Multi-Objective Verification on MDPs

Tim Quatmann, Joost-Pieter Katoen

Lehrstuhl für Informatik 2

Motivation

Planning Under Uncertainty

• Scenario: Travel to the airport

Goal: Arrive before the flight departs!

Motivation

Traveling with Computer Scientists

- Model trip to airport as a Markov decision process (MDP)
 - Controlable nondeterminism
 - Probabilistic branching
- Maximise probability to arrive before the flight departs
 Pr(◊▹>∧ ≤3h)
- Other types of cost play a role as well:
 - Maximize Pr(◊→∧ ≤50€)
 - fuel, pollution, stress, waiting time, ...

Multi-objective Model Checking

Analyse Tradeoffs Between Objectives

4

Overview

MDPs with Multiple Objectives

Linear Programming Approach

f _{in} (s) =	f _{out} (s)	for all $s \in S \ / \ S_{\bot}$
y _{s,α,t} ≥	0	for all $s,t \in S$, $\alpha \in Act(s)$
$\Sigma_{s\in S^{\text{-}i}} \; \Sigma_{\alpha\in \text{Act}(s)} \Sigma_{t\in S^{\text{+}i}} y_{s,\alpha,t} \geq $	pi	for all $i \in \{1,, m\}$

Weighted Sum Approach

Markov Decision Processes (MDPs)

- Markov decision process M = (S, Act, P, sinit)
 - Nondeterminism
 - Probabilistic branching
- Randomised Policy S resolves nondeterminism:
 - S(π)(α) = "Probability to choose action α when observing finite path π"
- Probability measure Pr[©]:
 - $Pr^{\mathfrak{S}}(\bigcirc G)$ = "Probability to reach G under \mathfrak{S} "

MDPs with Multiple Objectives

Single-objective: maximal probability
 Pr_{max}(◇G) ≔ max_☉ Pr[☉](◇G)

- Multi-objective: tradeoff
 - $Pr_{max}(\bigcirc G_1)$ vs. $Pr_{max}(\bigcirc G_2)$ vs. ...
 - There is not a single policy that maximises all probabilities

Geometry

- **p** = (p₁, ..., p_m) ∈ ℝ^m is a point in m ∈ N dimensional Euclidean space **p**[i] refers to p_i ∈ ℝ
- Let $\mathbf{p}, \mathbf{q} \in \mathbb{R}^m$ and $\lambda \in \mathbb{R}$
 - p ≤ q holds iff p[i] ≤ q[i] for all i ∈ {1, ..., m}
 - $\mathbf{p} < \mathbf{q}$ holds iff $\mathbf{p} \le \mathbf{q}$ and $\mathbf{p} \ne \mathbf{q}$
 - $\lambda \cdot \mathbf{p} \coloneqq (\lambda \cdot \mathbf{p}[1], ..., \lambda \cdot \mathbf{p}[\mathbf{m}]) \in \mathbb{R}^{\mathbf{m}}$ (scalar multiplication)
 - $\mathbf{p} \cdot \mathbf{q} \coloneqq \Sigma_{1 \leq i \leq m} \mathbf{p}[i] \cdot \mathbf{q}[i] \in \mathbb{R}$ (dot product)

Definition:

A set $B \subseteq \mathbb{R}^m$ is convex iff $\mathbf{p}, \mathbf{q} \in B$ implies $\lambda \cdot \mathbf{p} + (1-\lambda) \cdot \mathbf{q} \in B$ for all $0 \le \lambda \le 1$.

 $\begin{array}{l} \textbf{Definition:}\\ \text{For MDP M} = (S, \text{Act}, \textbf{P}, s_{\text{init}}) \ \text{let}\\ \bullet \Pi_1, \Pi_2, \ \ldots, \ \Pi_m \subseteq Paths(M) \ \text{be m measurable sets of paths, and}\\ \bullet \sim_1, \sim_2, \ \ldots, \ \sim_m \subseteq \{<, \leq, \geq, >\}.\\ \text{A point $\textbf{p} \in [0,1]^m \subseteq \mathbb{R}^m$ is called achievable iff}\\ \text{there is a (randomised) policy $\widehat{\otimes}$ s.t. $\Pr^{\widehat{\otimes}}(\Pi_i) \sim_i \textbf{p}[i]$ for all $i \in \{1, \ \ldots, \ m\}$.} \end{array}$

- We also say that point p is achieved by policy ☺
- $\mathfrak{A}(\langle \Pi_i, \sim_i \rangle_m)$ denotes the set of achievable points
- Example:

Lemma: The set of achievable points $\mathfrak{A}(\langle \Pi_i, \sim_i \rangle_m)$ is convex.

