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Introduction

Theme of the course

The theory of modelling and verification
of probabilistic systems
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The relevance of probabilities

More than five reasons for probabilities

1. Randomised Algorithms
2. Reducing Complexity
3. Probabilistic Programming
4. Reliability
5. Performance
6. Optimisation
7. Systems Biology
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The relevance of probabilities

Randomised algorithms: Simulating a die [Knuth & Yao,

1976]

Heads = “go left”; tails = “go right”. Does this model a six-sided die?
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The relevance of probabilities

Distributed computing

FLP impossibility result [Fischer et al., 1985]

In an asynchronous setting, where only one processor might crash, there is no
distributed algorithm that solves the consensus problem—getting a distributed
network of processors to agree on a common value.

Ben-Or’s possibility result [Ben-Or, 1983]

If a process can make a decision based on its internal state, the message
state, and some probabilistic state, consensus in an asynchronous setting is
almost surely possible.
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The relevance of probabilities

Example: Self-stabilisation

A distributed algorithm is self-stabilising iff:
I Convergence:

Starting from an arbitrary state, it will always converge to a legitimate state.
I Closure:

And it remains in a legitimate set of states thereafter in absence of faults.

A self-stabilising algorithm:
I Works correctly for every initialisation
I Recovers from the occurrence of transient faults

A key concept in fault-tolerant distributed computing
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The relevance of probabilities

Dijkstra’s Self-Stabilising Algorithm

I Asynchronous processes 0, . . . ,N form a directed ring
I Process i has a variable xi ∈ { 0, . . . ,K−1 }, for K > N
I Processes have access to their neighbour’s variables, and execute:

I Process 0: if x0 = xN , then x0 := (x0+1) mod K

I Process i 6= 0: if xi 6= xi−1 then xi := xi−1

I Process with enabled guard holds a token
I Legitimate state = unique token

Performance metric = worst-case convergence time
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The relevance of probabilities

Symmetric Self-Stabilisation

Dijkstra’s algorithm uses a designated process to break the symmetry

Self-stabilisation in anonymous networks is impossible

Possible solution: use randomisation.
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The relevance of probabilities

Randomised Self-Stabilisation

A distributed randomised algorithm is stabilising iff:
I Convergence:

Starting from an arbitrary state, it will almost surely converge to a
legitimate state

I Closure:
And it remains in a legitimate set of states thereafter in absence of faults

Herman’s algorithm is a prime example of such algorithm
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The relevance of probabilities

Herman’s Randomised Self-Stabilisation

I N+1 (odd) synchronous processes 0, . . . ,N form a directed ring
I Process i has a Boolean variable xi ∈ { 0, 1 }
I Processes have access to their neighbour’s variables
I Process i performs:

I if xi = xi−1, then xi :=
{

0 with probability 1/2

1 with probability 1/2

I if xi 6= xi−1 then xi := xi−1

I Process has token if xi equals xi−1

Performance metric = expected convergence time
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The relevance of probabilities

A Round of Herman’s Algorithm
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The relevance of probabilities

A Next Round
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The relevance of probabilities

Herman’s Randomised Self-Stabilisation

What is Herman’s algorithm expected convergence time?

Consider Herman’s original algorithm:
I Process i performs:

I if xi = xi−1, then xi :=
{

0 with probability p
1 with probability 1−p

I if xi 6= xi−1 then xi := xi−1

I Process hat token if xi equals xi−1
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The relevance of probabilities

Use Biased Coins [Kwiatkowska et al., 2012]

For larger rings, a biased coin reduces the expected convergence time
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The relevance of probabilities

Reliability engineering
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The relevance of probabilities

Reliability: (Dynamic) Fault Trees [Dugan et al., 1990]
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The relevance of probabilities

A fault tree example

(D)FTs: one of —if not the— most prominent models for risk analysis
Aims: quantify system reliability and availability, MTTF, . . . . . .
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The relevance of probabilities

Fault trees are Markov models
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The relevance of probabilities

Probabilities help

I When modelling and analysing dependability and reliability
I to quantify arrivals, message loss, waiting times, time between failure, QoS, ...

