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Recall: continuous-time Markov chains

Negative exponential distribution
Density of exponential distribution
The density of an exponentially distributed r.v. Y with rate ⁄ œ R>0 is:

fY (x) = ⁄·e≠⁄·x
for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of r.v. Y with rate ⁄ œ R>0 is:

FY (d) =

⁄ d

0
⁄·e≠⁄·x dx = [≠e≠⁄·x

]
d
0 = 1 ≠ e≠⁄·d .

The rate ⁄ œ R>0 uniquely determines an exponential distribution.

Variance and expectation
Let r.v. Y be exponentially distributed with rate ⁄ œ R>0. Then:

I Expectation E [Y ] =
s Œ

0 x ·⁄·e≠⁄·x dx =
1
⁄

I Variance Var[Y ] =
s Œ

0 (x ≠ E [X ])
2⁄·e≠⁄·x dx =

1
⁄2
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Recall: continuous-time Markov chains

Continuous-time Markov chain

Continuous-time Markov chain
A CTMC is a tuple (S, P, r , ÿinit, AP, L) where

I (S, P, ÿinit, AP, L) is a DTMC, and

I r : S æ R>0, the exit-rate function

Let R(s, s Õ
) = P(s, s Õ

) · r(s) be the transition rate of transition (s, s Õ
)

Interpretation

I residence time in state s is exponentially distributed with rate r(s).

I phrased alternatively, the average residence time of state s is
1

r(s) .
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Recall: continuous-time Markov chains

CTMC semantics
Enabledness
The probability that transition s æ s Õ

is enabled in [0, t] is 1 ≠ e≠R(s,sÕ)·t .

State-to-state timed transition probability
The probability to move from non-absorbing s to s Õ

in [0, t] is:

R(s, s Õ
)

r(s)
·
1
1 ≠ e≠r(s)·t

2
.

Residence time distribution
The probability to take some outgoing transition from s in [0, t] is:

⁄ t

0
r(s)·e≠r(s)·x dx = 1 ≠ e≠r(s)·t
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Transient distribution

Transient distribution of a CTMC

Transient state probability
Let X (t) denote the state of a CTMC at time t œ R>0. The probability to

be in state s at time t is defined by:

ps(t) = Pr{ X (t) = s }

=
ÿ

sÕœS
Pr{ X (0) = s Õ } · Pr{ X (t) = s | X (0) = s Õ }

Theorem: transient distribution as linear di�erential equation
The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

pÕ
(t) = p(t) · (R ≠ r) given p(0)

where r is the diagonal matrix of vector r .
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Transient distribution

Transient distribution theorem

Theorem: transient distribution as linear di�erential equation
The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

pÕ
(t) = p(t) · (R ≠ r) given p(0)

where r is the diagonal matrix of vector r .

Proof:
On the blackboard.
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Transient distribution

Computing transient probabilities

The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

pÕ
(t) = p(t) · (R≠r) given p(0).

Solution using standard knowledge yields: p(t) = p(0)·e(R≠r)·t
.

Computing a matrix exponential
First attempt: use Taylor-Maclaurin expansion. This yields

p(t) = p(0)·e(R≠r)·t
= p(0) ·

Œÿ

i=0

((R≠r)·t)
i

i!

But: numerical instability due to fill-in of (R≠r)i
in presence of positive

and negative entries in the matrix R≠r.
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Uniformization

Uniformization
Let CTMC C = (S, P, r , ÿinit, AP, L) with S finite.

Uniform CTMC
CTMC C is uniform if r(s) = r for all s œ S for some r œ R>0.

Uniformization [Gross and Miller, 1984]

Let r œ R>0 such that r > maxsœS r(s). Then unif(r , C) is the tuple

(S, P, r , ÿinit, AP, L) with r(s) = r for all s œ S , and:

P(s, s Õ
) =

r(s)

r ·P(s, s Õ
) if s Õ ”= s and P(s, s) =

r(s)

r ·P(s, s) + 1 ≠ r(s)

r .

