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Motivation

Planning Under Uncertainty

* Scenario: Travel to the airport

/ [OO0O0Q@Oood\ %\
e Travel time is uncertain ﬁ > “
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Goal: Arrive before the flight departs!
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Motivation

Traveling with Computer Scientists

* Model trip to airport as a Markov decision process (MDP)
» Controlable nondeterminism
* Probabilistic branching

* Maximise probability to arrive
before the flight departs
* Pr(O==A <3h)

* Other types of cost play a role as well:
« Maximize Pr({=- A <50€)

- fuel, pollution, stress, waiting time, ...
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Multi-objective Model Checking

Analyse Tradeoffs Between Objectives
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Overview

 MDPs with Multiple Objectives

* Linear Programming Approach

* Weighted Sum Approach

fin(S)= fout(S)
Ysat2 0

TseS+ ZaeAct(s) ZteS+ Ysat = Pi

forallse S/S.
foralls,te S, a e Act(s)

forallie{1,...,m}

v
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Markov Decision Processes (MDPs)

» Markov decision process M = (S, Act, P, Sinit)
* Nondeterminism
 Probabilistic branching

« Randomised Policy © resolves nondeterminism:

« &(1)(a) = "Probability to choose action a
when observing finite path "

« Probability measure Pré:
- Pre(<>G) = "Probability to reach G under &"
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MDPs with Multiple Objectives

« Single-objective: maximal probability
o Prmax(<>G) = MadXg Pr@(<>G)

» Multi-objective: tradeoff

° Prmax(<>G1) VS. Prmax(<>G2) VS. ...

* There is not a single policy that
maximises all probabilities
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Geometry

*p =(p1, ..., pm) € RMis a point in m € N dimensional Euclidean space
* p[i] refers to pie R
Letp,ge Rmand A e R
*p < qholds iff p[i] < q[i] forallie {1, ..., m}
‘p<qholdsiffp<gandp#q
*A-p =(A-p[1], ..., A-p[m]) € Rm (scalar multiplication)
*p-q = 21<ism P[i]-q([i] e R (dot product)

Definition:
A set B € Rmis convex iff p,q € B implies A-p + (1-A)-q € B for all 0<A<1.

RWTH
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Achievable Points

Definition:

For MDP M = (S, Act, P, sinit) let
4, o, ..., MNn € Paths(M) be m measurable sets of paths, and
°*71, T2, viiy Tm C {<, S, 25 >}

A point p € [0,1]m € Rm is called achievable iff

there is a (randomised) policy & s.t. Pre(I1;) ~ip[i] for all i € {1, ..., m}.

- We also say that point p is achieved by policy @ '°
« A(<Mi,~>m) denotes the set of achievable points 03 9"
* Example: 06
g o 2(0G1.2), 0G2,2))
<
_,OO‘_ X 02
n
0 0.2 0.4 0.6 0.8 1.0
Pr($G)
S e D o, | ONIH
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Achievable Points

The set of achievable points (<M, ~>m) is convex.

Proof (sketch):
- Let p, g in A, ~>m), i.e., p and g are achieved by some policies ©p and &g,
« For any A € [0,1], the point A-p + (1-A)-q is achieved by the randomised policy
© which initially flips a coin:
» With probability A, it mimics policy ©p
« With probability 1-A, it mimics policy ©q
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Multi-Objective Reachability

* For simplicity, we only consider maximising reachability probabilities, i.e.,
*[1i = 0G; for goal-states G ¢ S

o~ =>

« We simply write 2({0Gi)m) instead of A(OGi, =)m)

« A(OGiym) is downward closed, i.e.,
p € A(OGHm) and p 2 g implies g € A(OGidm)

RWTH
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Pareto Curve

Definition:
Let A(OGi»m) be a set of achievable points.

°q € Rmdominates p € Rm, iff q > p.
«p € A(OGiHm) is Pareto optimal, iff no q € A(<CGi)m) dominates p, i.e.,
q € A Gidm) implies q > p.