I When building protocols for networked embedded systems
I randomized algorithms

I When problems are undecidable
I repeated reachability of lossy channel systems, . . .

I For obtaining a better performance
I Freivald’s matrix-mulitplication, random Quicksort . . .
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The relevance of probabilities

Topic of this lecture series
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The relevance of probabilities

Topic of this lecture series
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The relevance of probabilities

What is probabilistic model checking?
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The relevance of probabilities

Probabilistic models

Nondeterminism Nondeterminism
no yes

Discrete time discrete-time Markov decision
Markov chain (DTMC) process (MDP)

Continuous time CTMC CTMDP

Some other models: probabilistic variants of (priced) timed automata
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The relevance of probabilities

Properties

Logic Monitors

Discrete time probabilistic deterministic automata
CTL (safety and LTL)

Continuous time probabilistic deterministic
timed CTL timed automata

Core problem: computing (timed) reachability probabilities
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Course details

Course topics
A probability theory refrehser

I measurable spaces, σ-algebra, measurable functions
I geometric, exponential and binomial distributions
I Markov and memoryless property
I limiting and stationary distributions

What are probabilistic models?

I discrete-time Markov chains
I continuous-time Markov chains
I extensions of these models with rewards
I Markov decision processes (or: probabilistic automata)
I Markov automata
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Course details

Course topics

What are properties?

I reachability probabilities, i.e., ♦G
I long-run properties
I linear temporal logic
I probabilistic computation tree logic

How to check temporal logic properties?

I graph analysis, solving systems of linear equations
I deterministic Rabin automata, product construction
I linear programming, integral equations
I uniformization, Volterra integral equations
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Course details

Course topics

How to make probabilistic models smaller?

I Equivalences and pre-orders
I Which properties are preserved?

How to model probabilistic models?

I parallel composition and hiding
I compositional modelling and minimisation

Advanced topics

I multi-objective verification
I parameter synthesis
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Course details

Course material

Ch. 10, Principles of Model Checking
Christel Baier
TU Dresden, Germany

Joost-Pieter Katoen
RWTH Aachen University, Germany, and
University of Twente, the Netherlands
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Course details

Other literature
I H.C. Tijms: A First Course in Stochastic Models. Wiley, 2003.

I H. Hermanns: Interactive Markov Chains: The Quest for Quantified Quality.
LNCS 2428, Springer-Verlag, 2002.

I J.-P. Katoen. The Probabilistic Model Checking Landscape, LICS, 2016.
(see course web page for download)

I J.-P. Katoen. Model Checking Meets Probability: A Gentle Introduction.
IOS Press, 2013. (see course web-page for download)

I M. Stoelinga. Introduction to Probabilistic Automata. Bull. ETACS, 2002.

I M. Kwiatkowska et al.. Stochastic Model Checking. LNCS 4486,
Springer-Verlag, 2007.
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Course details

Lectures
Lecture
I Mon 10:30–12:00 (5056), Tue 08:30–10:00 (5056)
I Oct 8, 9, 15, 22, 23, 29, 30
I Nov 5, 6, 12, 13, 19, 20, 26, 27
I Dec 3, 10, 11, 17, 18
I January 7, 8 . . . . . .
I Check regularly course web page for possible “no shows”

Material
I Lecture slides (with gaps) are made available on web page
I Copies of the books are available in the CS library

Website
http://moves.rwth-aachen.de/teaching/ws-1819/movep18/
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Course details

Exercises and exam
Exercise classes
I Wed 14:30 - 16:00 in AH 6 (start: Oct 24)
I Instructors: Tim Quatmann and Jip Spel

Weekly exercise series

I Intended for groups of 2 students
I New series: every Wed on course web page (start: Oct 24)
I Solutions: Wed (before 14:15) one week later

Exam:
I unknown date (written or oral exam)
I participation if > 40% of all exercise points are gathered
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Course details

Course embedding

Aim of the course
It’s about the foundations of verifying and modelling probabilistic systems

Prerequisites

I Automata and language theory
I Algorithms and data structures
I Probability theory
I Introduction to model checking

Some related courses
I Stochastic Games (Löding)
I Probabilistic Programming (Katoen)
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Course details

Questions?
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Probability refresher

Probability theory is simple, isn’t it?

