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Strong Bisimulation

Overview

@ Strong Bisimulation
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Labeled transition system

Transition system

A (labeled) transition system TS is a structure (S, Act, —, Iy, AP, L)
where

» S is a (possibly infinitely countable) set of states.

v

Act is a (possibly infinitely countable) set of actions.

v

— C S X Act x S is a transition relation.

v

Iy C S the set of initial states.

v

AP is a set of atomic propositions.

v

L:S — 2P s the labeling function.

We write s <% s’ instead of (s, a,s’) € —.
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(t) o) ya by

O @) e R
S t
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(¢)

2. if s 255 then there exists t’ € S such that t 25 t' and (s',t') € R

O——¢)
. :
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.

Then R is a strong bisimulation on TS whenever for all (s, t) € R:
1. L(s) = L(¢)

2. if s 255 then there exists t’ € S such that t 25 t' and (s',t') € R
3. if t %t/ then there exists s’ € S such that s 2+’ and (s/,t') € R

O——®) O——©
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.

Then R is a strong bisimulation on TS whenever for all (s, t) € R:
——
1. L(s) = L(¢)

2. if s 255 then there exists t’ € S such that t 25 t' and (s',t') € R
3. if t %t/ then there exists s’ € S such that s 2+’ and (s/,t') € R

D e T

Strong bisimilarity

Let TS= (S, Act,—, Iy, AP, L) be a transition system and s, t € S.
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Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]
Let TS = (S, Act,—, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(¢)

2. if s 255 then there exists t’ € S such that t 25 t' and (s',t') € R

3. if t 2>t/ then there exists s’ € S such that s %+ s’ and (s',t') € R

Strong bisimilarity

Let TS= (S, Act,—, lp, AP, L) be a transition system and s, t € S.
Then: s is strongly bisimilar to t, notatio

if there exists a strong
bisimulation R such that (s, t) € R.

a\&crna-\«\rc\a ~~ — \) s_ R is & Shong *\SM\A{\‘
R
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Strong Bisimulation

isi i s an~ = welence ,a.\d ‘tg
Strong bisimulation ~ 1 suelence sy

Strong bisimulation relation [Milner, 1980 & Park, 1981]

Let TS = (S, Act, —, Iy, AP, L) be a transition system and R C S x S.
hen R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(t)
2. if s %55 then there exists t' € S such that t %+’ and (s/,t') € R
3. if t 2>t/ then there exists s’ € S such that s %+ s’ and (s',t') € R

Strong bisimilarity

Let TS = (S, Act, —, Iy, AP, L) be a transition system and s, t € S.
Then: s is strongly bisimilar to t, notation s ~ t, if there exists a strong
bisimulation R such that (s, t) € R.

Not every bisimulation relation is transitive.
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Strong Bisimulation

Strong bisimulation

Strong bisimulation relation

[Milner, 1980 & Park, 1981]

Let TS = (S, Act, —, Iy, AP, L) be a transition system and R C S x S.
Then R is a strong bisimulation on TS whenever for all (s, t) € R:

1. L(s) = L(t)
2. if s %55 then there exists t' € S such that t %+’ and (s/,t') € R
3. if t 2>t/ then there exists s’ € S such that s %+ s’ and (s',t') € R

Strong bisimilarity

Let TS = (S, Act, —, Iy, AP, L) be a transition system and s, t € S.

Then: s is strongly bisimilar to t, notation s ~ t, if there exists a strong
bisimulation R such that (s, t) € R.

Remarks
Not every bisimulation relation is transitive. But: ~ is an equivalence.
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Strong bisimulation

Pictorial representation

s & 4 s & 4

R can be completed to R R

t t %t
and

s s % 4

R can be completed to R R

t % t 2
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Strong Bisimulation

Strongly bisimilar transition systems

Bisimilar transition systems

Let TSy, TS, be transition systems over the same set of atomic
propositions with initial states lp 1 and lp 2, respectively.

Consider the transition system TS = TS5; W TS, that results from the
disjoint union of TS; and TS,.

