Modeling and Verification of Probabilistic Systems

Joost-Pieter Katoen

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1819/movep18/

November 6, 2018

Overview

1 Strong Bisimulation

2 Probabilistic Bisimulation

- Quotient Markov Chain
- Examples

3 Logical Preservation

- The Logics PCTL, PCTL* and PCTL⁻
- Preservation Theorem

Lumpability

5 Summary

Overview

Strong Bisimulation

2 Probabilistic Bisimulation

- Quotient Markov Chain
- Examples

Logical Preservation

- The Logics PCTL, PCTL* and PCTL⁻
- Preservation Theorem

Lumpability

5) Summary

Labeled transition system

Transition system

A *(labeled) transition system TS* is a structure $(S, Act, \rightarrow, I_0, AP, L)$ where

- ► *S* is a (possibly infinitely countable) set of states.
- Act is a (possibly infinitely countable) set of actions.
- $\blacktriangleright \longrightarrow \subseteq S \times Act \times S \text{ is a transition relation.}$
- $I_0 \subseteq S$ the set of initial states.
- *AP* is a set of atomic propositions.
- $L: S \rightarrow 2^{AP}$ is the labeling function.

Notation

We write
$$s \xrightarrow{\alpha} s'$$
 instead of $(s, \alpha, s') \in \longrightarrow$.

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]

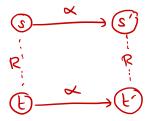
Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $R \subseteq S \times S$. Then R is a strong bisimulation on TS whenever for all $(s, t) \in R$: 1. L(s) = L(t) $contend to the strength of the system and <math>R \subseteq S \times S$. 1. L(s) = L(t) $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and <math>R \subseteq S \times S$. $contend to the system and R \subseteq S \times S$. contend to the system an

Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $R \subseteq S \times S$. Then R is a *strong bisimulation* on TS whenever for all $(s, t) \in R$:

- 1. L(s) = L(t)
- 2. if $s \xrightarrow{\alpha} s'$ then there exists $t' \in S$ such that $t \xrightarrow{\alpha} t'$ and $(s', t') \in R$

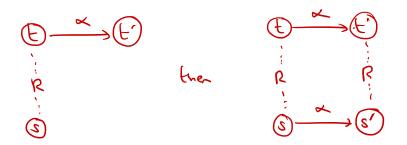


Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $R \subseteq S \times S$. Then R is a *strong bisimulation* on TS whenever for all $(s, t) \in R$:

- 1. L(s) = L(t)
- 2. if $s \xrightarrow{\alpha} s'$ then there exists $t' \in S$ such that $t \xrightarrow{\alpha} t'$ and $(s', t') \in R$
- 3. if $t \xrightarrow{\alpha} t'$ then there exists $s' \in S$ such that $s \xrightarrow{\alpha} s'$ and $(s', t') \in R$



Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $R \subseteq S \times S$. Then *R* is a *strong bisimulation* on *TS* whenever for all $(s, t) \in R$:

- 1. L(s) = L(t)
- 2. if $s \xrightarrow{\alpha} s'$ then there exists $t' \in S$ such that $t \xrightarrow{\alpha} t'$ and $(s', t') \in R$
- 3. if $t \xrightarrow{\alpha} t'$ then there exists $s' \in S$ such that $s \xrightarrow{\alpha} s'$ and $(s', t') \in R$

Strong (bisimilarity

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $s, t \in S$.

Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $R \subseteq S \times S$. Then *R* is a *strong bisimulation* on *TS* whenever for all $(s, t) \in R$:

- 1. L(s) = L(t)
- 2. if $s \xrightarrow{\alpha} s'$ then there exists $t' \in S$ such that $t \xrightarrow{\alpha} t'$ and $(s', t') \in R$
- 3. if $t \xrightarrow{\alpha} t'$ then there exists $s' \in S$ such that $s \xrightarrow{\alpha} s'$ and $(s', t') \in R$

Strong bisimilarity

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $s, t \in S$. Then: s is strongly bisimilar to t, notation $s \sim t$ if there exists a strong bisimulation R such that $(s, t) \in R$.

alternative
$$\mathcal{G} = \mathcal{O} \{ R \text{ is a strong bisimulation} \}$$

5/48

Strong bisimulation ~ is an equivalence, and is also a shorp bish.

Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $R \subseteq S \times S$. Then R is a *strong bisimulation* on TS whenever for all $(s, t) \in R$: 1. L(s) = L(t)2. if $s \xrightarrow{\alpha} s'$ then there exists $t' \in S$ such that $t \xrightarrow{\alpha} t'$ and $(s', t') \in R$ 3. if $t \xrightarrow{\alpha} t'$ then there exists $s' \in S$ such that $s \xrightarrow{\alpha} s'$ and $(s', t') \in R$

Strong bisimilarity

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $s, t \in S$. Then: *s* is *strongly bisimilar* to *t*, notation $s \sim t$, if there *exists* a strong bisimulation *R* such that $(s, t) \in R$.

Remarks

Not every bisimulation relation is transitive.

Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $R \subseteq S \times S$. Then *R* is a *strong bisimulation* on *TS* whenever for all $(s, t) \in R$:

- 1. L(s) = L(t)
- 2. if $s \xrightarrow{\alpha} s'$ then there exists $t' \in S$ such that $t \xrightarrow{\alpha} t'$ and $(s', t') \in R$
- 3. if $t \xrightarrow{\alpha} t'$ then there exists $s' \in S$ such that $s \xrightarrow{\alpha} s'$ and $(s', t') \in R$

Strong bisimilarity

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ be a transition system and $s, t \in S$. Then: *s* is *strongly bisimilar* to *t*, notation $s \sim t$, if there *exists* a strong bisimulation *R* such that $(s, t) \in R$.

Remarks

Not every bisimulation relation is transitive. But: \sim is an equivalence.

Joost-Pieter Katoen

Pictorial representation

	$s \xrightarrow{\alpha} s'$		5	$\xrightarrow{\alpha}$	s'
	R	can be completed to	R		R
	t		t	$\xrightarrow{\alpha}$	ť
and					
	S		5	$\xrightarrow{\alpha}$	<i>s</i> ′
	R	can be completed to	R		R
	$t \xrightarrow{\alpha} t'$		t	$\xrightarrow{\alpha}$	ť

Strongly bisimilar transition systems

Bisimilar transition systems

Let TS_1 , TS_2 be transition systems over the same set of atomic propositions with initial states $I_{0,1}$ and $I_{0,2}$, respectively.

Consider the transition system $TS = TS_1 \uplus TS_2$ that results from the disjoint union of TS_1 and TS_2 .

