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Introduction

Today: Markov Automata

The beauty of its theory

� The simplicity of the model
� Parallel composition
� Bisimulation
� Quantitative analysis

The usage for modeling languages

1. Process algebra
2. Stochastic Petri Nets
3. . . . . . . not today . . . . . .

4. Architectural Analysis & Design Language
5. Dynamic Fault Trees
6. Scenario-Aware Dataflow
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Beautiful theory

Exponential distributions

� The cdf of exponentially distributed r.v. X
with rate � ∈ R>0 is:

FX (x) = 1 − e−�⋅x
� The rate � uniquely determines FX� The higher �, the faster FX approaches 1

� Unique memoryless continuous distribution

� Expectation = �−1
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Beautiful theory

A marriage and
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s2

↵

0.4

0.6
1.0
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Segala’s probabilistic automata

Key: a transition yields a distribution

over states

s0 s1

s2

↵

↵

3

1

�

�

Hermanns’ interactive Markov chains

Key: separated action and delay

transitions
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Beautiful theory

Markov automata [Eisentraut et al, 2010]
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s2

↵

0.4

0.6

3

1

�,1
�,1

A Markov automaton M is a tuple (S ,Act, −→,⇢, s0) where
� S is a nonempty set of states with initial state s0 ∈ S� Act is a set of actions; ⌧ is an internal action
� −→ ⊆ S ×Act ×Dist(S) is a set of action transitions� ⇢⊆ S ×R>0 × S is a set of Markovian transitions

such that there is at most one r ∈ R>0 with s
r⇢ s ′
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Beautiful theory

Maximal progress assumption

s0

s1

s2

�

⌧

reduces to

s0
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s2
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But as visible actions may be subject to delaying by other components:

s0

s1

s2

�

↵ remains

s0

s1

s2

�

↵
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Beautiful theory

Concurrent composition

The composition of M1 and M2 wrt. A = (Act1 ∩Act2) � { ⌧ } is:

M1 ��M2 = (S1 × S2,Act1 ∪Act2, −→ ,⇢, (s0,1, s0,2))

where −→ and ⇢ are defined as the smallest relations satisfying:

(SYNC)
s1

↵−−→1 µ1 and s2
↵−−→2 µ2 and ↵ ∈ A

(s1, s2) ↵−−→µ1⋅µ2

(ASYNC)
s1

↵−−→1 µ1 and ↵ �∈ A
(s1, s2) ↵−−→µ1 ⋅�s2

(DELAY)
s1

�⇢1 s
′
1

(s1, s2) �⇢ (s ′1, s2)
and

s1
�⇢1 s1 and s2

�′⇢2 s2

(s1, s2) �+�′⇢ (s1, s2)
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Beautiful theory
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Beautiful theory

Compatibility

Parallel composition is backward compatible with parallel composition on
probabilistic automata and parallel composition on labeled transition
systems.
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Beautiful theory

Hiding

s0

s1

s2

�

↵s3

�

hiding {↵,� } yields

s0

s1

s2

�

⌧s3

⌧

Applying maximal progress reduction yields:

s0

s1

s2

�

⌧s3

⌧

reduces to

s0

s1

s2

⌧s3

⌧
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Beautiful theory

Bisimulation

s0 s1

s2
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0.4

0.6
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� 1.0

�

s0 s1

s2

↵

0.4

0.6

4

3
4

1
4

�,1
�,1

Bisimulation

Equivalence R ⊆ S × S is a bisimulation if for all (s, t) ∈ R :

∀� ∈ Act ∪R>0: s �−−→µ implies t �−−→⌫ with ∀C ∈ S�R ∶ µ(C) = ⌫(C).
Let ∼ be the largest bisimulation relation.

Congruence [Eisentraut et al, 2010]

∼ is a congruence wrt. parallel composition and hiding.
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Beautiful theory
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Beautiful theory

Bisimulation – Example

�

µ

�

µ

µ µ

�

is bisimilar to

�

µ

�

2⋅µ
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Beautiful theory

Compatibility

Bisimulation is backward compatible with bisimulation on probabilistic
automata and bisimulation on labeled transition systems.
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Beautiful theory

Weak bisimulation

A naive attempt

Equivalence R ⊆ S × S is a weak bisimulation if for all (s, t) ∈ R :

∀� ∈ Act ∪R>0: s �−−→µ implies t
�⇒⌫ with ∀C ∈ S�R ∶ µ(C) = ⌫(C)

where t
�⇒µ means t ⌧∗−−−→ �−−→ ⌧∗−−−→⌫ (over trees).