In no other branch of mathematics
is it so easy to make mistakes

as in probability theory
Henk Tijms, “Understanding Probability” (2004)
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Probability refresher

Measurable space
Sample space
A sample space Ω of a chance experiment is a set of elements that have a 1-to-1
relationship to the possible outcomes of the experiment.

σ-algebra
A σ-algebra is a pair (Ω,F) with Ω 6= ∅ and F ⊆ 2Ω a collection of subsets of
sample space Ω such that:

1. Ω ∈ F

2. A ∈ F ⇒ Ω− A ∈ F complement

3. (∀i > 0. Ai ∈ F) ⇒
⋃

i>0 Ai ∈ F countable union

The elements in F of a σ-algebra (Ω,F) are called events.
The pair (Ω,F) is called a measurable space.

Let Ω be a set. F = {∅, Ω } yields the smallest σ-algebra; F = 2Ω yields the
largest one.
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Probability refresher

Probabilities
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Probability refresher

Probability space

Probability space
A probability space P is a structure (Ω,F ,Pr) with:
I (Ω,F) is a σ-algebra, and
I Pr : F → [0, 1] is a probability measure, i.e.:

1. Pr(Ω) = 1, i.e., Ω is the certain event

2. Pr
(⋃

i∈I
Ai

)
=
∑
i∈I

Pr(Ai ) for any Ai ∈ F with Ai ∩ Aj = ∅ for i 6=j ,

where {Ai }i∈I is finite or countably infinite.
The elements in F of a probability space (Ω,F ,Pr) are called measurable
events.
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Probability refresher

Some lemmas

Properties of probabilities
For measurable events A, B and Ai and probability measure Pr:
I Pr(A) = 1− Pr(Ω− A)

I Pr(A ∪ B) = Pr(A) + Pr(B)− Pr(A ∩ B)

I Pr(A ∩ B) = Pr(A | B) · Pr(B)

I A ⊆ B implies Pr(A) 6 Pr(B)

I Pr(
⋃

n>1 An) =
∑

n>1 Pr(An) provided An are pairwise disjoint
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Probability refresher

Discrete probability space
Discrete probability space
Pr is a discrete probability measure on (Ω,F) if
I there is a countable set A ⊆ Ω such that for a ∈ A:

{ a } ∈ F and
∑
a∈A

Pr({ a }) = 1

I e.g., a probability measure on (Ω, 2Ω)
(Ω,F ,Pr) is then called a discrete probability space; otherwise, it is a
continuous probability space.

Example
Example discrete probability space: throwing a die, number of customers in a
shop, . . ..

Example
Example continuous probability space: throwing a dart on a circular board (see
black board), water tank level, . . ..
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Probability refresher

Random variable

Measurable function
Let (Ω,F) and (Ω′,F ′) be measurable spaces. Function f : Ω→ Ω′ is a
measurable function if

f −1(A) = { a | f (a) ∈ A } ∈ F for all A ∈ F ′

Random variable
Measurable function X : Ω→ IR is a random variable.
The probability distribution of X is PrX = Pr ◦ X−1 where Pr is a
probability measure on (Ω,F).
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Probability refresher

Example: rolling a pair of fair dice
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Probability refresher

Distribution function

Distribution function
The distribution function FX of random variable X is defined by:

FX (d) = PrX ((−∞, d ]) = Pr({ a ∈ Ω | X (a) 6 d }︸ ︷︷ ︸
{X 6 d }

) for real d

Properties

I FX is monotonic and right-continuous
I 0 6 FX (d) 6 1
I limd→−∞ FX (d) = 0 and
I limd→∞ FX (d) = 1.
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Probability refresher

Discrete / continuous random variables
Distribution function
The distribution function FX of random variable X is defined for d ∈ IR by:

FX (d) = PrX (X ∈ (−∞, d ]) = Pr({ a ∈ Ω | X (a) 6 d })

In the continuous case, FX is called the cumulative density function.

