Prof. Dr. Ir. Dr. h. c. Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems — Exercise Sheet 7 —

Notes:

- The exercise sheets need to be solved in groups of 2 students.
- Hand in the solution until 5.12.2018 before the exercise class.
- We do not accept solutions via L2p or email.
- Write your names and matriculation numbers on the front page and staple all pages.

Exercise 1 (Policy Iteration):

(10 + 10 = 20 Points)

Consider the MDP depicted below.

Consider the probabilities for the following property: $\Pr_{max}^{\mathcal{M}}(s \models \Diamond s_4)$ for all $s \in S$.

- a) Execute policy iteration, start with taking *a* in all states. If you need an ordering on the states, use the ordering of the state numbers.
- **b)** Give the LP formulation to characterize the property above.

Exercise 2 (PCTL Equivalence):

(15 + 7 + 7 + 11 = 40 Points)

a) Prove or disproof:

$$\mathbb{P}_{\geq 1}(\Diamond a) \land \mathbb{P}_{\geq 1}(\Diamond b) \equiv_{MDP} \mathbb{P}_{\geq 1}\Big(\Diamond \big((a \land \mathbb{P}_{\geq 1}(\Diamond b)) \lor (b \land \mathbb{P}_{\geq 1}(\Diamond a))\big)\Big)$$

b) Let \mathcal{M} be an MDP. We consider the existential satisfaction relation \models_{\exists} for PCTL formulas, where

$$\mathcal{M}, s \models_{\exists} \mathbb{P}_{J}(\varphi)$$
 iff there **exists** a policy \mathfrak{S} on $\mathcal{M}.\mathsf{Pr}^{\mathfrak{S}}(s \models^{\exists} \varphi) \in J$.

For other PCTL state and path formulas, \models_\exists is defined similar to the satisfaction relation \models from the lecture.

Prove or disprove for all MDP \mathcal{M} :

$$\mathcal{M}, s \models \mathbb{P}_{J}(\varphi) \implies \mathcal{M}, s \models_{\exists} \mathbb{P}_{J}(\varphi)$$

c) Prove or disprove for all MDP \mathcal{M} :

$$\mathcal{M}, s \models_{\exists} \mathbb{P}_{J}(\varphi) \implies \mathcal{M}, s \models \mathbb{P}_{J}(\varphi)$$

d) For two PCTL formulas Φ and Ψ , we write $\Phi \equiv_{MDP}^{\exists} \Psi$ if and only if for all MDPs \mathcal{M} , it holds: $Sat_{\mathcal{M}}^{\exists}(\Phi) = Sat_{\mathcal{M}}^{\exists}(\Psi)$, where $Sat_{\mathcal{M}}^{\exists}(\Phi) = \{s \mid \mathcal{M}, s \models_{\exists} \Phi\}$.

Prove or disprove for all PCTL formulas Φ and Ψ :

$$\Phi \equiv_{MDP} \Psi$$
 if and only if $\Phi \equiv_{MDP}^{\exists} \Psi$

Exercise 3 (PCTL and Policies):

Consider the MDP M as shown above. Find out the satisfaction sets of the following properties or list the probabilities corresponding to a maximizing scheduler for all states, give the used policies, and describe their properties:

- 1. ℙ_{≥0.5}(◯*a*)
- 2. $\mathbb{P}_{≥0.6}(\bigcirc b)$
- 3. $\mathbb{P}_{\leq 0.3}(\Diamond g)$
- 4. $\Pr^{M}(s \models (\Box \Diamond a))$
- 5. $\Pr^{M}(s \models (\Box \Diamond a \land \neg \Box \Diamond b))$

Exercise 4 (CTMC):

Model the following server system as a CTMC.

- The server system consists of two servers and a queue of capacity one.
- Jobs arrive with a rate λ , and are scheduled to any available server.
- If no server is available, they're put in the queue.
- The servers handle the jobs with rate μ .
- If done, a job from the queue is taken, if there is one. Otherwise, the server is idle.

(15 Points)

2

(25 Points)