Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movep18/

October 08, 2018

Introduction

Overview

1 Introduction

2 The relevance of probabilities

3 Course details

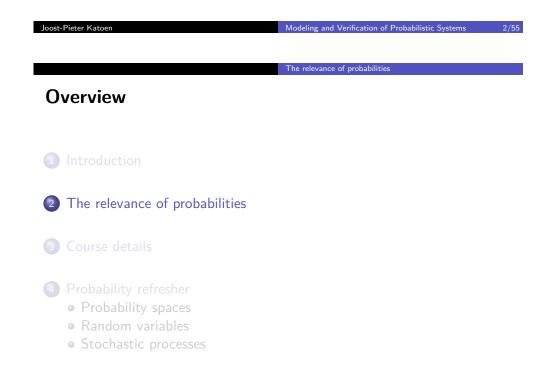
- 4 Probability refresher
 - Probability spaces
 - Random variables
 - Stochastic processes

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 1,

Theme of the course

The theory of modelling and verification of probabilistic systems



More than five reasons for probabilities

- 1. Randomised Algorithms
- 2. Reducing Complexity
- 3. Probabilistic Programming
- 4. Reliability

oost-Pieter Katoen

- 5. Performance
- 6. Optimisation
- 7. Systems Biology

Modeling and Verification of Probabilistic Systems 5,

The relevance of probabilities

The relevance of probabilities

Distributed computing

FLP impossibility result

[Fischer et al., 1985]

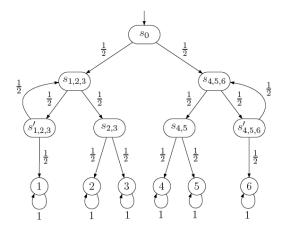
In an asynchronous setting, where only one processor might crash, there is **no** distributed algorithm that solves the consensus problem—getting a distributed network of processors to agree on a common value.

Ben-Or's possibility result

[Ben-Or, 1983]

If a process can make a decision based on its internal state, the message state, and some probabilistic state, consensus in an asynchronous setting is almost surely possible.

Randomised algorithms: Simulating a die [Knuth & Yao, 1976]



Heads = "go left"; tails = "go right". Does this model a six-sided die?

Joost-Pieter Katoen

The relevance of probabilities

Modeling and Verification of Probabilistic Systems

Example: Self-stabilisation

A distributed algorithm is self-stabilising iff:

► Convergence:

Starting from an arbitrary state, it will always converge to a legitimate state.

 Closure: And it remains in a legitimate set of states thereafter in absence of faults.

A self-stabilising algorithm:

- Works correctly for every initialisation
- Recovers from the occurrence of transient faults

A key concept in fault-tolerant distributed computing

The relevance of probabilities

Dijkstra's Self-Stabilising Algorithm

- Asynchronous processes 0, ..., N form a directed ring
- ▶ Process *i* has a variable $x_i \in \{0, ..., K-1\}$, for $K \ge N$
- Processes have access to their neighbour's variables, and execute:
 - Process 0: if $x_0 = x_N$, then $x_0 := (x_0+1) \mod K$
 - ▶ Process $i \neq 0$: if $x_i \neq x_{i-1}$ then $x_i := x_{i-1}$
- Process with enabled guard holds a token
- Legitimate state = unique token

Performance metric = worst-case convergence time

Symmetric Self-Stabilisation

Dijkstra's algorithm uses a designated process to break the symmetry

Self-stabilisation in anonymous networks is impossible

Possible solution: use randomisation.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 10/5

The relevance of probabilities

Modeling and Verification of Probabilistic Systems

Randomised Self-Stabilisation

A distributed randomised algorithm is stabilising iff:

Convergence:

Starting from an arbitrary state, it will almost surely converge to a legitimate state

► Closure:

Joost-Pieter Katoen

And it remains in a legitimate set of states thereafter in absence of faults

Herman's algorithm is a prime example of such algorithm

The relevance of probabilities

Herman's Randomised Self-Stabilisation

- \triangleright N+1 (odd) synchronous processes 0, ..., N form a directed ring
- ▶ Process *i* has a Boolean variable $x_i \in \{0, 1\}$
- Processes have access to their neighbour's variables
- Process *i* performs:

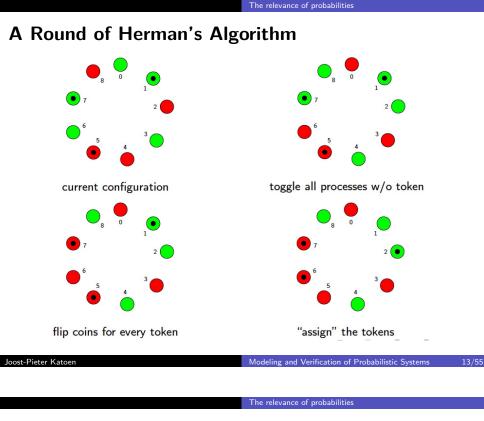
• if $x_i =$

$$x_{i-1}$$
, then $x_i := \begin{cases} 0 & \text{with probability } \frac{1}{2} \\ 1 & \text{with probability } \frac{1}{2} \end{cases}$

• if $x_i \neq x_{i-1}$ then $x_i := x_{i-1}$

• Process has token if x_i equals x_{i-1}

Performance metric = expected convergence time



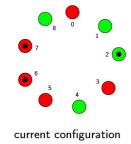
Herman's Randomised Self-Stabilisation

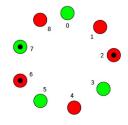
Consider Herman's original algorithm:

► Process *i* performs:

• if $x_i = x_{i-1}$, then $x_i := \begin{cases} 0 & \text{with probability } p \\ 1 & \text{with probability } 1-p \end{cases}$

- if $x_i \neq x_{i-1}$ then $x_i := x_{i-1}$
- Process hat token if x_i equals x_{i-1}

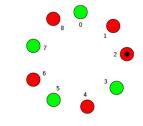




flip coins for every token

The relevance of probabilities

toggle all processes w/o token



"assign" the tokens

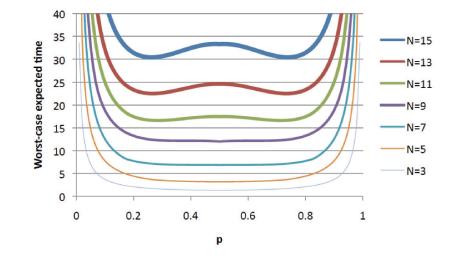
Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

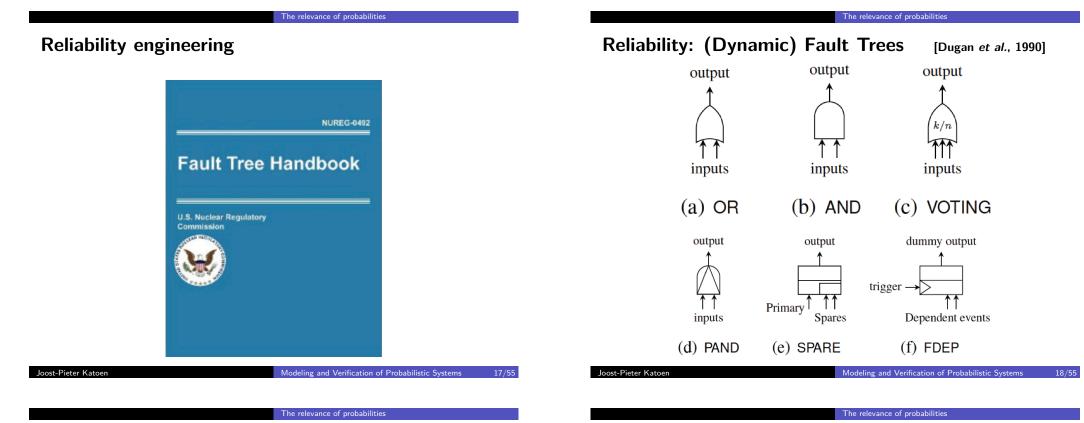
The relevance of probabilities

Use Biased Coins

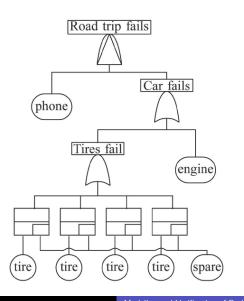
[Kwiatkowska et al., 2012]



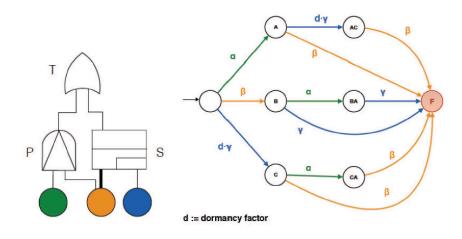
For larger rings, a biased coin reduces the expected convergence time



A fault tree example



Fault trees are Markov models



~ · · ·

The relevance of probabilities

Probabilities help

- When modelling and analysing dependability and reliability
 - ▶ to quantify arrivals, message loss, waiting times, time between failure, QoS, ...
- ▶ When building protocols for networked embedded systems
 - randomized algorithms
- ► When problems are undecidable
 - repeated reachability of lossy channel systems, ...
- ► For obtaining a better performance
 - ▶ Freivald's matrix-mulitplication, random Quicksort ...