Proof (sketch):

- Let **p**, **q** in $\mathfrak{A}(\langle \Pi_i, \sim_i \rangle_m)$, i.e., **p** and **q** are achieved by some policies \mathfrak{S}_p and \mathfrak{S}_q .
- For any λ ∈ [0,1], the point λ·p + (1-λ)·q is achieved by the randomised policy
 S which initially flips a coin:
 - With probability λ , it mimics policy \mathfrak{S}_p
 - With probability 1- λ , it mimics policy \mathfrak{S}_q

Multi-Objective Reachability

- For simplicity, we only consider maximising reachability probabilities, i.e.,
 Π_i = ◊G_i for goal-states G_i ⊆ S
 ~_i = ≥
- We simply write $\mathfrak{A}(\langle \Diamond G_i \rangle_m)$ instead of $\mathfrak{A}(\langle \Diamond G_i, \geq \rangle_m)$
- $\mathfrak{A}(\langle \Diamond G_i \rangle_m)$ is downward closed, i.e.,
 - $p \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$ and $p \ge q$ implies $q \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$

Pareto Curve

Definition:

Let $\mathfrak{A}(\langle \Diamond G_i \rangle_m)$ be a set of achievable points.

```
• \mathbf{q} \in \mathbb{R}^{\mathsf{m}} dominates \mathbf{p} \in \mathbb{R}^{\mathsf{m}}, iff \mathbf{q} > \mathbf{p}.
```

• $\mathbf{p} \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$ is Pareto optimal, iff no $\mathbf{q} \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$ dominates \mathbf{p} , i.e.,

 $\mathbf{q} \in \mathfrak{A}(\langle \diamondsuit G_i \rangle_m) \text{ implies } \mathbf{q} \neq \mathbf{p}.$

• $\mathfrak{P}(\langle \Diamond G_i \rangle_m) \coloneqq \{ \mathbf{p} \mid \mathbf{p} \text{ is Pareto optimal } \} \text{ is the Pareto curve.}$

Multi-Objective Verification Queries

Achievability Query: Given: MDP M, goal state sets $G_1, ..., G_m, p \in \mathbb{R}^m$ Output: True iff $p \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$

Quantitative Query: Given: MDP M, goal state sets $G_1, \ldots, G_m, p_2, \ldots, p_m \in \mathbb{R}$ Output: max { $p_1 \in \mathbb{R} \mid (p_1, p_2, \ldots, p_m) \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$ }

Pareto Query: Given: MDP M, goal state sets $G_1, ..., G_m$ Output: Pareto Curve $\mathfrak{P}(\langle \Diamond G_i \rangle_m)$

13

Policy Requirements

In general, we need policies with randomisation and finite memory, e.g.:

$$(0.5, 0.5) \in \mathfrak{A}(\diamond\{t\}, \diamond\{u\})?$$

Only with randomised policy $\mathfrak{S}(s)(\alpha) = \mathfrak{S}(s)(\beta) = 0.5$

$$t \xrightarrow{1} \alpha \xrightarrow{\beta} 1 \xrightarrow{1} u \xrightarrow{1} 1 \qquad (1, 1) \in \mathfrak{A}(\diamond\{t\}, \diamond\{u\})?$$

Only with finite-memory policy $\mathfrak{S}(\pi)(\alpha) = \begin{cases} 1, \text{ if } \pi \text{ has not visited } \{t\}, \text{ yet } 0, \text{ otherwise} \end{cases}$

- A policy might need to memorise which set G_i has been reached already
- Idea: Encode this information into the state-space.
- Then, positional (randomised) policies suffice

Multi-objective Verification of MDPs **Tim Quatmann**, Joost-Pieter Katoen

- A policy might need to memorise which set G_i has been reached already
- Idea: Encode this information into the state-space.
- Then, positional (randomised) policies suffice

16

- A policy might need to memorise which set G_i has been reached already
- Idea: Encode this information into the state-space.
- Then, positional (randomised) policies suffice

17

- A policy might need to memorise which set G_i has been reached already
- Idea: Encode this information into the state-space.
- Then, positional (randomised) policies suffice

Definition:

The goal-unfolding of MDP M = (S, Act, P, sinit) and G₁, ..., G_m \subseteq S \ {sinit} is the MDP M_U = (S × {0,1}^m, Act, P_U, (sinit, (0, ..., 0))), where $P_{U}(\langle s, b \rangle, \alpha, \langle t, c \rangle) = \begin{cases} P(s, \alpha, t), \text{ if } c = succ(b,t) \\ 0, \text{ otherwise} \end{cases}$ and for i \in {1, ..., m}: succ(b,t)[i] = $\begin{cases} 1, \dots, m \\ b[i], \text{ otherwise} \end{cases}$

 \bullet The size of M_U is polynomial in the size of M and exponential in m

Lemma: p is achievable in M iff **p** is achievable in $M_{U.}$

• To answer a multi-objective query for M, we can analyse M_U instead

Lemma: **p** is achievable in M_{\cup} iff **p** is achieved by a **positional** policy.