Then: TS; and TS, are called strongly bisimilar if there exists a strong
bisimulation R on S; W Sy such that:

1. Vselpi.3t€lps. (s, t) € R, and
2.Vt e /02. ds € 10,1. (S, t) € R.
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Strong Bisimulation

oA

Example (1) ReSxS %“ o \c'

v
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Strong Bisimulation

Example (2)

Yes, they are!
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Strong Bisimulation

Correct or wrong?

- _*:) 6
wrong

s1 — u, but s /— blue  (thus s; # )

m f JE ; correct

b|5|mulat|on.

{(w1, wo), (W], w2), (51, 2), (51, %3), (11, %), (1, ¥) }
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Quotient LTS under ~

s an eciu.‘(ucx\en(l
Quotient transition system

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let

TS/~ = (S, Act,—', I}, AP, L"),  the quotient of TS under ~

where

repcesek ey 2quivalence

C\ ass wder A~

LD [} S‘\\«b\e Ss\"&
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Strong Bisimulation

Quotient LTS under ~

Quotient transition system

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let

TS/~ = (S, Act,—', I}, AP, L"),  the quotient of TS under ~
where
» S =S5/~= {[s]l~|seS}twith[s]. = {sfe€S|s~5}
s—% s
[s]~ = [s]~

> I, ={[so]~ | so € Ip }, the equivalence class of the initial states in TS

> L/([s]) = L(s).

S

3 ‘:(Ysl\,
&) L(s) O )
0s_
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Strong Bisimulation

Quotient LTS under ~

For TS = (S, Act, —, Iy, AP, L) and strong bisimilarity ~ C S x S let

TS/~ = (S, Act,—', I}, AP, L"),  the quotient of TS under ~
where
» S'=5/~= {[s]~|seS}with[s]. = {s'e€S|s~5}
s
[s]~ 2 [s']~

> I, ={[so]~ | so € Ip }, the equivalence class of the initial states in TS

> L/(s]) = L(s).

» —' is defined by:

L’ is well-defined as all states in [s].. are equally labeled. Note that if
s 255’ then for all t ~ s we have t %5t/ with s’ ~ t/.
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Quotient transition system

|
For any transition system TS it holds: TS ~ TS/~.

The binary relation:

R = {(sl[sl~)[seS}

is a strong bisimulation on the disjoint union TSW TS/ ~.

S —: S S =5 E\
: be~ o \‘3 At
A Ts) = Cey_
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Strong bisimulation revisited

Auxiliary predicate

Let P: S x Act x 2° — {0,1} be a predicate such that for S’ C S:

1 if3dsfes. s24
P(s,a,S") =
- 0 otherwise.
“W\A( Y\Q

T}(S‘, x, 9') =A
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Strong Bisimulation

Strong bisimulation revisited

Auxiliary predicate

Let P: S x Act x 2° — {0,1} be a predicate such that for S’ C S:
1 if3dsfeS. . s%s¢

0 otherwise.

P(s,a,S") = {

Alternative definition of strong bisimulation

Let TS= (S, Act,—>, lp, AP, L) and R an equivalence relation on S.
Then: R is a strong bisimulation on S if for (s, t) € R:

1. L(s) = L(t), and

2. P(s,a,C) = P(t,a,C) forall CinS/R and o € Act.
s~ t, if there exists a strong bisimulation R such that (s, t) € R.

It can be easily proven that ~ coincides with ~’. Proof is omitted.
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Probabilistic Bisimulation

Overview

@ Probabilistic Bisimulation
@ Quotient Markov Chain
@ Examples
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Probabilistic bisimulation: intuition

» Strong bisimulation is used to compare labeled transition systems.
» Strongly bisimilar states exhibit the same step-wise behaviour.
» Our aim: adapt bisimulation to discrete-time Markov chains.

» This yields a probabilistic variant of strong bisimulation.

|
» When do two DTMC states exhibit the same step-wise behaviour?

» Key: if their transition probability for each equivalence class coincides.
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Probabilistic Bisimulation

1989: Kim G. Larsen and Arne Skou

Kim G. Larsen

Arne Skou
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Probabilistic Bisimulation

Probabilistic bisimulation Psx,C) = PCea, O

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R

where P(s, C) = > o cc P(s, 5'). \L
C ind\edes (]
| R
(Y
S 2
. : 'P(S,C): 1_‘—
L
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Probabilistic bisimulation

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tini, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > o cc P(s, 5').

|
For states in R, the probability of moving to some equivalence class is equal.