Joost-Pieter	12 - 4
Joost-Pieter	Natoen

Modeling and Verification of Probabilistic Systems 21/55

The relevance of probabilities

Topic of this lecture series

"A promising new direction in formal methods research these days is the development of probabilistic models, with associated tools for quantitative evaluation of system performance along with correctness."

Theory in Practice for System Design and Verification

Rajeev Alur Univ. of Pennsylvania

IST Austria Rice University

ACM SIGLOG News 2015

Topic of this lecture series

"Probabilistic model checking is one of the main challenges for the future."

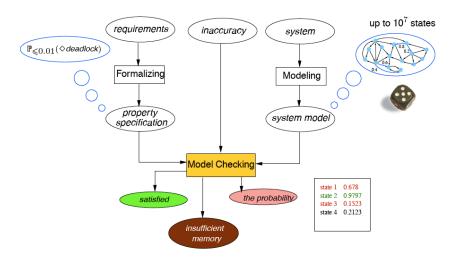
Edmund J. Clarke The Birth of Model Checking, 2008

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 22/55

The relevance of probabilities

What is probabilistic model checking?



Probabilistic models

	Nondeterminism no	Nondeterminism yes
Discrete time	discrete-time Markov chain (DTMC)	Markov decision process (MDP)
Continuous time	СТМС	CTMDP

Some other models: probabilistic variants of (priced) timed automata

Course details

Properties

	Logic	Monitors
Discrete time	probabilistic CTL	deterministic automata (safety and LTL)
Continuous time	probabilistic timed CTL	deterministic timed automata

Core problem: computing (timed) reachability probabilities

Course details

Joost-	Pieter	Kato

Modeling and Verification of Probabilistic Systems 26/5

Course topics

probability theory refrehser

- measurable spaces, σ -algebra, measurable functions
- geometric, exponential and binomial distributions
- Markov and memoryless property
- limiting and stationary distributions

What are probabilistic models?

- discrete-time Markov chains
- continuous-time Markov chains
- extensions of these models with rewards
- Markov decision processes (or: probabilistic automata)
- Markov automata

Joost-Pieter Katoen

Overview

3 Course details

• Probability spaces

• Random variables

• Stochastic processes

Modeling and Verification of Probabilistic Systems

Course details

Course topics

What are prop

► reachability probabilities, i.e., ♦ G

?

- long-run properties
- linear temporal logic
- probabilistic computation tree logic

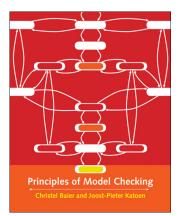
How to check temporal logic properties?

- graph analysis, solving systems of linear equations
- deterministic Rabin automata, product construction
- linear programming, integral equations
- uniformization, Volterra integral equations

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 29/55

Course material



Ch. 10, Principles of Model Checking

CHRISTEL BAIER

TU Dresden, Germany

Course details

JOOST-PIETER KATOEN

RWTH Aachen University, Germany, and University of Twente, the Netherlands

Course topics

How to make probabilistic models smaller?

- Equivalences and pre-orders
- Which properties are preserved?

How to model probabilistic models?

- parallel composition and hiding
- compositional modelling and minimisation

Advanced topics

- multi-objective verification
- parameter synthesis

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 30/5

Course details

Other literature

- ▶ H.C. Tijms: A First Course in Stochastic Models. Wiley, 2003.
- H. Hermanns: Interactive Markov Chains: The Quest for Quantified Quality. LNCS 2428, Springer-Verlag, 2002.
- J.-P. Katoen. The Probabilistic Model Checking Landscape, LICS, 2016. (see course web page for download)
- J.-P. Katoen. Model Checking Meets Probability: A Gentle Introduction. IOS Press, 2013. (see course web-page for download)
- ► M. Stoelinga. Introduction to Probabilistic Automata. Bull. ETACS, 2002.
- M. Kwiatkowska *et al.*. Stochastic Model Checking. LNCS 4486, Springer-Verlag, 2007.