It follows that P is a stochastic matrix and unif(r , C) is a CTMC.
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Uniformization

Uniformization: example

Uniformization
Let r œ R>0 such that r > maxsœS r(s). Then unif(r , C) = (S, P, r , ÿinit, AP, L)

with r(s) = r for all s œ S, and:

P(s, s Õ
) =

r(s)

r ·P(s, s Õ
) if s Õ ”= s and P(s, s) =

r(s)

r ·P(s, s) + 1 ≠ r(s)

r .

CTMC C and its uniformized counterpart unif(6, C)
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Uniformization

Uniformization: intuition
Uniformization
Let r œ R>0 such that r > maxsœS r(s). Then unif(r , C) = (S, P, r , ÿinit, AP, L)

with r(s) = r for all s œ S, and:

P(s, s Õ
) =

r(s)

r ·P(s, s Õ
) if s Õ ”= s and P(s, s) =

r(s)

r ·P(s, s) + 1 ≠ r(s)

r .

Intuition

I Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.

I Thus,
1
r is the shortest mean residence time in the CTMC C.

I Then normalize the residence time of all states with respect to r as follows:

1. replace an average residence time
1

r(s) by a shorter (or equal) one,
1
r

2. decrease the transition probabilities by a factor
r(s)

r , and

3. increase the self-loop probability by a factor
r≠r(s)

r

That is, slow down state s whenever r(s) < r .
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Strong and weak bisimulation

Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, ÿinit, AP, L) be a DTMC and R ™ S ◊ S an equivalence.

Then: R is a probabilistic bisimulation on S if for any (s, t) œ R:

1. L(s) = L(t), and

2. P(s, C) = P(t, C) for all equivalence classes C œ S/R
where P(s, C) =

q
sÕœC P(s, s Õ

).

For states in R, the probability of moving by a single transition to some

equivalence class is equal.

Probabilistic bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically bisimilar to t,

denoted s ≥p t, if there exists a probabilistic bisimulation R with (s, t) œ R.
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Strong and weak bisimulation

Strong bisimulation on CTMCs
Probabilistic bisimulation [Buchholz, 1994]

Let C = (S, P, r , ÿinit, AP, L) be a CTMC and R ™ S ◊ S an equivalence.

Then: R is a probabilistic bisimulation on S if for any (s, t) œ R:

1. L(s) = L(t), and

2. r(s) = r(t), and

3. P(s, C) = P(t, C) for all equivalence classes C œ S/R

The last two conditions amount to R(s, C) = R(t, C) for all equivalence classes

C œ S/R.

Probabilistic bisimilarity
Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,

denoted s ≥m t, if there exists a probabilistic bisimulation R with (s, t) œ R.
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Strong and weak bisimulation
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Strong and weak bisimulation

Weak bisimulation on DTMCs

Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S, P, ÿinit, AP, L) be a DTMC and R ™ S ◊ S an equivalence.

Then: R is a weak probabilistic bisimulation on S if for any (s, t) œ R:

1. L(s) = L(t), and

2. if P(s, [s]R) < 1 and P(t, [t]R) < 1, then:

P(s, C)

1 ≠ P(s, [s]R)
=

P(t, C)

1 ≠ P(t, [t]R)
for all C œ S/R, C ”= [s]R = [t]R .

3. s can reach a state outside [s]R i� t can reach a state outside [t]R .

For states in R, the conditional probability of moving by a single transition to

another equivalence class is equal. In addition, either all states in an equivalence

class C almost surely stay there, or have an option to escape from C .
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Strong and weak bisimulation
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Strong and weak bisimulation

Weak bisimulation on DTMCs
Weak probabilistic bisimulation [Baier & Hermanns, 1996]

Let D = (S, P, ÿinit, AP, L) be a DTMC and R ™ S ◊ S an equivalence.

Then: R is a weak probabilistic bisimulation on S if for any (s, t) œ R:
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3. s can reach a state outside [s]R i� t can reach a state outside [t]R .