• For the analysis of M_U we only need to consider positional policies

Overview

• MDPs with Multiple Objectives

Linear Programming Approach

f _{in} (s) =	f _{out} (s)	for all $s \in S \ / \ S_{\bot}$
y _{s,α,t} ≥	0	for all $s,t \in S$, $\alpha \in Act(s)$
$\Sigma_{s\in S^{\text{-}i}} \; \Sigma_{\alpha\in \text{Act}(s)} \Sigma_{t\in S^{\text{+}i}} y_{s,\alpha,t} \geq $	pi	for all $i \in \{1,, m\}$

Weighted Sum Approach

Linear Programming Approach

• Idea: Use variables $y_{s,\alpha}$ to encode the expected number of times we leave state s via action $\alpha \in Act(s)$

•
$$f_{in}(s) \coloneqq \Sigma_{t \in S} \Sigma_{\alpha \in Act(t)} y_{t,\alpha} \cdot \mathbf{P}_{U}(t, \alpha, s) + \begin{cases} 1 & \text{, if s is the initial state} \\ 0 & \text{, otherwise} \end{cases}$$

• We assert $f_{in}(s) = f_{out}(s)$

Solving Quantitative Queries

- Consider the goal-unfolding Mu
- For $i \in \{1, ..., m\}$ let $S_{-i} = \{\langle s, b \rangle \mid b[i] = 0 \}$ and $S_{+i} = \{\langle s, b \rangle \mid b[i] = 1 \}$
- Let $S_{\perp} = \{ \langle s, b \rangle \mid \langle t, c \rangle \in \mathsf{Post}^*(\langle s, b \rangle) \text{ implies } c = b \}$

• Return the optimum of the following LP:

 \dots Exp. times G_1 is entered

max $\Sigma_{s \in S^{-1}} \Sigma_{\alpha \in Act(s)} \Sigma_{t \in S^{+1}} y_{s,\alpha} \cdot \mathbf{P}_{U}(s, \alpha, t)$ such that:

Solving Achievability Queries

Achievability Query: Given: MDP M, goal state sets $G_1, ..., G_m, p \in \mathbb{R}^m$ Output: True iff $p \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$

- Consider the goal-unfolding M_U
- For $i \in \{1, ..., m\}$ let $S_{-i} = \{\langle s, b \rangle \mid b[i] = 0 \}$ and $S_{+i} = \{\langle s, b \rangle \mid b[i] = 1 \}$
- Let $S_{\perp} = \{ \langle s, b \rangle \mid \langle t, c \rangle \in \text{Post}^*(\langle s, b \rangle) \text{ implies } c = b \}$
- Return True iff the following LP has a feasible solution

max 0 such that:

$$\begin{aligned} & f_{in}(s) = f_{out}(s) & \text{for all } s \in S \ / \ S_{\perp} \\ & y_{s,\alpha} \geq 0 & \text{for all } s \in S, \ \alpha \in Act(s) \\ & \Sigma_{s \in S^{\perp_i}} \sum_{\alpha \in Act(s)} \sum_{t \in S^{+_i}} y_{s,\alpha} \cdot \mathbf{P}_{\cup}(s, \ \alpha, \ t) \geq p_i & \text{for all } i \in \{1, \ \dots, \ m\} \end{aligned}$$

Overview

• MDPs with Multiple Objectives

Linear Programming Approach

f _{in} (s) =	f _{out} (s)	for all $s \in S \ / \ S_{\bot}$
y _{s,α,t} ≥	0	for all s,t \in S, $\alpha \in Act(s)$
$\sum_{s \in S^{\text{-}i}} \sum_{\alpha \in \text{Act}(s)} \sum_{t \in S^{\text{+}i}} y_{s,\alpha,t} \geq $	pi	for all $i \in \{1,, m\}$

Weighted Sum Approach

$\begin{array}{l} \textbf{Theorem:}\\ \text{For } \textbf{w} \in [0,1]^m \text{ let}\\ \bullet \, \mathfrak{S}_{\textbf{w}} \in \text{arg } \max_{\mathfrak{S}} \left(\, \Sigma_{1 \leq i \leq m} \, \textbf{w}[i] \, \cdot \, Pr^\mathfrak{S}(\Diamond G_i) \, \right) \text{ and} \end{array}$