Course details

Lectures

Lecture

- Mon 10:30-12:00 (5056), Tue 08:30-10:00 (5056)
- Oct 8, 9, 15, 22, 23, 29, 30
- Nov 5, 6, 12, 13, 19, 20, 26, 27
- ▶ Dec 3, 10, 11, 17, 18
- ► January 7, 8
- Check regularly course web page for possible "no shows"

Material

- Lecture slides (with gaps) are made available on web page
- Copies of the books are available in the CS library

Website

http://moves.rwth-aachen.de/teaching/ws-1819/movep18/

Joost-Pieter Katoen

Course details

Modeling and Verification of Probabilistic Systems

Course embedding

Aim of the course

It's about the foundations of verifying and modelling probabilistic systems

Prerequisites

- Automata and language theory
- Algorithms and data structures
- Probability theory
- Introduction to model checking

Some related courses

- Stochastic Games (Löding)
- Probabilistic Programming (Katoen)

Exercises and exam

Exercise classes

- Wed 14:30 16:00 in AH 6 (start: Oct 24)
- Instructors: Tim Quatmann and Jip Spel

Weekly exercise series

- Intended for groups of 2 students
- ▶ New series: every Wed on course web page (start: Oct 24)
- ► Solutions: Wed (before 14:15) one week later

Exam:

- unknown date (written or oral exam)
- \blacktriangleright participation if $\geqslant 40\%$ of all exercise points are gathered

loost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 34/55

Course details

Questions?

Overview

4 Probability refresher

- Probability spaces
- Random variables
- Stochastic processes

Probability theory is simple, isn't it?

In no other branch of mathematics is it so easy to make mistakes as in probability theory

Henk Tijms, "Understanding Probability" (2004)

Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

Modeling and Verification of Probabilistic Systems

Probability refresher

Measurable space

Sample space

A sample space Ω of a chance experiment is a set of elements that have a 1-to-1 relationship to the possible outcomes of the experiment.

σ -algebra

A σ -algebra is a pair (Ω, \mathcal{F}) with $\Omega \neq \emptyset$ and $\mathcal{F} \subseteq 2^{\Omega}$ a collection of subsets of sample space Ω such that:

1. $\Omega \in \mathcal{F}$

2. $A \in \mathcal{F} \Rightarrow \Omega - A \in \mathcal{F}$

complement

3. $(\forall i \ge 0. A_i \in \mathcal{F}) \implies \bigcup_{i \ge 0} A_i \in \mathcal{F}$

countable union

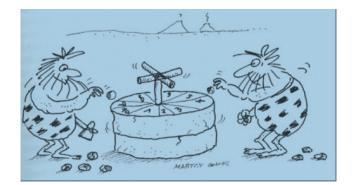
The elements in \mathcal{F} of a σ -algebra (Ω, \mathcal{F}) are called *events*. The pair (Ω, \mathcal{F}) is called a *measurable space*.

Let Ω be a set. $\mathcal{F} = \{ \emptyset, \Omega \}$ yields the smallest σ -algebra; $\mathcal{F} = 2^{\Omega}$ yields the largest one.

Probability refresher

Modeling and Verification of Probabilistic System 38/55

Probabilities



Probability refreshe

Probability space

Probability space

- A probability space \mathcal{P} is a structure $(\Omega, \mathcal{F}, Pr)$ with:
 - (Ω, \mathcal{F}) is a σ -algebra, and
 - ▶ $Pr: \mathcal{F} \rightarrow [0, 1]$ is a probability measure, i.e.:
 - 1. $Pr(\Omega) = 1$, i.e., Ω is the certain event

2.
$$Pr\left(\bigcup_{i\in I}A_i\right) = \sum_{i\in I}Pr(A_i)$$
 for any $A_i \in \mathcal{F}$ with $A_i \cap A_j = \emptyset$ for $i \neq j$,
where $\{A_i\}_{i\in I}$ is finite or countably infinite.

The elements in \mathcal{F} of a probability space $(\Omega, \mathcal{F}, Pr)$ are called *measurable* events.

oost-Pieter Katoen

Probability refresher

Modeling and Verification of Probabilistic Systems

Discrete probability space

Discrete probability space

Pr is a *discrete* probability measure on (Ω, \mathcal{F}) if

• there is a countable set $A \subseteq \Omega$ such that for $a \in A$:

$$\{a\} \in \mathcal{F}$$
 and $\sum_{a \in A} Pr(\{a\}) = 1$

• e.g., a probability measure on $(\Omega, 2^{\Omega})$

 $(\Omega, \mathcal{F}, Pr)$ is then called a *discrete* probability space; otherwise, it is a continuous probability space.