Probabilistic weak bisimilarity
Let D be a DTMC and s, t states in D. Then: s is probabilistically weak bisimilar
to t, denoted s ¥p t, if there exists a probabilistic weak bisimulation R with

(s, t) œ R.
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Strong and weak bisimulation

Weak bisimulation on DTMC: example

The equivalence relation R with S/R =
)

{s1, s2, s3, s4}, {u1, u2, u3}
*

is a

weak bisimulation. This can be seen as follows. For C = { u1, u2, u3 } and

s1, s2, s4 with P(si , [si ]R) < 1 we have:

P(s1, C)

1 ≠ P(s1, [s1])
=

1/8

1≠5/8
=

1/4

1≠1/4
=

P(s2, C)

1 ≠ P(s2, [s2])
=

1/3

1
=

P(s4, C)

1 ≠ P(s4, [s4])
.

Note that P(s3, [s3]R) = 1. Since s3 can reach a state outside [s3] as s1, s2 and

s4, it follows that s1 ¥p s2 ¥p s3 ¥p s4.
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P(s1, C)

1 ≠ P(s1, [s1])
=

1/8

1≠5/8
=

1/4

1≠1/4
=

P(s2, C)

1 ≠ P(s2, [s2])
=

1/3

1
=

P(s4, C)

1 ≠ P(s4, [s4])
.

Note that P(s3, [s3]R) = 1. Since s3 can reach a state outside [s3] as s1, s2 and

s4, it follows that s1 ¥p s2 ¥p s3 ¥p s4.
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Strong and weak bisimulation

Reachability condition

Remark
Consider the following DTMC:

It is not di�cult to establish s1 ¥p s2. Note: P(s1, [s1]R) = 1, but

P(s2, [s2]R) < 1. Both s1 and s2 can reach a state outside [s1]R = [s2]R . The

reachability condition is essential to establish s1 ¥p s2 and cannot be dropped:

otherwise s1 and s2 would be weakly bisimilar to an equally labelled absorbing

state.
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Strong and weak bisimulation

Weak bisimulation on CTMCs

Weak probabilistic bisimulation [Bravetti, 2002]

Let C = (S, P, r , ÿinit, AP, L) be a CTMC and R ™ S ◊ S an equivalence.

Then: R is a weak probabilistic bisimulation on S if for any (s, t) œ R:

1. L(s) = L(t), and

2. R(s, C) = R(t, C) for all C œ S/R with C ”= [s]R = [t]R

Weak probabilistic bisimilarity
Let C be a CTMC and s, t states in C. Then: s is weak probabilistically bisimilar
to t, denoted s ¥m t, if there exists a weak probabilistic bisimulation R with

(s, t) œ R.
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Strong and weak bisimulation

A useful lemma

Let C be a CTMC and R an equivalence relation on S with (s, t) œ R,

P(s, [s]R) < 1 and P(t, [t]R) < 1. Then: the following two statements are

equivalent:

1. for all C œ S/R, C ”= [s]R = [t]R :

P(s, C)

1 ≠ P(s, [s]R)
=

P(t, C)

1 ≠ P(t, [t]R)
and R(s, S \ [s]R) = R(t, S \ [t]R)

2. R(s, C) = R(t, C) for all C œ S/R with C ”= [s]R = [t]R .

Proof:
Left as an exercise.
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Strong and weak bisimulation

Weak bisimulation on CTMCs: example

Equivalence relation R with S/R =
)

{s1, s2, s3, s4, s5, s6}, {u1, u2, u3, u4, u5}
*

is

a weak bisimulation on the CTMC depicted above. This can be seen as follows.

For C = { u1, u2, u3, u4, u5 }, we have that all s-states enter C with rate 2. The

rates between the s-states are not relevant.
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Strong and weak bisimulation

Properties (without proof)

Strong and weak bisimulation in uniform CTMCs
For all uniform CTMCs C and states s, u in C, we have:

s ≥m u i� s ¥m u i� s ≥p u.