‘
Probabilistic bisimilarity

—
Let D be a DTMC and s, t states in D.
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Probabilistic bisimulation

Probabilistic bisimulation

[Larsen & Skou, 1989]
Let D = (S, P, tini, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > o cc P(s, 5').

|
For states in R, the probability of moving to some equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistic bisimilar

to t, denoted s ~, t, if there exists a probabilistic bisimulation R with
(s,t) € R.
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Probabilistic Bisimulation

Probabilistic bisimulation

Probabilistic bisimulation

Let D = (S, P, tinir, AP, L) be a DTMC and R C S x S an equivalence.
Then: Risa g

abi/istic bisimulation on S if for any (s, t) € R:

2. P(s, C) = P(t, C) for all equivalence classes C € S/R.

\_o‘_,‘ "',°’\05 {a'\x --'~,°'40\
O O
t

S
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Probabilistic Bisimulation

Probabilistic bisimulation

Probabilistic bisimulation

Let D = (S, P, tus, AP, L) be a DTMC and RC S x S .

Then: R is a probabilistic bisimulation on S if for any (s,
1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R.

As opposed to bisimulation on states in transition systems, any probabilistic
Sy e

bisimulation is an equivalence.
—

’Egk: V\Qk % s#«»j &QISVMU\GB‘QA CS (<P Qﬂkﬂ\)q\z\m
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Probabilistic Bisimulation

Example P

(2, 1)) = \pa

=
C\O‘&M: _i :?(3) ),J-\\)

Q- & (), L, @D, G s e e

k.\S“\M‘
P i) = p= PGIY)
Pt = 2 = 3rd -P6 )
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Bisimilar DTMCs

Bisimilar DTMCs

Let D1, Dy be DTMCs over the same set of atomic propositions with
initial distributions ¢1. and /2., respectively.

Consider the DTMC D = D; W D, that results from the disjoint union of
Dy and D;. Consider ~, on D = Dy & D;.

Then D1 and D, are bisimilar, denoted Dy ~, D> whenever

i (C) = 2. (C)

init init
for each bisimulation equivalence class C of D = D; & D, under ~,,.

Here, t1,::(C) denotes Z Linit (S)-
seC
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Probabilistic Bisimulation

Example sy, )= %,*;‘ = §=P(‘z. )
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Quotient under ~,

Quotient DTMC under ~,,

For D = (S, P, tini, AP, L) and probabilistic bisimilarity ~, C S x S let
D/~p = (5/, P,.) AP, L/),

! Yinit?

the quotient of D under ~,
where

» S'=S5/~p= {l[s]l~,|s€S}with[s]., = {s'€S|s~,5"}
> P'([s]~,. [s'~,) = P(s.[5]~,)

L bkl mok weos of
SQ:\':) Somm 3 ‘\‘D
Us]

~e
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Quotient under ~,

Quotient DTMC under ~,,

For D = (S, P, tini, AP, L) and probabilistic bisimilarity ~, C S x S let
D/~p= (S, P AP, L),

init?’

the quotient of D under ~,
where

» S'=S5/~p= {l[s]l~,|s€S}with[s]., = {s'€S|s~,5"}
> P'([s]~,. [s'~,) = P(s.[5]~,)

> toe([s],) = Zs’e[s]wp Linic(5)

> L((s]y) = L(s).

The transition probability from [s]. to [t]~, is P(s, [t]~,).
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Quotient under ~,

Quotient DTMC under ~,,

For D = (S, P, tini, AP, L) and probabilistic bisimilarity ~, C S x S let
D/~p = (5/, P, AP, L/),

! Yinit?

the quotient of D under ~,
where

» S'=S5/~p= {l[s]l~,|s€S}with[s]., = {s'€S|s~,5"}
> P'([s]~,. [s'~,) = P(s.[5]~,)

> toe([s],) = Zs’e[s]m,p Linic(5)

> L((s]y) = L(s).