• $\mathbf{p}_{\mathbf{w}} = (\mathsf{Pr}^{\mathfrak{S}_{\mathbf{w}}}(\Diamond G_1), ..., \mathsf{Pr}^{\mathfrak{S}_{\mathbf{w}}}(\Diamond G_m)).$

Then, $p_w \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$ and for all $q \in \mathbb{R}^m$: $w \cdot q > w \cdot p_w$ implies $q \notin \mathfrak{A}(\langle \Diamond G_i \rangle_m)$

- In particular, $\mathbf{p}_{\mathbf{w}}$ lies on the Pareto curve
- Approach: Compute $\mathbf{p}_{\mathbf{w}}$ for different \mathbf{w}
- Stop when the Pareto curve is explored

Theorem:

For $\mathbf{w} \in [0,1]^m$ let

 $\bullet \, \mathfrak{S}_{\bm{w}} \in arg \ max_{\mathfrak{S}} \, (\ \Sigma_{1 \leq i \leq m} \ \bm{w}[i] \ \cdot \ Pr^{\mathfrak{S}}(\Diamond G_i) \) \ and$

•
$$\mathbf{p}_{\mathbf{w}} = (\operatorname{Pr}^{\mathfrak{S}_{\mathbf{w}}}(\Diamond G_1), \ldots, \operatorname{Pr}^{\mathfrak{S}_{\mathbf{w}}}(\Diamond G_{\mathbf{m}})).$$

Then, $\mathbf{p}_{\mathbf{w}} \in \mathfrak{A}(\langle \Diamond G_i \rangle_{\mathbf{m}})$ and for all $\mathbf{q} \in \mathbb{R}^{\mathbf{m}}$: $\mathbf{w} \cdot \mathbf{q} > \mathbf{w} \cdot \mathbf{p}_{\mathbf{w}}$ implies $\mathbf{q} \notin \mathfrak{A}(\langle \Diamond G_i \rangle_{\mathbf{m}})$

- In particular, $\mathbf{p}_{\mathbf{w}}$ lies on the Pareto curve
- Approach: Compute $\mathbf{p}_{\mathbf{w}}$ for different \mathbf{w}
- Stop when the Pareto curve is explored
- Recall: $\mathfrak{A}(\langle \Diamond G_i \rangle_m)$ is convex

Theorem: For **w** ∈ [0,1]^m let

- $\mathfrak{S}_w \in arg \ max_{\mathfrak{S}} \left(\ \Sigma_{1 \leq i \leq m} \ w[i] \cdot \ Pr^{\mathfrak{S}}(\Diamond G_i) \ \right)$ and
- $\mathbf{p}_{\mathbf{w}} = (\mathsf{Pr}^{\mathfrak{S}_{\mathbf{w}}}(\Diamond G_1), ..., \mathsf{Pr}^{\mathfrak{S}_{\mathbf{w}}}(\Diamond G_{\mathbf{m}})).$

Then, $\mathbf{p}_{\mathbf{w}} \in \mathfrak{A}(\langle \Diamond G_i \rangle_{\mathbf{m}})$ and for all $\mathbf{q} \in \mathbb{R}^{\mathbf{m}}$: $\mathbf{w} \cdot \mathbf{q} > \mathbf{w} \cdot \mathbf{p}_{\mathbf{w}}$ implies $\mathbf{q} \notin \mathfrak{A}(\langle \Diamond G_i \rangle_{\mathbf{m}})$

- In particular, $\mathbf{p}_{\mathbf{w}}$ lies on the Pareto curve
- Approach: Compute p_w for different w
- Stop when the Pareto curve is explored
- Recall: $\mathfrak{A}(\langle \Diamond G_i \rangle_m)$ is convex

Theorem:

For $\boldsymbol{w} \in [0,1]^m$ let

• $\mathfrak{S}_w \in arg \ max_{\mathfrak{S}} \left(\ \Sigma_{1 \leq i \leq m} \ w[i] \cdot \ Pr^{\mathfrak{S}}(\Diamond G_i) \ \right)$ and

• $\mathbf{p}_{\mathbf{w}} = (\operatorname{Pr}^{\mathfrak{S}_{\mathbf{w}}}(\Diamond G_1), \dots, \operatorname{Pr}^{\mathfrak{S}_{\mathbf{w}}}(\Diamond G_{\mathbf{m}})).$