Then: TS_1 and TS_2 are called strongly bisimilar if there exists a strong bisimulation R on $S_1
ightarrow S_2$ such that:

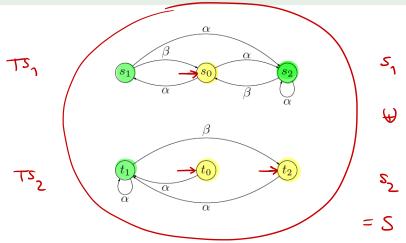
1. $\forall s \in I_{0,1}$. $\exists t \in I_{0,2}$. $(s, t) \in R$, and

2. $\forall t \in I_{0,2}$. $\exists s \in I_{0,1}$. $(s, t) \in R$.

Example (1)

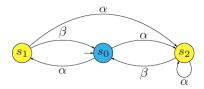
 $R \subseteq S \times S$

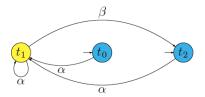
Are these transition systems strongly bisimilar? (No propositions.)



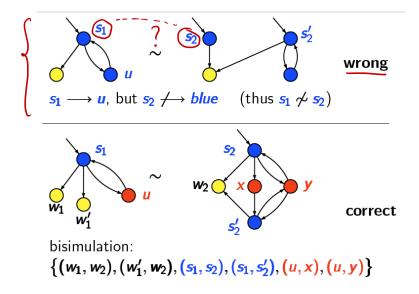
Example (2)

Yes, they are!





Correct or wrong?



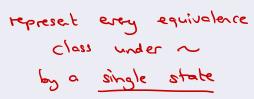
Quotient LTS under \sim

Quotient transition system

For $TS = (S, Act, \rightarrow, I_0, AP, L)$ and strong bisimilarity $\sim \subseteq S \times S$ let

 $TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$ the *quotient* of TS under \sim

where



is an equivalence

Quotient LTS under \sim

Quotient transition system

For $TS = (S, Act, \longrightarrow, I_0, AP, L)$ and strong bisimilarity $\sim \subseteq S \times S$ let

 $TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$ the *quotient* of TS under \sim

where

► S' = S/~ = { [s]~ | s ∈ S } with [s]~ = { s' ∈ S | s ~ s' }
→' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\alpha} ' [s']_{\sim}}$$

I'₀ = { [s₀]_∼ | s₀ ∈ I₀ }, the equivalence class of the initial states in TS
 L'([s]_∼) = L(s).

Quotient LTS under \sim

Quotient transition system

For $TS = (S, Act, \longrightarrow, I_0, AP, L)$ and strong bisimilarity $\sim \subseteq S \times S$ let

 $TS/\sim = (S', Act, \longrightarrow', I'_0, AP, L'),$ the *quotient* of TS under \sim

where

► S' = S/~ = { [s]~ | s ∈ S } with [s]~ = { s' ∈ S | s ~ s' }
→' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\alpha} [s']_{\sim}}$$

I'₀ = { [s₀]~ | s₀ ∈ I₀ }, the equivalence class of the initial states in TS
 L'([s]~) = L(s).

Remarks

L' is well-defined as all states in $[s]_{\sim}$ are equally labeled. Note that if $s \xrightarrow{\alpha} s'$, then for all $t \sim s$ we have $t \xrightarrow{\alpha} t'$ with $s' \sim t'$.

Quotient transition system

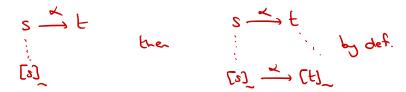
For any transition system *TS* it holds: *TS* ~ *TS*/~.

Proof:

The binary relation:

$$R = \{ (s, [s]_{\sim}) \mid s \in S \}$$

is a strong bisimulation on the disjoint union $TS \uplus TS / \sim$.



Strong bisimulation revisited

Auxiliary predicate

Let $P: S \times Act \times 2^S \rightarrow \{0, 1\}$ be a predicate such that for $S' \subseteq S$:

$$\underbrace{P(s, \alpha, S') = \begin{cases} 1 & \text{if } \exists s' \in S'. \ s \xrightarrow{\alpha} s' \\ 0 & \text{otherwise.} \end{cases}}_{f(s, \alpha, S') = 1}$$

Strong bisimulation revisited

Auxiliary predicate

Let $P: S \times Act \times 2^S \rightarrow \{0, 1\}$ be a predicate such that for $S' \subseteq S$:

$$P(s, \alpha, S') = \begin{cases} 1 & \text{if } \exists s' \in S'. \ s \xrightarrow{\alpha} s' \\ 0 & \text{otherwise.} \end{cases}$$

Alternative definition of strong bisimulation

Let $TS = (S, Act, \rightarrow, I_0, AP, L)$ and R an *equivalence relation* on S. Then: R is a *strong bisimulation* on S if for $(s, t) \in R$:

1.
$$L(s) = L(t)$$
, and

2. $P(s, \alpha, C) = P(t, \alpha, C)$ for all C in S/R and $\alpha \in Act$.

 $s \sim t$, if there *exists* a strong bisimulation R such that $(s, t) \in R$.

It can be easily proven that \sim coincides with $\sim'.$ Proof is omitted.

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems

Overview

1 Strong Bisimulation

Probabilistic Bisimulation

- Quotient Markov Chain
- Examples

B Logical Preservation

- The Logics PCTL, PCTL* and PCTL⁻
- Preservation Theorem

Lumpability

Summary

Probabilistic bisimulation: intuition

Intuition

- Strong bisimulation is used to compare labeled transition systems.
- Strongly bisimilar states exhibit the same step-wise behaviour.
- Our aim: adapt bisimulation to discrete-time Markov chains.
- This yields a probabilistic variant of strong bisimulation.

- When do two DTMC states exhibit the same step-wise behaviour?
- ► Key: if their transition probability for each equivalence class coincides.

1989: Kim G. Larsen and Arne Skou

Kim G. Larsen

Arne Skou

16/48

$P(s,\alpha,C) = P(t,\alpha,C)$

Probabilistic bisimulation

[Larsen & Skou, 1989]

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: *R* is a *probabilistic bisimulation* on *S* if for any $(s, t) \in R$: 1. L(s) = L(t), and 2. $\mathbf{P}(s, C) = \mathbf{P}(t, C)$ for all equivalence classes $C \in S/R$ where $\mathbf{P}(s, C) = \sum_{s' \in C} \mathbf{P}(s, s')$. \frown includes **[s]** 12 S $P(s,C) = \frac{s}{n}$

Probabilistic bisimulation

[Larsen & Skou, 1989]

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: *R* is a *probabilistic bisimulation* on *S* if for any $(s, t) \in R$:

- 1. L(s) = L(t), and
- 2. $\mathbf{P}(s, C) = \mathbf{P}(t, C)$ for all equivalence classes $C \in S/R$

where $\mathbf{P}(s, C) = \sum_{s' \in C} \mathbf{P}(s, s')$.