The transition probability from [s]. to [t]., is P(s,[t]~,). This is well-defined
as P(s, C) = P(s’, C) for all s ~, s” and all bisimulation equivalence classes C.
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Probabilistic Bisimulation

A DTMC model of Craps

» Come-out roll:

» 7 or 11: win

» 2,3, 0r12:
lose

> else: roll
again

> Next roll(s):
> 7: lose
> point: win
> else: roll
again
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Probabilistic Bisimulation

Quotient DTMC of Craps under ~,

O
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Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

> A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)
» Hide user's communication by random routing within a crowd
» sender selects a crowd member randomly using a uniform distribution

selecled noder
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Probabilistic Bisimulation

Example: Crowds protocol

Security: Crowds protocol [Reiter & Rubin, 1998]

> A protocol for anonymous web browsing (variants: mCrowds,
BT-Crowds)
» Hide user's communication by random routing within a crowd

» sender selects a crowd member randomly using a uniform distribution
> selected router flips a biased coin:

> with probability 1 — p: direct delivery to final destination
> otherwise: select a next router randomly (uniformly)

> once a routing path has been established, use it until crowd changes
» Rebuild routing paths on crowd changes
» Property: Crowds protocol ensures “probable innocence™:

> probability real sender is discovered < 3 if N > ﬁ-(ﬁ—l)

» where N is crowd's size and ¢ is number of corrupt crowd members
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State space reduction under ~,

state space size

107
|
=1
1
=
=
108
=
T
[t | T
el - =
105 W e A—/’ Ni=[1
Py 0"
A
10
fo =
10°
N=[15
102 L y
=10
=
: num of protdcal runs
10 © ~ © = < © ~ © © <
o B P < < v v <
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IEEE 802.11 group communication protocol

—
original DTMC quotient DTMC red. factor
oD states transitions | ver. time blocks | total time | states | time
4 1125 5369 122 71 13 15.9 | 9.00
12 37349 236313 7180 1821 642 20.5 | 11.2
20 231525 1590329 50133 10627 5431 21.8 9.2
28 804837 5750873 195086 35961 24716 22.4 7.9
36 || 2076773 15187833 | 5103900 91391 77694 22.7 6.6
40)| 3101445 | 22871849 |772508PN 135752 | 127489 | (32.9)] 6.1
— ~—
all times in milliseconds
3101445
P s
' o~
(&G) 3% imw
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Logical Preservation

Overview

© Logical Preservation
@ The Logics PCTL, PCTL* and PCTL™
@ Preservation Theorem
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PCTL syntax

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.
» PCTL state formulas over the set AP obey the grammar:

® = true ‘ a ‘ CTRVARO)) ‘ - ‘ P, ()

where a € AP, ¢ is a path formula and interval J C [0, 1].

» PCTL path formulae are formed according to the following grammar:
o = O ‘ ®; U b, ‘ ®; US" 0,

where ®, ®;, and ®, are state formulae and n € IN.
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Preservation of PCTL-formulas
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Preservation of PCTL-formulas

Bisimulation preserves PCTL

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandt are PCTL-equivalent.

Sep k —_—> (V§e PcL. sEF M Lpi)
Sobp b = (3§Q?CTL . SHE o~d L—;:gg)
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Preservation of PCTL-formulas

Bisimulation preserves PCTL

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandt are PCTL-equivalent.

s ~p t implies that
1. transient probabilities, reachability probabilities,

=N

<
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Preservation of PCTL-formulas

Bisimulation preserves PCTL

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandt are PCTL-equivalent.

s ~p t implies that
1. transient probabilities, reachability probabilities,

2. repeated reachability, persistence probabilities

% (5 = DOG) = Pk DOG)
< <on
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Logical Preservation

Preservation of PCTL-formulas
Bisimulation preserves PCTL

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandt are PCTL-equivalent.

s ~p t implies that
1. transient probabilities, reachability probabilities,
2. repeated reachability, persistence probabilities

3. all qualitative PCTL formulas ( )
O red
for s and t are equal. D1 TP>_\Z re

k # W>3L (o rté)
If for PCTL-formula ® we have s |= ® but t j= ®, then it follows s %, t.
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Preservation of PCTL-formulas

Bisimulation preserves PCTL

Let D be a DTMC and s, t states in D. Then:

s~pt ifandonlyif sandt are PCTL-equivalent.

s ~p t implies that
1. transient probabilities, reachability probabilities,
2. repeated reachability, persistence probabilities
3. all qualitative PCTL formulas

for s and t are equal.