«P(OGim) = { p | p is Pareto optimal } is the Pareto curve.
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Multi-Objective Verification Queries

Achievability Query:
Given: MDP M, goal state sets Gq, ..., Gm, p € Rm
Output: True iff p € A(OGidm)

Quantitative Query:

Given: MDP M, goal state sets Gy, ..., Gm, p2, ... , pm € R

Output: max { p1€ R | (p1, p2, --. , Pm) € A(KOGPm) }

Pareto Query:
Given: MDP M, goal state sets Gy, ..., Gn

Output: Pareto Curve P(<0Gidm)
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Policy Requirements

In general, we need policies with randomisation and finite memory, e.g.:

!

1 C‘A.—G@Lﬂ—»‘y (0.5, 0.5) e 2A(0{t}, o{u}) ?

Only with randomised policy &(s)(a) = &(s)(B) = 0.5

|
@B—ﬂ'y (1, 1) € A(0ft}, Ofu}) ?
VT

1, if 1 has not visited {t}, yet

Only with finite-memory policy &(11)(a) = {0 otherwise
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Goal-unfolding

* A policy might need to memorise which set G; has been reached already
* |dea: Encode this information into the state-space.
* Then, positional (randomised) policies suffice
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Goal-unfolding
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Goal-unfolding

Definition:
The goal-unfolding of MDP M = (S, Act, P, sinit) and G1, ..., Gm € S\ {sinit} is

the MDP My = (S x {0,1}™, Act, Pu, ¢sinit, (O, ..., 0)>), where
Pu((s,b, a, <t,0)) = { P(s, 0, ), ife = Sl_JCC(b,t)
0 , otherwise

and forie{l, ..., m}

succ(b,t)[i] = { 1, 1fteG

b[i] , otherwise

* The size of My is polynomial in the size of M and exponential in m
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Goal-unfolding

p is achievable in M iff p is achievable in My

 To answer a multi-objective query for M, we can analyse My instead

p is achievable in My iff p is achieved by a positional policy.

* For the analysis of My we only need to consider positional policies
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Overview

« MDPs with Multiple Objectives

 Linear Programming Approach

* Weighted Sum Approach

fin(S)= fout(S)
Ysat2 0

TseS+ ZaeAct(s) ZteS+ Ysat = Pi

forallse S/S.
foralls,te S, a e Act(s)

forallie{1,...,m}

v
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Linear Programming Approach

* |dea: Use variables ys« to encode the expected number of times we leave
state s via action a € Act(s)

W Exp. timeg ¢ ig entered

e fin(S) = Ties Tacaots yia - PU(t, @, ) +{1 , if s is the initial state

0 , otherwise
° fout(S) = ZGeACt(S) Ys,a %
fin(s) 4 ——= fout(s)
&-— Exp. timeg ¢ ig left 7

* We assert fin(s) = fout(S)
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Solving Quantitative Queries

Quantitative Query:
Given: MDP M, goal state sets Gy, ..., Gm, p2, ... , pm € R

Output: max { p1€ R | (p1, p2, ..., pm) € A(OGdm) }

* Consider the goal-unfolding My
*Forie{1,...,m}letS.i={<(s,b)|b[i]=0}and S+«i={<s,b) | b[i]=1}
-Let S, ={<(s,b) | <t,c) € Post*((s,b)) impliesc =b }

* Return the optimum of the following LP:
| Exp. timeg G ig entered

MaX ZseS+ ZaeAct(s) 2teS+ Ys.a - Pu(S, a, t) such that:
fin(s)=fout(s) foralls e S/S,

Ys,a= 0 forall s € S, a € Act(s)
2 5eS- ZaeAct(S) 2 teS+ Ys.a- PU(S, a, t)Z Pi forallie {2, ey m}

k-...z Exp. timeg Gi ig entered
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Solving Achievability Queries

Achievability Query:
Given: MDP M, goal state sets Gq, ..., Gm, p € Rm
Output: True iff p € A(OGidm)