For states in R, the probability of moving to some equivalence class is equal.

Probabilistic bisimilarity

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D} .

Probabilistic bisimulation

[Larsen & Skou, 1989]

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: *R* is a *probabilistic bisimulation* on *S* if for any $(s, t) \in R$:

- 1. L(s) = L(t), and
- 2. $\mathbf{P}(s, C) = \mathbf{P}(t, C)$ for all equivalence classes $C \in S/R$

where $\mathbf{P}(s, C) = \sum_{s' \in C} \mathbf{P}(s, s')$.

For states in R, the probability of moving to some equivalence class is equal.

Probabilistic bisimilarity

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D} . Then: s is probabilistic bisimilar to t, denoted $s \sim_p t$, if there exists a probabilistic bisimulation R with $(s, t) \in R$.

Probabilistic bisimulation

Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: *R* is a *probabilistic bisimulation* on *S* if for any $(s, t) \in R$: $1 \quad L(s) = L(t)$ and 2. $\mathbf{P}(s, C) = \mathbf{P}(t, C)$ for all equivalence classes $C \in S/R$.

Probabilistic bisimulation

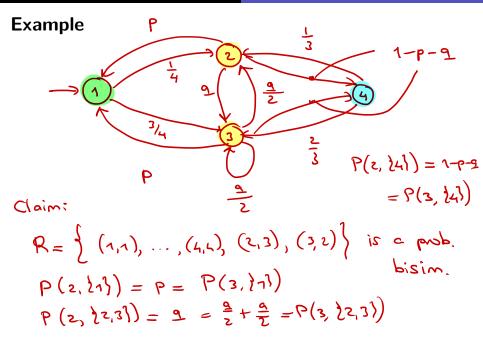
Let $\mathcal{D} = (S, \mathbf{P}, \iota_{\text{init}}, AP, L)$ be a DTMC and $R \subseteq S \times S$ an equivalence. Then: R is a *probabilistic bisimulation* on S if for any $(s, t) \in R$:

1.
$$L(s) = L(t)$$
, and

2. $\mathbf{P}(s, C) = \mathbf{P}(t, C)$ for all equivalence classes $C \in S/R$.

Remarks

As opposed to bisimulation on states in transition systems, any probabilistic bisimulation is an equivalence.



Bisimilar DTMCs

Bisimilar DTMCs

Let \mathcal{D}_1 , \mathcal{D}_2 be DTMCs over the same set of atomic propositions with initial distributions ι_{init}^1 and ι_{init}^2 , respectively.

Consider the DTMC $\mathcal{D} = \mathcal{D}_1 \uplus \mathcal{D}_2$ that results from the disjoint union of \mathcal{D}_1 and \mathcal{D}_2 . Consider \sim_p on $\mathcal{D} = \mathcal{D}_1 \uplus \mathcal{D}_2$.

Then \mathcal{D}_1 and \mathcal{D}_2 are bisimilar, denoted $\mathcal{D}_1 \sim_p \mathcal{D}_2$ whenever

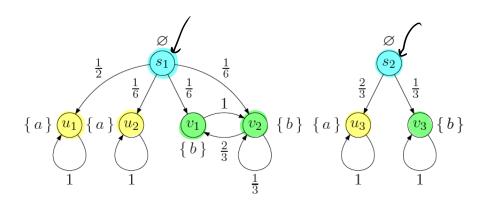
$$\iota^1_{\text{init}}(C) = \iota^2_{\text{init}}(C)$$

for each bisimulation equivalence class C of $\mathcal{D} = \mathcal{D}_1 \uplus \mathcal{D}_2$ under \sim_p .

Here,
$$\iota_{\text{init}}(\mathcal{C})$$
 denotes $\sum_{s \in \mathcal{C}} \iota_{\text{init}}(s)$.

Example

$$P(s_1, -) = \frac{1}{2} + \frac{1}{6} = \frac{2}{3} = P(s_2, -)$$



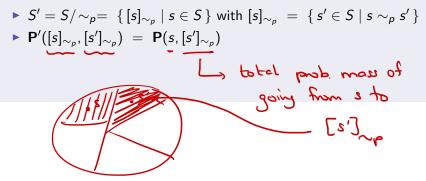
Quotient under \sim_p

Quotient DTMC under \sim_p

For $\mathcal{D}=(\mathit{S}, \mathbf{P}, \iota_{\text{init}}, \mathit{AP}, \mathit{L})$ and probabilistic bisimilarity $\sim_{p} \subseteq \mathit{S} imes \mathit{S}$ let

$$\mathcal{D}/\!\sim_{p} = \; (S', \mathbf{P}', \iota'_{ ext{init}}, AP, L'), \quad ext{ the } extsf{quotient} ext{ of } \mathcal{D} ext{ under } \sim_{p}$$

where



Quotient under \sim_p

Quotient DTMC under \sim_p

For $\mathcal{D}=(\mathit{S}, \mathbf{P}, \iota_{\text{init}}, \mathit{AP}, \mathit{L})$ and probabilistic bisimilarity $\sim_{p} \subseteq \mathit{S} imes \mathit{S}$ let

$$\mathcal{D}/\!\sim_{p} = \; (S', \mathbf{P}', \iota'_{ ext{init}}, AP, L'), \quad ext{ the } extsf{quotient} ext{ of } \mathcal{D} ext{ under } \sim_{p}$$

where

► S' = S/~_p = { [s]_p | s ∈ S } with [s]_p = { s' ∈ S | s _p s' }
► P'([s]_p, [s']_p) = P(s, [s']_p)
►
$$\iota'_{init}([s]_{p}) = \sum_{s' \in [s]_{p}} \iota_{init}(s)$$
► $L'([s]_p) = L(s).$

Remarks

The transition probability from $[s]_{\sim_p}$ to $[t]_{\sim_p}$ is $\mathbf{P}(s, [t]_{\sim_p})$.

Quotient under \sim_p

Quotient DTMC under \sim_p

For $\mathcal{D}=(\mathit{S}, \mathbf{P}, \iota_{ ext{init}}, \mathit{AP}, \mathit{L})$ and probabilistic bisimilarity $\sim_{p} \subseteq \mathit{S} imes \mathit{S}$ let

$$\mathcal{D}/\!\sim_{p} = \; (S', \mathbf{P}', \iota'_{ ext{init}}, AP, L'), \quad ext{ the } extsf{quotient} ext{ of } \mathcal{D} ext{ under } \sim_{p}$$

where

- ► S' = S/~p= { [s]~p | s ∈ S } with [s]~p = { s' ∈ S | s ~p s' }
 ► P'([s]~p, [s']~p) = P(s, [s']~p)
 ↓'_{init}([s]~p) = ∑_{s'∈[s]~p} ℓ_{init}(s)
 ↓'([s]~p) = ↓(s)
- $\blacktriangleright L'([s]_{\sim_p}) = L(s).$

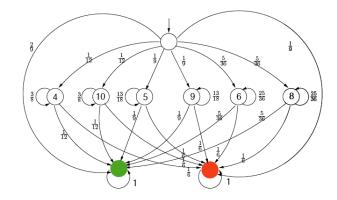
Remarks

The transition probability from $[s]_{\sim_{\rho}}$ to $[t]_{\sim_{\rho}}$ is $\mathbf{P}(s, [t]_{\sim_{\rho}})$. This is well-defined as $\mathbf{P}(s, C) = \mathbf{P}(s', C)$ for all $s \sim_{\rho} s'$ and all bisimulation equivalence classes C.