Example

Example discrete probability space: throwing a die, number of customers in a shop,

Example

loost-Pieter Katoen Example continuous probability space: throwing a dart on a circular board (see

Some lemmas

Properties of probabilities

For measurable events A, B and A_i and probability measure Pr.

- \blacktriangleright $Pr(A) = 1 Pr(\Omega A)$
- $Pr(A \cup B) = Pr(A) + Pr(B) Pr(A \cap B)$
- $\blacktriangleright Pr(A \cap B) = Pr(A \mid B) \cdot Pr(B)$
- \blacktriangleright $A \subset B$ implies $Pr(A) \leq Pr(B)$
- $Pr(\bigcup_{n\geq 1} A_n) = \sum_{n\geq 1} Pr(A_n)$ provided A_n are pairwise disjoint

Probability refresher

Joost-Pieter Katoen

41/55

Modeling and Verification of Probabilistic System

Random variable

Measurable function

1

Let (Ω, \mathcal{F}) and (Ω', \mathcal{F}') be measurable spaces. Function $f : \Omega \to \Omega'$ is a measurable function if

$$f^{-1}(A) = \{ a \mid f(a) \in A \} \in \mathcal{F} \quad \text{ for all } A \in \mathcal{F}' \}$$

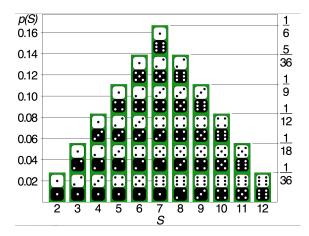
Random variable

Measurable function $X : \Omega \to \mathbb{R}$ is a *random variable*.

The probability distribution of X is $Pr_X = Pr \circ X^{-1}$ where Pr is a probability measure on (Ω, \mathcal{F}) .

Probability refresh

Example: rolling a pair of fair dice



Joost-Pieter Katoen

Modeling and Verification of Probabilistic System

45/55

Probability refresher

Discrete / continuous random variables

Distribution function

The *distribution function* F_X of random variable X is defined for $d \in \mathbb{R}$ by:

$$F_X(d) = Pr_X(X \in (-\infty, d]) = Pr(\{a \in \Omega \mid X(a) \leq d\})$$

In the continuous case, F_X is called the *cumulative density function*.

Distribution function

For discrete random variable X, F_X can be written as:

$$F_X(d) = \sum_{d_i \leqslant d} \Pr_X(X = d_i)$$

• For continuous random variable X, F_X can be written as:

$$F_X(d) = \int_{-\infty}^d f_X(u) \, du$$

Modeling and Verification of Probabilistic Systems

with *f* the density function

Distribution function

Distribution function

The *distribution function* F_X of random variable X is defined by:

$$F_X(d) = Pr_X((-\infty, d]) = Pr(\underbrace{\{a \in \Omega \mid X(a) \leq d\}}_{\{X \leq d\}}) \quad \text{for real } d$$

Properties

- ► *F_X* is monotonic and right-continuous
- ▶ $0 \leq F_X(d) \leq 1$
- ▶ $\lim_{d\to -\infty} F_X(d) = 0$ and
- $\vdash \lim_{d\to\infty} F_X(d) = 1.$

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 46/5

Probability refresher

Expectation and variance

Expectation

The *expectation* of discrete r.v. X with range I is defined by

$$E[X] = \sum_{x_i \in I} x_i \cdot Pr_X(X = x_i)$$

provided that this series converges absolutely, i.e., the sum must remain finite on replacing all x_i 's with their absolute values.

The expectation is the weighted average of all possible values that X can take on.

Variance

The *variance* of discrete r.v. X is given by $Var[X] = E[X^2] - (E[X])^2$.

Probability refresher

Stochastic process

Stochastic process

- A *stochastic process* is a collection of random variables $\{X_t \mid t \in T\}$.
 - \blacktriangleright casual notation X(t) instead of X_t
 - with all X_t defined on probability space \mathcal{P}
 - parameter t (mostly interpreted as "time") takes values in the set T

 X_t is a random variable whose values are called *states*. The set of all possible values of X_t is the *state space* of the stochastic process.