Then, $p_w \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$ and for all $q \in \mathbb{R}^m$: $w \cdot q > w \cdot p_w$ implies $q \notin \mathfrak{A}(\langle \Diamond G_i \rangle_m)$

• Proof (sketch):

• $p_w \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$ follows by definition

- Assume there is $\mathbf{q} \in \mathfrak{A}(\langle \Diamond G_i \rangle_m)$ with $\mathbf{w} \cdot \mathbf{q} > \mathbf{w} \cdot \mathbf{p}_w$
- Let **q** be achieved by policy \mathfrak{S} , i.e., $Pr^{\mathfrak{S}}(\Diamond G_i) \ge \mathbf{q}[i]$ for all $i \in \{1, ..., m\}$
- $\sum_{1 \le i \le m} \mathbf{w}[i] \cdot \Pr^{\mathfrak{S}_w}(\Diamond G_i) = \mathbf{w} \cdot \mathbf{p}_w < \mathbf{w} \cdot \mathbf{q} \le \sum_{1 \le i \le m} \mathbf{w}[i] \cdot \Pr^{\mathfrak{S}}(\Diamond G_i)$
- Contradiction to definition of \mathfrak{S}_w

Computation of Points pw for given w

Weighted Value Iteration: Given: MDP M, goal state sets $G_1, ..., G_m, w \in [0,1]^m$, precision ϵ Output: Point p_w

- Consider the goal-unfolding $M_U = (S_U, Act, P_U, \langle s_{init}, (0, ..., 0) \rangle)$, where $S_U = S \times \{0, 1\}^m$
- Let $\mathbf{g}(\mathbf{b},\mathbf{c}) \in \{0,1\}^m$ with $\mathbf{g}(\mathbf{b},\mathbf{c})[i] = 1$ iff $\mathbf{b}[i] = 0$ and $\mathbf{c}[i] = 1$ for $i \in \{1, \dots, m\}$
- $\bullet \ For \ \langle \boldsymbol{s}, \boldsymbol{b} \rangle \in S_U \ and \ \boldsymbol{i} \in \{1, \ \dots, \ \boldsymbol{m}\}:$
 - $x^{0}(\langle s, b \rangle) \leftarrow 0$, $y^{0,i}(\langle s, b \rangle) \leftarrow 0$, and $\mathfrak{S}_{w}(\langle s, b \rangle) \leftarrow \alpha$ for some arbitrary $\alpha \in Act(\langle s, b \rangle)$
- For $j \in \{1, 2, ...\}$:

30

- $x^{j}(\langle s, b \rangle) \leftarrow max_{\alpha \in Act(\langle s, b \rangle)} \left(\Sigma_{\langle t, c \rangle \in S_{U}} w \cdot g(b, c) + P_{U}(\langle s, b \rangle, \alpha, \langle t, c \rangle) \cdot x^{j-1}(\langle t, c \rangle) \right)$
- $A_{opt} \leftarrow arg \ max_{\alpha \in Act(\langle s, b \rangle)} \left(\Sigma_{\langle t, c \rangle \in S_U} w \cdot g(b, c) + P_U(\langle s, b \rangle, \alpha, \langle t, c \rangle) \cdot x^{j-1}(\langle t, c \rangle) \right)$
- if $\mathfrak{S}_w(\langle s, b \rangle) \not\in A_{opt}$ then $\mathfrak{S}_w(\langle s, b \rangle) \leftarrow \alpha$ for some $\alpha \in A_{opt}$
- For $\mathbf{i} \in \{1, \dots, m\}$: $y^{j,i}(\langle s, b \rangle) \leftarrow \Sigma_{\langle t, c \rangle \in S_U} \mathbf{g}(\mathbf{b}, c)[\mathbf{i}] + \mathbf{P}_U(\langle s, b \rangle, \mathfrak{S}_w(\langle s, b \rangle), \langle t, c \rangle) \cdot y^{j-1,i}(\langle t, c \rangle)$
- Stop when $max_{\langle s,b\rangle \in S_U} (x^j(\langle s,b\rangle) x^{j-1}(\langle s,b\rangle) \le \epsilon$
- Return point $\mathbf{p}_{\mathbf{w}}$ with $\mathbf{p}_{\mathbf{w}}[i] = y^{j,i}(\langle s_{\text{init},} (0, \dots, 0) \rangle)$

Multi-objective MDPs

- Satisfy multiple properties at once
- Need randomised, finite-memory policies
- Two Approaches
 - Linear programming approach
 - Weighted sum approach
- Active Field of Research
 - Ask us for Bachelor / Master thesis topics

Thank you for your attention