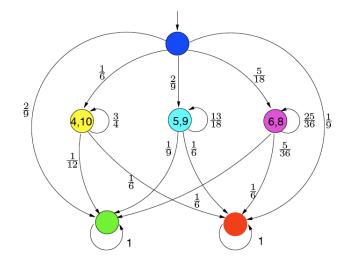
A DTMC model of Craps

Come-out roll:

- 7 or 11: win
- 2, 3, or 12: lose
- else: roll again
- Next roll(s):
 - 7: lose
 - point: win
 - else: roll again



Quotient DTMC of Craps under \sim_p

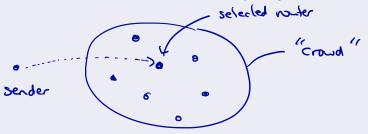


Example: Crowds protocol

Security: Crowds protocol

[Reiter & Rubin, 1998]

- A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- Hide user's communication by random routing within a crowd
 - sender selects a crowd member randomly using a uniform distribution



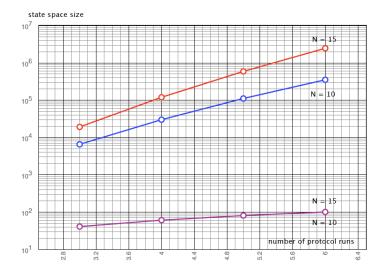
Example: Crowds protocol

Security: Crowds protocol

[Reiter & Rubin, 1998]

- A protocol for anonymous web browsing (variants: mCrowds, BT-Crowds)
- Hide user's communication by random routing within a crowd
 - sender selects a crowd member randomly using a uniform distribution
 - selected router flips a biased coin:
 - with probability 1 p: direct delivery to final destination
 - otherwise: select a next router randomly (uniformly)
 - once a routing path has been established, use it until crowd changes
- Rebuild routing paths on crowd changes
- Property: Crowds protocol ensures "probable innocence":
 - ▶ probability real sender is discovered $< \frac{1}{2}$ if $N \ge \frac{p}{p-\frac{1}{2}} \cdot (c+1)$
 - where N is crowd's size and c is number of corrupt crowd members

State space reduction under \sim_p



IEEE 802.11 group communication protocol

	$ \land $	original DTMC			quotient DTMC		red. factor		
	OD	states	transitions	ver. time	blocks	total time	states	time	
/	4	1125	5369	122	71	13	15.9	9.00	
	12	37349	236313	7180	1821	642	20.5	11.2	
	20	231525	1590329	50133	10627	5431	21.8	9.2	
	28	804837	5750873	195086	35961	24716	22.4	7.9	
	36	2076773	15187833	5103900	91391	77694	22.7	6.6	
	40	3101445	22871849	7725041	135752	127489	22.9	6.1	
	all times in milliseconds								
	3101445								
	$\Pr(QG) \xrightarrow{22.5} $								
		JT (♥ 6					135752		

Overview

Strong Bisimulation

2 Probabilistic Bisimulation

- Quotient Markov Chain
- Examples

3 Logical Preservation

- The Logics PCTL, PCTL* and PCTL⁻
- Preservation Theorem

Lumpability

5) Summary

PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

PCTL state formulas over the set AP obey the grammar:

$$\Phi$$
 ::= true $| a | \Phi_1 \land \Phi_2 | \neg \Phi | \mathbb{P}_J(\varphi)$

where $a \in AP$, φ is a path formula and interval $J \subseteq [0, 1]$.

PCTL path formulae are formed according to the following grammar:

$$\varphi ::= \bigcirc \Phi \mid \Phi_1 \cup \Phi_2 \mid \Phi_1 \cup ^{\leqslant n} \Phi_2$$

where Φ , Φ_1 , and Φ_2 are state formulae and $n \in \mathbb{N}$.