 Consider the goal-unfolding My
Forie{l,...,m}letS.i={<s,b)|b[i]=0}and S+={<s,b) | b[i]=1}
-Let S, ={<(s,b) | <t,c) € Post*((s,b)) impliesc =b }

* Return True iff the following LP has a feasible solution

max 0 such that:

fin(s) =fout(s) foralls e S/ S,
Ysa20 forall s € S, a € Act(s)
25eS. ZaeAct(s) 2teS+ Ys,a - Pu(S, a, t) 2 pi forallie{1, ..., m}
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Overview

« MDPs with Multiple Objectives

* Linear Programming Approach

* Weighted Sum Approach

fin(S)= fout(S)
Ysat2 0

TseS+ ZaeAct(s) ZteS+ Ysat = Pi

forallse S/S.
foralls,te S, a e Act(s)

forallie{1,...,m}
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Weighted Sum Approach

Theorem:
Forw € [0,1]m let
« ©w € arg maxg ( Z1<ism W[i] - Pré(0Gj) ) and
s pw = ( Préew(0Gy), ..., Préew(0Gn) ).
Then, pwe A(OGidm) and forall q e Rm: w - q > w * pw implies q ¢ A({0Gidm)

* In particular, pw lies on the Pareto curve
* Approach: Compute pw for different w
» Stop when the Pareto curve is explored

achievable

\

Not
achievable

»
»
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Weighted Sum Approach

Theorem:

Forw e [0,1]m let
« ©w € arg maxg ( Z1<ism WI[i] - Pré(0Gj) ) and
s pw = ( Préew(0Gy), ..., Préew(0Gn) ).

Then, pwe A(OGidm) and forall q e Rm: w - q > w * pw implies q ¢ A({0Gidm)

* Proof (sketch):
* pw € A(OGHm) follows by definition

« Assume there is g € A(KOGipm) withw - q > W * pw

- Let g be achieved by policy &, i.e., Pré(0Gi) = qfi] for alli € {1, ..., m}
« Z1sism W[i] - Prew(0Gi) = w - pw< W - < Z1<ism W[i] - Pré(0Gj)

« Contradiction to definition of ©w
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Computation of Points pw for given w

Weighted Value Iteration:
Given: MDP M, goal state sets G4, ..., Gm, w € [0,1]™, precision €

Output: Point pw

« Consider the goal-unfolding My = (Su, Act, Py, ¢sinit, (0, ..., 0))), where Sy =S x {0,1}m
- Let g(b,c) € {0,1}m with g(b,c)[i] = 1iff b[i]=0and c[i]j=1forie {1, ..., m}
*For(s,b) e Suandie {1, ..., m}

« X0(¢s,b)) < 0, y%i(<s,b)) < 0, and &w(({s,b>) < a for some arbitrary a € Act(<s,b))
«Forje{1,2, ...}

« Xi(¢s,b)) < MaXaeacts,b) ( 2aeesy W-d(b,c) + Pu((s,b), q, {t,c))-x-1(<t,c)) )

e Aopt < arg maXaeAct(cs,b) ( 2aeesy W-d(b,c) + Pu((s,b), q, t,c))-x-1(<t,c)) )

o if @w((s,b)) & Aopt then Su(¢s,b)) — a for some a € Aopt

«Forie{l, ..., m}: yii((s,b)) < Ziees, d(b,C)[i] + Pu(<s,b), @w(<s,b)), <t,c))-y-i(<t,c))
- Stop when maxs bes, ( Xi(<s,b)) - X-1((s,b) ) < €

* Return point pw with pw[i] = yii(¢Sinit, (O, ..., 0)))

RWTH
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Conclusion

* Multi-objective MDPs
« Satisfy multiple properties at once
* Need randomised, finite-memory policies

» Two Approaches
* Linear programming approach
* Weighted sum approach

* Active Field of Research
» Ask us for Bachelor / Master thesis topics

Thank you for your attention
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