If for PCTL-formula ® we have s |= ® but t }= ®, then it follows s %, t.
A single PCTL-formula suffices!
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Logical Preservation

PCTL" syntax PCL: ¥ \'§ vE |\
x U

Probabilistic Computation Tree Logic: Syntax

PCTL* consists of sfate- and path-formulas.

» PCTL* state fbormulas over the set AP obey the grammar:
® = true ‘ a ‘ OTRVAROD) ‘ P ‘ P,(¢)

where a € AR, ¢ is a path formula and J C [0,1], J # D is a
non-empty interval. 00

» PCTL" path formulae are formed according to theollowing grammar:

S %_ p =0 ‘ 3 ’ P1 A $2 ’ O¢ ‘ p1U @
where ® is a state formula and ¢, 1, and @5 are path formulae.
(a ub ) (W
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Logical Preservation

PCTL* semantics (1)

D, s |= ¢ if and only if state-formula ® holds in state s of (possibly
infinite) DTMC D. As D is known from the context we simply write

skEo.
Satisfaction relation for state formulas

The satisfaction relation = is defined for PCTL* state formulas by:

skEa iff ae L(s)

sE o iff not (s = @)

sEP AV iff (sE®)and (s = V)
sEP)p) iff PisEy)ed

where Pr(s = ) = Prs{m € Paths(s) | 7 = ¢ }
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PCTL* semantics (2)

Satisfaction relation for path formulas

Let 1 = sps1 s ... be an infinite path in (possibly infinite) DTMC D. Let
7 = sisi415i42... denotes the i-th suffix of 7.

The satisfaction relation = is defined for state formulas by:
TE® iff 7[0] E ®
T E e iff notw =
TEpi Ay iff T and T = @2

T E Op iff 7=
mlE@iUgp iff Fk>0.(7"E o AVOS i< k.ml = 1)
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Logical Preservation

Measurability

PCTL* measurability

For any PCTL* path formula ¢ and state s of DTMC D,
the set {m € Paths(s) | m = ¢ } is measurable.

Left as an exercise, using the result for PCTL measurability and the
measurability of w-regular properties.
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Logical Preservation

Bounded until in PCTL*

Bounded until

Bounded until can be defined using the other operators:

e1US" 02 = \/ o where 4o =3 and ¢j11 = 1 A Q¢ for i > 0.

0<i<n
‘———'\/-‘—'
 BCTL =2
§\ Y §L
;\ ( q?. = \P\ N O\'P‘\
Shee ‘GQM\\.\OS \? = \e‘ N OQO

V= 6
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Logical Preservation

Bounded until in PCTL*

Bounded until
Bounded until can be defined using the other operators:
e1US" 02 = \/ o where ¢y = 3 and 911 = o1 A Q¢ for i > 0.

0<i<n

Examples in PCTL* but not in PCTL
IP’>%(Q‘9U O b) and IP’:1(IP’>%(D<>a v oOb)).

B,y (009 V T, (@) < &R
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Logical Preservation

Preservation of PCTL*-formulas S
t

Bisimulation preserves PCTL*

Let D be a DTMC and s, t states in D. Then:

s~pt ifand only if s and t are PCTL"-equivalent.

& e syl 5 end b et POTL- equiNealed

1. Bisimulation thus preserves not only all PCTL but also all PCTL* formulas.

2. By the last two results it follows that PCTL- and PCTL"-equivalence
coincide.

Pt

B
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Logical Preservation

Preservation of PCTL*-formulas

Bisimulation preserves PCTL*

Let D be a DTMC and s, t states in D. Then:

s~pt ifand only if s and t are PCTL"-equivalent.

1. Bisimulation thus preserves not only all PCTL but also all PCTL* formulas.

2. By the last two results it follows that PCTL- and PCTL"-equivalence
coincide. Thus any two states that satisfy the same PCTL formulas, satisfy

the same PCTL* formulas.
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Logical Preservation

PCTL_ SyntaX %\Gmd& & ‘ch\ccbaée,\

'P(’n.*

e

S| ~p 5y 1&_ V§ e PcTL . (s\ =g & ‘LF§>
)

S 7/‘,5,_ & [T e L (L FET AL b—§>
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Logical Preservation

PCTL™ syntax o

Probabilistic Computation Tree Logic: Syntax

PCTL™ only consists of state-formulas. These formulas over the set AP
obey the grammar:

® = a | B1AD | &1V | Poy(OF)
where a € AP and p is a probability in [0, 1].