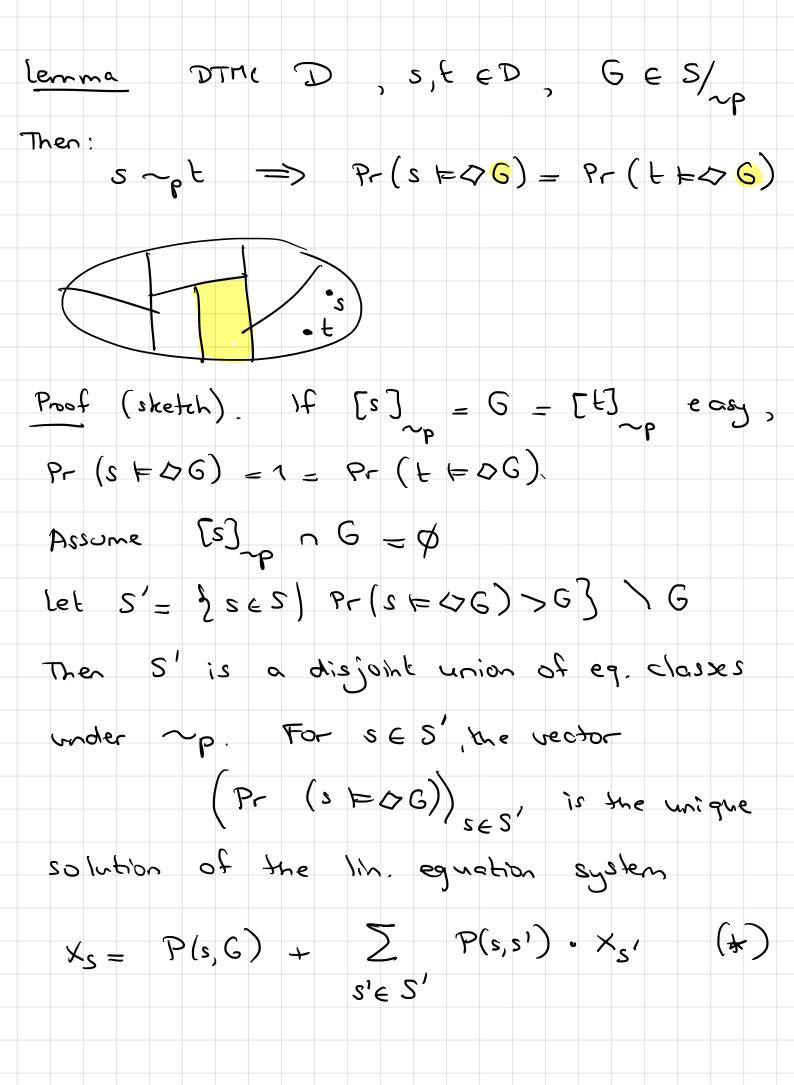
Bisimulation preserves PCTL

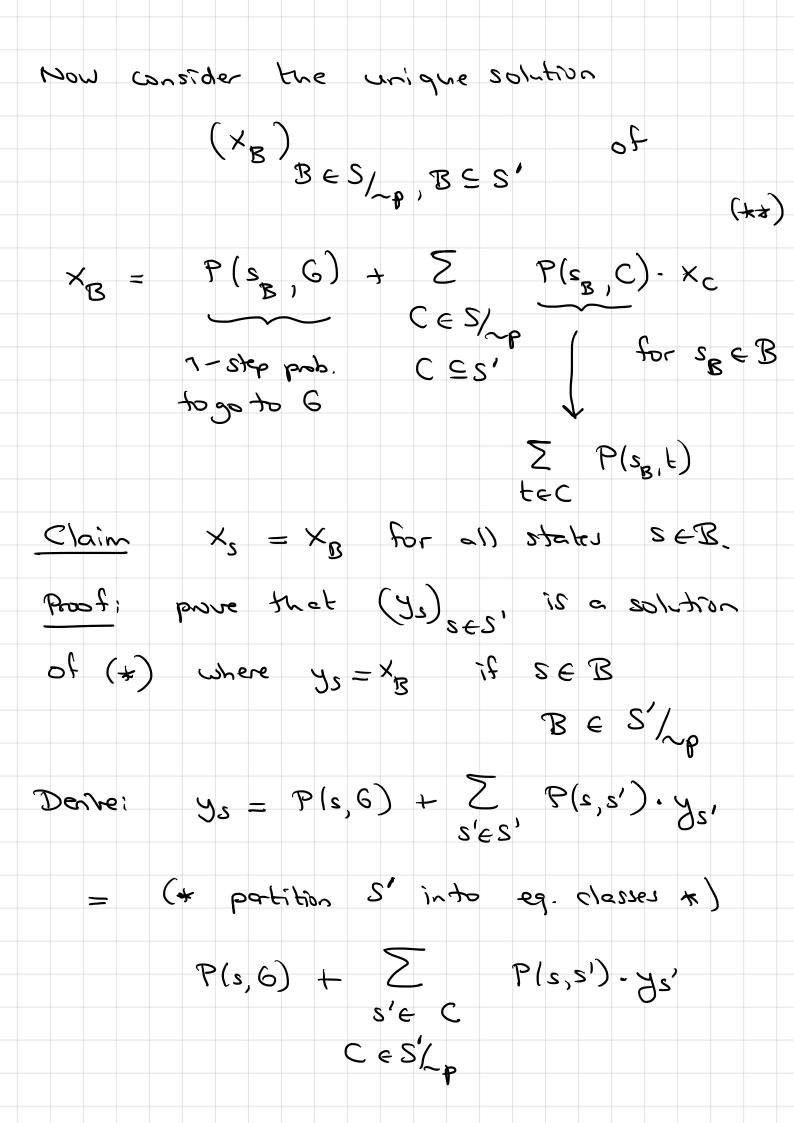
Let \mathcal{D} be a DTMC and s, t states in \mathcal{D} . Then:

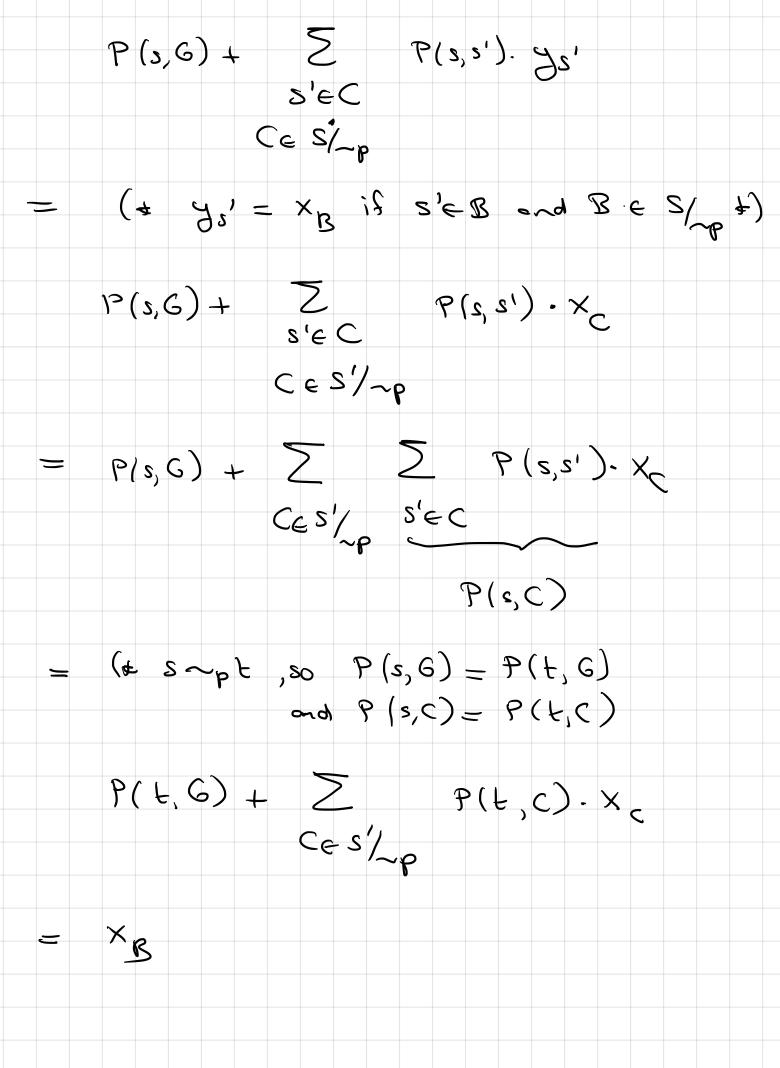
 $s \sim_p t$ if and only if s and t are PCTL-equivalent.

$$s \sim_{p} t \implies (\forall \overline{\Phi} \in PCTL. s \neq \overline{\Phi} ; ff t \neq \overline{\Phi})$$

 $s \prec_{p} t \iff (\exists \overline{\Phi} \in PCTL. s \neq \overline{\Phi} \text{ and } t \neq \overline{\Phi})$







Bisimulation preserves PCTL

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D} . Then:

 $s \sim_p t$ if and only if s and t are PCTL-equivalent.

