D, state s € S, G C S and interval J C [0, 1] we have:

s EPy(0P=1(3G)) ifand only if Pr(s = OOG) € J.
=P,(00G)

Left as an exercise. Hint: use the long run theorem (cf. Lecture 4).
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Overview

e Summary
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Summary

|
» Qualitative PCTL only allow the probability bounds > 0 and = 1.
» There is no CTL formula that is equivalent to P—;({a).
» There is no PCTL formula that is equivalent to Va.

v

These results do not apply to finite DTMCs.

v

P_1(0a) and YOa are equivalent under strong fairness.
Repeated reachability probabilities are PCTL definable.

v

Take-home messages

Qualitative PCTL and CTL have incomparable expressiveness. Qualitative
and fair CTL are equally expressive. Repeated reachability and persistence
probabilities are PCTL definable. Their qualitative counterparts are not all
expressible in CTL.
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