	Parameter space <i>T</i>	
State space	Discrete	Continuous
Discrete	# jobs at k -th job departure	# jobs at time <i>t</i>
Continuous	waiting time of <i>k</i> -th job	total service time at time <i>t</i>
Pieter Katoen	Modeling a	nd Verification of Probabilistic Systems

Probability refreshe

Bernouilli process

Bernouilli random variable

Random variable X on state space $\{0, 1\}$ defined by:

$$Pr(X=1) = p$$
 and $Pr(X=0) = 1-p$

is a *Bernouilli* random variable.

The mass function is given by $f(k; p) = p^k \cdot (1-p)^{1-k}$ for $k \in \{0, 1\}$. Expectation E[X] = p; variance $Var[X] = E[X^2] - (E[X])^2 = p \cdot (1-p)$.

Bernouilli process

A *Bernouilli process* is a sequence of independent and identically distributed Bernouilli random variables X_1, X_2, \ldots

Example stochastic processes

- Waiting times of customers in a shop
- Interarrival times of jobs at a production lines
- Service times of a sequence of jobs
- Files sizes that are downloaded via the Internet
- Number of occupied channels in a wireless network

▶

Joost-Pieter Katoer

Modeling and Verification of Probabilistic Systems 50/5

Probability refreshe

Binomial process

Binomial process

Let $X_1, X_2, ...$ be a Bernouilli process. The *binomial* process S_n is defined by $S_0 = 0$ and $S_n = \sum_{i=1}^n X_i$. The probability distribution of "counting process" S_n is given by:

$$Pr\{S_n = k\} = \binom{n}{k} p^k \cdot (1-p)^{n-k} \quad \text{for } 0 \leq k \leq n$$

Moments: $E[S_n] = n \cdot p$ and $Var[S_n] = n \cdot p \cdot (1-p)$.

Geometric distribution

Let r.v. T_i be the number of steps between increments of counting process S_n . Then:

$$Pr\{ T_i = k \} = (1-p)^{k-1} \cdot p \quad \text{for } k \ge 1$$

This is a *geometric distribution*. We have $E[T_i] = \frac{1}{p}$ and $Var[T_i] = \frac{1-p}{p^2}$. Intuition: Geometric distribution = number of Bernoulli trials needed for one success.

Probability refresher

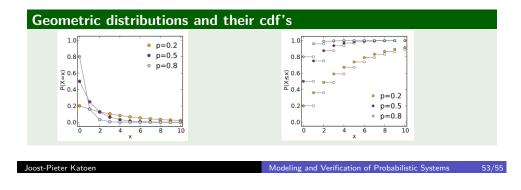
Geometric distribution

Geometric distribution

Let X be a discrete random variable, natural k > 0 and 0 . The mass function of a*geometric distribution*is given by:

$$Pr\{X = k\} = (1 - p)^{k-1} \cdot p$$

We have
$$E[X] = \frac{1}{p}$$
 and $Var[X] = \frac{1-p}{p^2}$ and cdf $Pr\{X \leq k\} = 1 - (1-p)^k$



Probability refresher

Joint distribution function

Joint distribution function

The *joint* distribution function of stochastic process $X = \{X_t \mid t \in T\}$ is given for $n, t_1, \ldots, t_n \in T$ and d_1, \ldots, d_n by:

$$F_X(d_1,\ldots,d_n;t_1,\ldots,t_n)=\Pr\{X(t_1)\leqslant d_1,\ldots,X(t_n)\leqslant d_n\}$$

The shape of F_X depends on the stochastic dependency between $X(t_i)$.

Stochastic independence

Random variables X_i on probability space \mathcal{P} are *independent* if:

$$F_X(d_1,\ldots,d_n;t_1,\ldots,t_n) = \prod_{i=1}^n F_X(d_i;t_i) = \prod_{i=1}^n Pr\{X(t_i) \leq d_i\}.$$

A renewal process is a discrete-time stochastic process where $X(t_1), X(t_2), \ldots$ are independent, identically distributed, non-negative random variables.

Modeling and Verification of Probabilistic Systems

Memoryless property

Theorem

1. For any random variable X with a geometric distribution:

$$Pr{X = k + m \mid X > m} = Pr{X = k}$$
 for any $m \in T, k \ge 1$

This is called the memoryless property, and X is a memoryless r.v..

2. Any discrete random variable which is memoryless is geometrically distributed.

Proof:

On the black board.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 54/55