Remarks

 $s \sim_p t$ implies that

1. transient probabilities, reachability probabilities,

Bisimulation preserves PCTL

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D} . Then:

 $s \sim_p t$ if and only if s and t are PCTL-equivalent.

Remarks

- $s \sim_p t$ implies that
 - 1. transient probabilities, reachability probabilities,
 - 2. repeated reachability, persistence probabilities

$$P_{c}(s \models \Box \Diamond G) = P_{c}(t \models \Box \Diamond G)$$

$$\Diamond \Box \qquad \Diamond \Box$$

Bisimulation preserves PCTL

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D} . Then:

 $s \sim_p t$ if and only if s and t are PCTL-equivalent.

Remarks

- $s \sim_p t$ implies that
 - 1. transient probabilities, reachability probabilities,
 - 2. repeated reachability, persistence probabilities
- 3. all qualitative PCTL formulas for s and t are equal. $s \models \mathbb{R}_{\frac{1}{2}}(0 \text{ red}) \qquad t \notin \mathbb{R}_{2}(0 \text{ red})$

If for PCTL-formula Φ we have $s \models \Phi$ but $t \not\models \Phi$, then it follows $s \not\sim_p t$.

32/48

Bisimulation preserves PCTL

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D} . Then:

 $s \sim_p t$ if and only if s and t are PCTL-equivalent.

Remarks

- $s \sim_p t$ implies that
 - 1. transient probabilities, reachability probabilities,
 - 2. repeated reachability, persistence probabilities
 - 3. all qualitative PCTL formulas

for s and t are equal.

If for PCTL-formula Φ we have $s \models \Phi$ but $t \not\models \Phi$, then it follows $s \not\sim_p t$. A single PCTL-formula suffices!

PCT: OI DUT

Probabilistic Computation Tree Logic: Syntax

PCTL* consists of state- and path-formulas.

PCTL^{*} syntax

PCTL* state formulas over the set AP obey the grammar:

$$\Phi \left| ::= \text{ true } \left| \begin{array}{c} a \end{array} \right| \ \Phi_1 \land \Phi_2 \ \left| \begin{array}{c} \neg \Phi \end{array} \right| \ \mathbb{P}_{J}(\varphi)$$

where $a \in AP$, φ is a path formula and $J \subseteq [0, 1]$, $J \neq \emptyset$ is a non-empty interval.

► PCTL* path formulae are formed according to the following grammar: LT $\begin{cases} \varphi ::= \Phi \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \bigcirc \varphi \mid \varphi_1 \lor \varphi_2 \end{cases}$

where Φ is a state formula and $\varphi,$ $\varphi_1,$ and φ_2 are path formulae.

(aub)Uc

PCTL^{*} semantics (1)

Notation

 \mathcal{D} , $s \models \Phi$ if and only if state-formula Φ holds in state s of (possibly infinite) DTMC \mathcal{D} . As \mathcal{D} is known from the context we simply write $s \models \Phi$.

Satisfaction relation for state formulas

The satisfaction relation \models is defined for PCTL* state formulas by:

$$\begin{array}{ll} s \models a & \text{iff} \quad a \in L(s) \\ s \models \neg \Phi & \text{iff} \quad \text{not} \ (s \models \Phi) \\ s \models \Phi \land \Psi & \text{iff} \quad (s \models \Phi) \text{ and} \ (s \models \Psi) \\ s \models \mathbb{P}_{J}(\varphi) & \text{iff} \quad Pr(s \models \varphi) \in J \end{array}$$

where $Pr(s \models \varphi) = Pr_s \{ \pi \in Paths(s) \mid \pi \models \varphi \}$

PCTL^{*} semantics (2)

Satisfaction relation for path formulas

Let $\pi = s_0 s_1 s_2 \dots$ be an infinite path in (possibly infinite) DTMC \mathcal{D} . Let $\pi^i = s_i s_{i+1} s_{i+2} \dots$ denotes the *i*-th suffix of π .

The satisfaction relation \models is defined for state formulas by:

$$\begin{aligned} \pi &\models \Phi & \text{iff} \quad \pi[0] \models \Phi \\ \pi &\models \neg \varphi & \text{iff} \quad \text{not} \; \pi \models \varphi \\ \pi &\models \varphi_1 \land \varphi_2 & \text{iff} \quad \pi \models \varphi_1 \text{ and } \pi \models \varphi_2 \\ \pi &\models \bigcirc \varphi & \text{iff} \quad \pi^1 \models \varphi \\ \pi &\models \varphi_1 \cup \varphi_2 & \text{iff} \quad \exists k \ge 0.(\; \pi^k \models \varphi_2 \land \forall 0 \leqslant i < k. \; \pi^i \models \varphi_1) \end{aligned}$$

Measurability

PCTL* measurability

For any PCTL^{*} path formula φ and state *s* of DTMC \mathcal{D} , the set { $\pi \in Paths(s) \mid \pi \models \varphi$ } is measurable.

Proof:

Left as an exercise, using the result for PCTL measurability and the measurability of $\omega\text{-regular properties.}$

Bounded until in PCTL*

Bounded until

Bounded until can be defined using the other operators:

 $\varphi_1 \cup \mathbb{U}^{\leq n} \varphi_2 = \bigvee_{0 \leq i \leq n} \psi_i \text{ where } \psi_0 = \varphi_2 \text{ and } \psi_{i+1} = \varphi_1 \wedge \bigcirc \psi_i \text{ for } i \geq 0.$

in PCTL

k=3 $\Psi_{3} = \Psi_{1} \land O \Psi_{2}$ $\Psi_{2} = \Psi_{1} \land O \Psi_{1}$ $\Psi_{1} = \Psi_{1} \land O \Psi_{0}$

Bounded until in PCTL*

Bounded until

Bounded until can be defined using the other operators:

 $\varphi_1 \cup \mathbb{U}^{\leq n} \varphi_2 = \bigvee_{0 \leq i \leq n} \psi_i \quad \text{where } \psi_0 = \varphi_2 \text{ and } \psi_{i+1} = \varphi_1 \wedge \bigcirc \psi_i \text{ for } i \geq 0.$

Examples in PCTL* but not in PCTL

 $\mathbb{P}_{>\frac{1}{4}}(\bigcirc a \cup \bigcirc b) \text{ and } \mathbb{P}_{=1}(\mathbb{P}_{>\frac{1}{2}}(\Box \Diamond a \lor \Diamond \Box b)).$

$$\mathbb{B}^{2^{j}}(\mathbb{D}^{0}) \land \mathbb{B}^{j}(\mathbb{Q}\mathbb{D}^{p}) \leftarrow \mathbb{K}^{j}$$

Bisimulation preserves PCTL*

Let \mathcal{D} be a DTMC and s, t states in \mathcal{D} . Then:

 $s \sim_p t$ if and only if s and t are PCTL*-equivalent.