This relation is backward compatible but too fine, as it distinguishes:

6 ⌧

1
3

2
3

and

6⋅ 13

6⋅ 23
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Beautiful theory

Weak bisimulation over distributions [Doyen et al., 2008]
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Beautiful theory

Weak bisimulation over distributions [Doyen et al., 2008]

Congruence [Eisentraut et. al., 2010]

≈ is a congruence wrt. parallel composition and hiding.

Theorem [Deng & Hennessy, 2011]

≈ is the coarsest “reasonable” notion of weak bisimulation.
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Beautiful theory

Backward incompatibility

6 ⌧

1
3

2
3

≈
6⋅ 13

6⋅ 23

Similarly, one obtains:

a ⌧

1
3

2
3

≈ a

1
3

2
3

But Segala’s weak bisimulation distinguishes these PA
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Beautiful theory

Analysis

Model to be analysed

Typical structure:
M = (M1 ��M2 �� . . . ��Mn) �A

where A is the union of all visible actions, i.e., A = �i Act(Mi) − { ⌧ }.
States in M have either only Markovian or only action transitions. No
mixtures.

Joost-Pieter Katoen Markov Automata 18/44
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Beautiful theory

Expected time

s0

s2

s1 s3

s4 s5 s6

3
5

2
5

1

3

1

� Expected time from s0 to s3?

� Maximally ∞
� Minimally 2

5 ⋅0 + 3
5 ⋅13
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Beautiful theory

Expected time

s0

s2

s1 s3

s4 s5 s6

3
5

2
5

1

3

1

� Expected time from s0 to s3?� Maximally ∞

� Minimally 2
5 ⋅0 + 3

5 ⋅13

Non-determinism

The expected time to reach G is not uniquely defined.
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Beautiful theory

Expected time
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It depends on the choices in states s0 and s2.
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Beautiful theory

Expected time

s0

s2

s1 s3

s4 s5 s6

3
5

2
5

1

3

1

� Expected time from s0 to s3?� Maximally ∞
� Minimally 2

5 ⋅0 + 3
5 ⋅13

Non-determinism

The expected time to reach G is not uniquely defined.
It depends on the choices in states s0 and s2. Approach: consider all
possibilities. This yields bounds.
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Beautiful theory

Expected time

Let eTP(s,�G) be the expected time to reach G starting from state s
under policy P .

Aim:

Determine the minimal expected time until reaching G from s, i.e.,
eTP(s,�G) under the most demonic policy P that prevents the system
from reaching G .
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Beautiful theory

Fixpoint theorem

Theorem

eTmin(s,�G) is the unique fixpoint of the Bellman operator:

[L(v)](s) =

�������������������������

1

E(s) + �s′∈S p(s, s ′) ⋅ v(s ′) if s ∈MS −G
min

↵∈Act(s)�s′∈S µ↵(s ′) ⋅ v(s ′) if s ∈ PS −G
0 if s ∈ G
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Beautiful theory

Fixpoint theorem

Theorem

eTmin(s,�G) is the unique fixpoint of the Bellman operator:

[L(v)](s) =

�������������������������

1

E(s) + �s′∈S p(s, s ′) ⋅ v(s ′) if s ∈MS −G
min

↵∈Act(s)�s′∈S µ↵(s ′) ⋅ v(s ′) if s ∈ PS −G
0 if s ∈ G

Corollary

eTmin(s,�G) equals the minimal cost reachability of G of a stochastic
shortest path problem (SSP).
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Beautiful theory

Reduction to SSP problem

Example Markov automaton:

s0 s1

s2

s3 s4

2
5

3
5

1

13

1
2

1
2

2

p(s,�, s ′) = �������
r(s,s′)
E(s) if � = �
µ(s ′) if s �−−→µ

0 otherwise

Its induced SSP instance:
s0 s1

s2

s3 s4

0

2
5

3
5

�,10

� 1
4

3
4

1
4

0

1
2

1
2

�,11
2

c(s,�) = � 1
E(s) if s �∈ G ,� = �
0 otherwise
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Beautiful theory

Expected time analysis: synopsis

Minimal and maximal expected time

1. Make all states in G absorbing
2. Transform the Markov automaton to an SSP problem
3. Solve the SSP problem by linear programming

Positional policies suffice

There is a positional policy that yields eTmin(s,�G).
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The usage for high-level modeling languages

Overview

Introduction

Beautiful theory
What are Markov Automata?
Concurrent composition and hiding
Bisimulation
Analysis algorithms

The usage for high-level modeling languages
Process algebra
Generalized Stochastic Petri Nets
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The usage for high-level modeling languages