Distribution function
I For discrete random variable X , FX can be written as:

FX (d) =
∑
di6d

PrX (X=di )

I For continuous random variable X , FX can be written as:

FX (d) =
∫ d

−∞
fX (u) du with f the density function
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Probability refresher

Expectation and variance

Expectation
The expectation of discrete r.v. X with range I is defined by

E [X ] =
∑
xi∈I

xi ·PrX (X=xi )

provided that this series converges absolutely, i.e., the sum must remain
finite on replacing all xi ’s with their absolute values.
The expectation is the weighted average of all possible values that X can
take on.

Variance
The variance of discrete r.v. X is given by Var[X ] = E [X 2]− (E [X ])2.
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Probability refresher

Stochastic process
Stochastic process
A stochastic process is a collection of random variables {Xt | t ∈ T }.
I casual notation X (t) instead of Xt
I with all Xt defined on probability space P
I parameter t (mostly interpreted as “time”) takes values in the set T

Xt is a random variable whose values are called states. The set of all
possible values of Xt is the state space of the stochastic process.

Parameter space T
State space Discrete Continuous

Discrete # jobs at k-th job departure # jobs at time t

Continuous waiting time of k-th job total service time at time t
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Probability refresher

Example stochastic processes

I Waiting times of customers in a shop
I Interarrival times of jobs at a production lines
I Service times of a sequence of jobs
I Files sizes that are downloaded via the Internet
I Number of occupied channels in a wireless network
I . . . . . .
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Probability refresher

Bernouilli process

Bernouilli random variable
Random variable X on state space { 0, 1 } defined by:

Pr(X = 1) = p and Pr(X = 0) = 1−p

is a Bernouilli random variable.
The mass function is given by f (k; p) = pk ·(1−p)1−k for k ∈ { 0, 1 }.
Expectation E [X ] = p; variance Var[X ] = E [X 2]− (E [X ])2 = p·(1−p).

Bernouilli process
A Bernouilli process is a sequence of independent and identically
distributed Bernouilli random variables X1,X2, . . ..
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Probability refresher

Binomial process
Binomial process
Let X1,X2, . . . be a Bernouilli process. The binomial process Sn is defined
by S0 = 0 and Sn =

∑n
i=1 Xi . The probability distribution of “counting

process” Sn is given by:

Pr{ Sn = k } =
(

n
k

)
pk · (1− p)n−k for 0 6 k 6 n

Moments: E [Sn] = n·p and Var[Sn] = n·p·(1−p).

Geometric distribution
Let r.v. Ti be the number of steps between increments of counting process
Sn. Then:

Pr{Ti = k } = (1− p)k−1·p for k > 1

This is a geometric distribution. We have E [Ti ] = 1
p and Var[Ti ] = 1−p

p2 .
Intuition: Geometric distribution = number of Bernoulli trials needed for one success.
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Probability refresher

Geometric distribution
Geometric distribution
Let X be a discrete random variable, natural k > 0 and 0 < p 6 1. The
mass function of a geometric distribution is given by:

Pr{X = k } = (1− p)k−1·p

We have E [X ] = 1
p and Var[X ] = 1−p

p2 and cdf Pr{X 6 k } = 1− (1−p)k .

Geometric distributions and their cdf’s
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Probability refresher

Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

Pr{X = k + m | X > m} = Pr{X = k} for any m ∈ T , k > 1

This is called the memoryless property, and X is a memoryless r.v..
2. Any discrete random variable which is memoryless is geometrically

distributed.

Proof:
On the black board.
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Probability refresher

Joint distribution function
Joint distribution function
The joint distribution function of stochastic process X = {Xt | t ∈ T } is
given for n, t1, . . . , tn ∈ T and d1, . . . , dn by:

FX (d1, . . . , dn; t1, . . . , tn) = Pr{X (t1) 6 d1, . . . ,X (tn) 6 dn }

The shape of FX depends on the stochastic dependency between X (ti ).

Stochastic independence
Random variables Xi on probability space P are independent if:

FX (d1, . . . , dn; t1, . . . , tn) =
n∏

i=1
FX (di ; ti ) =

n∏
i=1

Pr{X (ti ) 6 di }.

A renewal process is a discrete-time stochastic process where X (t1),X (t2), . . . are
independent, identically distributed, non-negative random variables.

The next state of the stochastic process only depends on the current state, and
not on states assumed previously. This is the Markov property.
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