Remarks

- 1. Bisimulation thus preserves not only all PCTL but also all PCTL* formulas.
- 2. By the last two results it follows that PCTL- and PCTL*-equivalence coincide.

Bisimulation preserves PCTL*

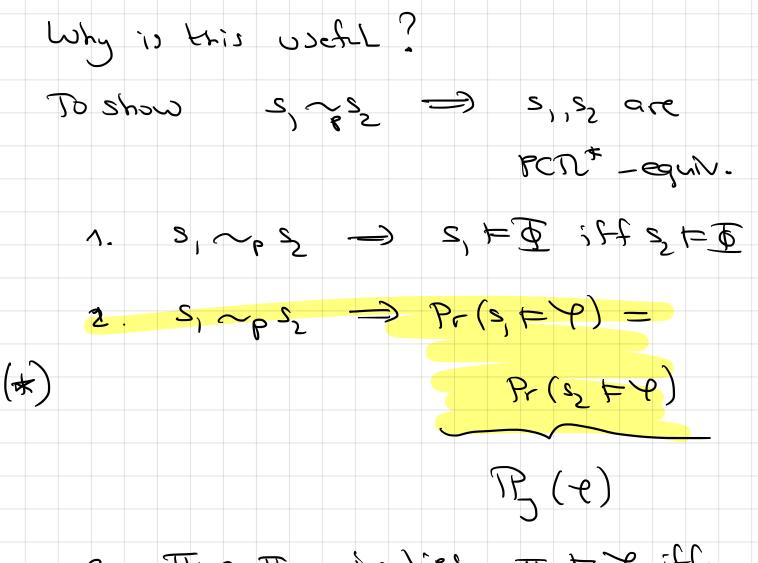
Let \mathcal{D} be a DTMC and s, t states in \mathcal{D} . Then:

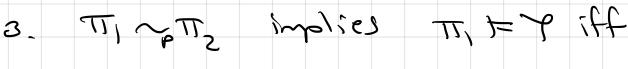
 $s \sim_p t$ if and only if s and t are PCTL*-equivalent.

Remarks

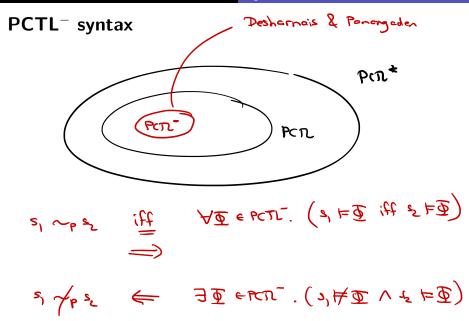
- 1. Bisimulation thus preserves not only all PCTL but also all PCTL* formulas.
- By the last two results it follows that PCTL- and PCTL*-equivalence coincide. Thus any two states that satisfy the same PCTL formulas, satisfy the same PCTL* formulas.

$$\begin{array}{c} \underline{\operatorname{Bisimilar}} & \underline{\operatorname{Peths}} & \overline{\operatorname{TI}} = \operatorname{Sol} \operatorname$$





M2F9



PCTL⁻ only consists of state-formulas. These formulas over the set *AP* obey the grammar:

$$\Phi ::= a \left| \begin{array}{c} \Phi_1 \land \Phi_2 \end{array} \right| \left| \begin{array}{c} \Phi_1 \lor \Phi_2 \end{array} \right| \left| \begin{array}{c} \mathbb{P}_{\leqslant p}(\bigcirc \Phi) \end{array}$$

where $a \in AP$ and p is a probability in [0, 1].

Remarks

This is a truly simple logic. It does not contain the until-operator. Negation is not present and cannot be expressed. Only upper bounds on probabilities.

It turns out that PCTL-, PCTL*- and PCTL⁻-equivalence coincide.

Preservation of PCTL

PCTL/PCTL* and Bisimulation Equivalence

Let \mathcal{D} be a DTMC and s_1 , s_2 states in \mathcal{D} . Then, the following statements are equivalent: (a) $s_1 \sim_p s_2$. (b) s_1 and s_2 are PCTL*-equivalent, i.e., fulfill the same PCTL* formulas (c) s_1 and s_2 are PCTL-equivalent, i.e., fulfill the same PCTL formulas (d) s_1 and s_2 are PCTL⁻-equivalent, i.e., fulfill the same PCTL⁻ formulas

$$\sim_p = \equiv_{per} = \equiv_{per} = \equiv_{per}$$

Preservation of PCTL

PCTL/PCTL* and Bisimulation Equivalence

Let \mathcal{D} be a DTMC and s_1 , s_2 states in \mathcal{D} . Then, the following statements are equivalent:

(a) $s_1 \sim_p s_2$.