Remarks

This is a truly simple logic. It does not contain the until-operator. Negation is
not present and cannot be expressed. Only upper bounds on probabilities.

It turns out that PCTL-, PCTL*- and PCTL™-equivalence coincide.
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Preservation of PCTL

PCTL/PCTL" and Bisimulation Equivalence

Let D be a DTMC and s1, s, states in D. Then, the following statements
are equivalent' (- -ﬁ\-\‘.\f/ Gourye'dhy \\,\S‘\‘\)k/ Q{S w
(a) st ~p

(b) s1 and sp are PCTL*-equivalent, i.e., fulfill the same PCTL* formulas
(c)

(d)

~

s1 and sp are PCTL-equivalent, i.e., fulfill the same PCTL formulas

s1 and sp are PCTL ™ -equivalent, i.e., fulfill the same PCTL™ formulas

(
1l

]
:

I

P en®
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Logical Preservation

Preservation of PCTL
PCTL/PCTL" and Bisimulation Equivalence

Let D be a DTMC and sp, s, states in D. Then, the following statements
are equivalent'

(a
b

~

) s ~p

(b) s1 and sp are PCTL*-equivalent, i.e., fulfill the same PCTL* formulas
(c) s1 and s, are PCTL-equivalent, i.e., fulfill the same PCTL formulas
(d) s1 and sp are PCTL™ -equivalent, i.e., fulfill the same PCTL™ formulas

1. (a) = (b): by structural induction on PCTL* formulas.
2. (b) = (c): trivial as PCTL is a sublogic of PCTL*.

3. (¢) = (d): trivial as PCTL™ is a sublogic of PCTL.

4. (d) = (a

olved. First finite DTMCs, then for arbitrary DTMCs.
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Lumpability

Overview

@ Lumpability
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1960: Laurie Snell and John Kemeny

Laurie Snell

John Kemeny
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Lumpability

Ignore the initial distribution and state-labelling of a Markov chain.

Lumpability [Kemeny & Snell, 1960]

Let D be a (possibly countably infinite) DTMC with state space S and
B={Bi,...,B,} be a partitioning of S (where B; may be countably
infinite). D is lumpable with respect to B iff for any B; and B; in B and
any s, s’ € B;:

> P(s,u) = Y P(s' u) thatis P(s, Bj)=P(s, B).
ueB; ueB;

If D is lumpable with respect to B, B is called a lumpable partition

It is easy to show that S/~ is a lumpable partition of the state space S.
In fact, it is th ossible lumpable partition.
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Lumpability

Lumping equivalence

Lumping equivalence [Kemeny & Snell, 1960]

The DTMCs D and D’ are lumping equivalent if there are lumpable
partitions B of D and B’ of D’ such that there is an injective function
f : IN — IN such that:

P(B;. B;) = P'(Bf Br(y)-

Corollary

D ~, D' if and only if D and D’ are lumping equivalent (with respect to
the coarsest possible lumpable partition on their union).
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Lumpability

Lumping equivalence

For finite Markov chains, the correspondence between lumping equivalence
and ~, allows to obtain the coarsest possible lumpable partition in an
algorithmic, i.e., automated manner.

This can be considered as a breakthrough in Markov chain theory.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 46/48



Overview

© Summary
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Summary

» Bisimilar states have equal transition probabilities for every
equivalence class.

» ~ is the coarsest probabilistic bisimulation.

> All states in a quotient DTMC are equivalence classes under ~ .
» ~p and PCTL-equivalence coincide.

» PCTL, PCTL*, and PCTL™-equivalence coincide.

> To show s 74, t, show s |= @ and t j= & for & € PCTL™.

> Bisimulation may yield up to exponential savings in state space.

Take-home message

Probabilistic bisimulation on Markov chains coincides with a notion from
the sixties, named (ordinary) lumpability.
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