A process algebra for PA
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The usage for high-level modeling languages

GSPNs: historical perspective

1973 Timed Petri Nets [Noe & Nutt]

1980 Stochastic Petri Nets [Molloy, Natkin, Symons]

1984 Generalized Stochastic Petri Nets [Ajmone Marsan, Conte & Balbo]

1995 Modeling with Generalized Stochastic Petri Nets [Ajmone Marsan et al.]
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The usage for high-level modeling languages

GSPNs: historical perspective

1973 Timed Petri Nets [Noe & Nutt]

1980 Stochastic Petri Nets [Molloy, Natkin, Symons]

1984 Generalized Stochastic Petri Nets [Ajmone Marsan, Conte & Balbo]

1995 Modeling with Generalized Stochastic Petri Nets [Ajmone Marsan et al.]
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The usage for high-level modeling languages

Generalized stochastic Petri nets [Ajmone Marsan et al, 1984]

What is a GSPN?

A Petri net with
� Timed transitions
� Immediate transitions
� Natural weights

t0

k0
t1

k1

t2 k2

�

µ

Two-phase semantics

1. Determine enabled transitions and their probability� Maximal progress: immediate transitions have priority

2. Determine the underlying stochastic process
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The usage for high-level modeling languages

Generalized stochastic Petri nets [Ajmone Marsan et al, 1984]

What is a GSPN?

A Petri net with
� Timed transitions
� Immediate transitions
� Natural weights

t0

k0
t1

k1

t2 k2

�

µ

Two-phase semantics

1. Determine enabled transitions and their probability� Maximal progress: immediate transitions have priority

2. Determine the underlying stochastic process

Joost-Pieter Katoen Markov Automata 27/44

%
Baza 9.



The usage for high-level modeling languages

GSPN semantics by example

p1 p2

p3

p4

p5

p6

p7

t0

k0
t1

k1

t2 k2

�

µ

Token game and probabilities

p1,3

p2,3

p1,5

p4 p6

p2,5 p2,7

�

µ

k0
k0+k2

k2
k0+k2

k1
k1+k2

k2
k1+k2

1

Isn’t this a Markov automaton?

Induced stochastic process

s1

s2

s3

s4

�

µ

Initial distribution µ(s1) = k0
k0+k2 ⋅ k1

k1+k2 , and

µ(s2) = k2
k0+k2 + k0

k0+k2 ⋅ k1
k1+k2

Isn’t this weakly bisimilar?
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The usage for high-level modeling languages

Well-defined nets

Backward compatibility [Eisentraut et al., 2013]

The MA semantics of a well-defined GSPN is weak bisimilar to its standard
GSPN semantics.
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The usage for high-level modeling languages

GSPNs go non-deterministic

Advantages of MA semantics

� It is truly simple
� It is intuitive
� It is compositional
� It is backward compatible
� No restrictions on net level

This solves a long-standing open issue in stochastic Petri nets
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The usage for high-level modeling languages

Tool support
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The usage for high-level modeling languages

GSPN model of multi-processor system [Ajmone Marsan et. al., 1994]

GSPN of a single processor

� A 2×2 multi-processor grid

� Multi-tasking of k tasks/processor

� Two-phase task execution:

1. local processing (1)

2. co-operative processing (10)

� Selection policy for neighbour

� Pipelining of tasks per processor

� Co-operation has priority
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The usage for high-level modeling languages

Multi-processor system

k

kk

k

Presence of immediate transitions excludes usage GSPN tools
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The usage for high-level modeling languages

Processor throughput

k #
sta

te
s

#
tra

ns
iti
on

s

ge
ne

ra
tio

n
(s)

tp
pr
oc

es
so
r 1

tp
pr
oc

es
so
r 2

tp
pr
oc

es
so
r 4

2 2508 3215 14.5 .9031 ditto ditto

3 10852 14379 64.7 .9086 ditto ditto

4 31832 42879 193.0 .9090 ditto ditto

Scenario one: uniform weight assignment

2 as above 4254 0.8 [.9031,.9055] [.8585,.9479] [.9029,.9032]

3 as above 19089 3.2 [.9081,.9089] [.8633,.9541] [.9086,.9087]

4 as above 56704 9.8 [.9089,.9091] [.8636,.9545] [.9090,.9091]

Scenario two: processor one selects non-deterministically

2 as above 4698 0.6 [.8110,.9956] ditto ditto

3 as above 20872 2.7 [.8173,.9998] ditto ditto

4 as above 62356 7.9 [.8181,1.0] ditto ditto

Scenario three: fully non-deterministic
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