(b) s_1 and s_2 are PCTL*-equivalent, i.e., fulfill the same PCTL* formulas

(c) s_1 and s_2 are PCTL-equivalent, i.e., fulfill the same PCTL formulas

(d) s_1 and s_2 are PCTL⁻-equivalent, i.e., fulfill the same PCTL⁻ formulas

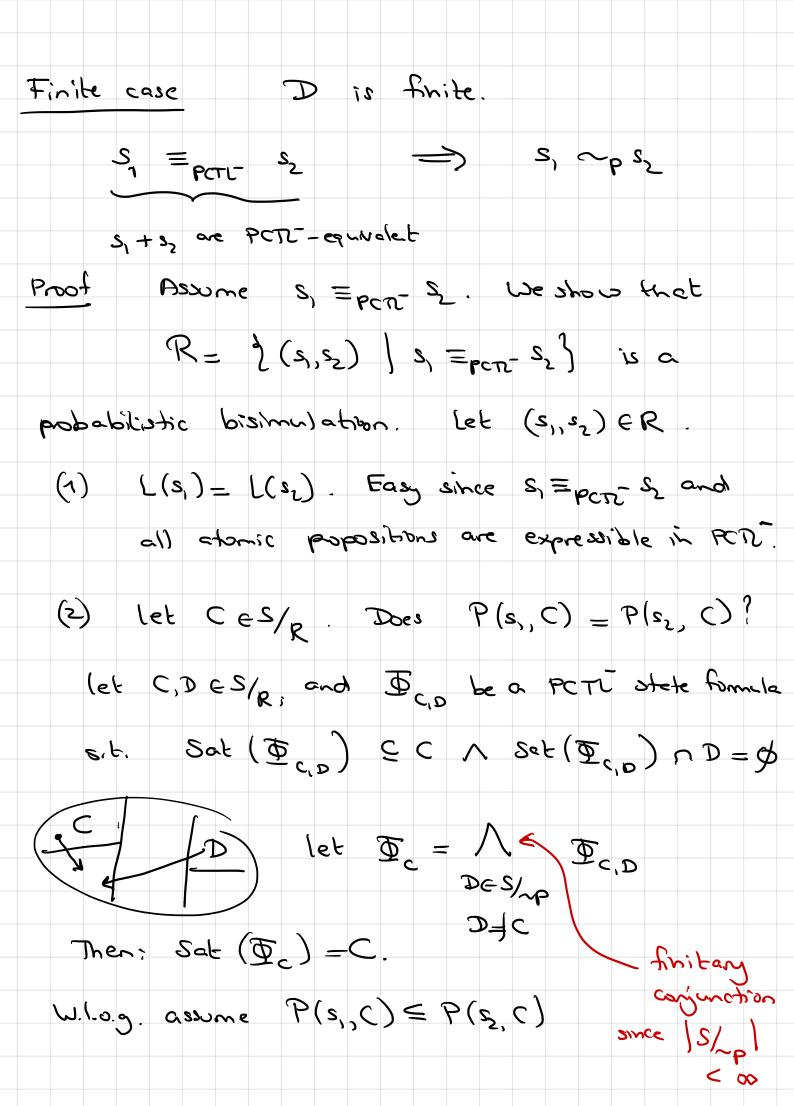
Proof:

- 1. (a) \Longrightarrow (b): by structural induction on PCTL* formulas.
- 2. (b) \implies (c): trivial as PCTL is a sublogic of PCTL*.

3. (c) \implies (d): trivial as PCTL⁻ is a sublogic of PCTL.

4. (d) \implies (a): involved. First finite DTMCs, then for arbitrary DTMCs.

Proof



Assume $P(s_1, C) \subseteq P(s_1, C)$ let $s_{i} \models \mathbb{P}_{\leq p}(O \Phi_{c})$ where $p = P(s_{i}, C)$ Since S, = Pett- Sz it follows $s_{2} \models R_{\leq p} (O \overline{\Phi})$ But then $\int P(s_1, C) = P(s_2, C)$ Ø

In the infinite case, this pool principle can be spplied since "negation" = "complementation" = 6 countable inter-sections" « conteble Conjunction 4 logic measurable Spaces_

 $S_1 = PCTL - S_2 \implies S_1 \sim P S_2$ Theorem $\frac{Proof}{R} = \frac{2}{s_1, s_2} \left| s_1 = \frac{1}{pc_T c} - \frac{s_2}{s_2} \right| is$ pob. bisimulation. م (1) $L(s_{1}) = L(s_{2})$ as before (2) let (s, s) ER. let Sat (), JEPCT be basic events on S and Cs is the smallest J-algebra containing the sets (Sat (I)) I CPCTT Since S_p is contable, every PCTT equivolarie class CES/2 combe written as a countable intersection of $Sat(\overline{D})$ and $C \subseteq Sat(\overline{D})$. Thus: all PCTT-eq. classes belong to Cs As PCTT permits (finitary) conjunction, the set of all sets Sat (I) is closed under finite intersections. Prop. for every pub. measure M, M2 E Es

Proposibion for every prob. measure M, M, E C, $M_{1}(Sat(\overline{D})) = M_{2}(Sat(\overline{D}))$ for $\forall \overline{D} \in PC\overline{N}$ implies $\mathcal{M}_1 = \mathcal{M}_2$.

Overview

Strong Bisimulation

Probabilistic Bisimulation

- Quotient Markov Chain
- Examples

B Logical Preservation

- The Logics PCTL, PCTL* and PCTL⁻
- Preservation Theorem

Lumpability

5) Summary

Lumpability

1960: Laurie Snell and John Kemeny

Laurie Snell

John Kemeny

Lumpability

Ignore the initial distribution and state-labelling of a Markov chain.

Lumpability

[Kemeny & Snell, 1960]

Let \mathcal{D} be a (possibly countably infinite) DTMC with state space S and $\mathcal{B} = \{B_1, \ldots, B_n\}$ be a partitioning of S (where B_j may be countably infinite). \mathcal{D} is lumpable with respect to \mathcal{B} iff for any B_i and B_j in \mathcal{B} and any $s, s' \in B_i$:

$$\sum_{u\in B_j} \mathbf{P}(s, u) = \sum_{u\in B_j} \mathbf{P}(s', u) \text{ that is } \mathbf{P}(s, B_j) = \mathbf{P}(s', B_j).$$

If \mathcal{D} is lumpable with respect to \mathcal{B} , \mathcal{B} is called a lumpable partition

It is easy to show that S/\sim_p is a lumpable partition of the state space S. In fact, it is the coarsest possible lumpable partition.

Lumping equivalence

Lumping equivalence

[Kemeny & Snell, 1960]

The DTMCs \mathcal{D} and \mathcal{D}' are lumping equivalent if there are lumpable partitions \mathcal{B} of \mathcal{D} and \mathcal{B}' of \mathcal{D}' such that there is an injective function $f: \mathbb{N} \to \mathbb{N}$ such that:

$$\mathbf{P}(B_i, B_j) = \mathbf{P}'(B'_{f(i)}, B'_{f(j)}).$$

Corollary

 $\mathcal{D} \sim_{p} \mathcal{D}'$ if and only if \mathcal{D} and \mathcal{D}' are lumping equivalent (with respect to the coarsest possible lumpable partition on their union).

Lumping equivalence

Remark

For finite Markov chains, the correspondence between lumping equivalence and \sim_p allows to obtain the coarsest possible lumpable partition in an algorithmic, i.e., automated manner.

This can be considered as a breakthrough in Markov chain theory.

Overview

Strong Bisimulation

Probabilistic Bisimulation

- Quotient Markov Chain
- Examples

Logical Preservation

- The Logics PCTL, PCTL* and PCTL⁻
- Preservation Theorem

Lumpability

5 Summary

Summary

- Bisimilar states have equal transition probabilities for every equivalence class.
- $\triangleright \sim_p$ is the coarsest probabilistic bisimulation.
- All states in a quotient DTMC are equivalence classes under \sim_p .
- $\triangleright \sim_p$ and PCTL-equivalence coincide.
- PCTL, PCTL*, and PCTL⁻-equivalence coincide.
- ► To show $s \not\sim_p t$, show $s \models \Phi$ and $t \not\models \Phi$ for $\Phi \in \mathsf{PCTL}^-$.
- Bisimulation may yield up to exponential savings in state space.

Take-home message

Probabilistic bisimulation on Markov chains coincides with a notion from the sixties, named (ordinary) lumpability.