For any CTMC C, we have: C ¥m unif(r , C) with r > maxsœS r(s).

Preservation of transient probabilities
For all CTMCs C with states s, u in C and t œ R>0, we have:

s ¥m u implies ps
(t) = pu

(t)

where ps
(0) = 1s and pu

(0) = 1u where 1s is the characteristic function

for state s, i.e., 1s(s Õ
) = 1 i� s = s Õ

.
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Computing transient probabilities

Overview

1 Recall: continuous-time Markov chains

2 Transient distribution

3 Uniformization

4 Strong and weak bisimulation

5 Computing transient probabilities

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 25/32

finite tens . prob
CTMC C

Itt
)

T
Linear

diff
.

uniform"§" III
" "

c' = unifcr , c)Ic
"

Ct )

EA 't



Computing transient probabilities

Computing transient probabilities

The transient probability vector p(t) = (ps1(t), . . . , psk (t)) satisfies:

pÕ
(t) = p(t) · (R≠r) given p(0).

Standard knowledge yields: p(t) = p(0)·e(R≠r)·t
.

As uniformization preserves transient probabilities, we replace R≠r by its

variant for the uniformized CTMC, i.e., R≠r.

We have:

R(s, s Õ
) = P(s, s Õ

)·r(s) = P(s, s Õ
)·r and r = I·r .

Thus:

p(0)·e(R≠r)·t
= p(0)·e(P·r≠I·r)·t

= p(0)·e(P≠I)·r ·t
= p(0)·e≠rt ·er ·t·P.
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Computing transient probabilities

Computing transient probabilities

p(t) = p(0)·e(R≠r)·t
= p(0)·e(P·r≠I·r)·t

= p(0)·e(P≠I)·r ·t
= p(0)·e≠rt ·er ·t·P.

Computing a matrix exponential
Exploit Taylor-Maclaurin expansion. This yields:

p(0)·e≠rt ·er ·t·P
= p(0)·e≠rt ·

Œÿ

i=0

(r ·t)
i

i! ·Pi

= p(0) ·
Œÿ

i=0
e≠r ·t (r ·t)

i

i!¸ ˚˙ ˝
Poisson prob.

·Pi

As P is a stochastic matrix, computing the matrix exponential Pi
is

numerically stable.
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Computing transient probabilities

Intermezzo: Poisson distribution

Poisson distribution
The Poisson distribution is a discrete probability distribution that expresses

the probability of a given number i of events occurring in a fixed interval

of time [0, t] if these events occur with a known average rate r and

independently of the time since the last event. Formally, the pdf is:

f (i ; r ·t) = e≠r ·t (r ·t)
i

i!
where r is the mean of the Poisson distribution.

Remark
The Poisson distribution can be derived as a limiting case to the binomial

distribution as the number of trials goes to infinity and the expected number of

successes remains fixed.
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Computing transient probabilities

Transient probabilities: example

P =

C
0 1

1 0

D

, r =

C
3

2

D

and P3 =

C
0 1
2
3

1
3

D

Let initial distribution p(0) = (1, 0), and time bound t=1. Then:

p(1) = p(0)·
Œÿ

i=0
e≠3 3

i

i! ·Pi

= (1, 0)·e≠3 1
0! ·

5
1 0

0 1

6
+ (1, 0)·e≠3 3

1! ·
5

0 1
2
3

1
3

6

+ (1, 0)·e≠3 9
2! ·

5
0 1
2
3

1
3

62
+ . . . . . .

¥ (0.404043, 0.595957)
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Computing transient probabilities

Truncating the infinite sum
Computing transient probabilities

p(t) = p(0) ·
Œÿ

i=0
e≠r ·t (r ·t)

i

i! ·Pi

I Summation can be truncated a priori for a given error bound Á > 0.

I The error that is introduced by truncating at summand kÁ is:

.....

Œÿ

i=0
e≠rt (rt)

i

i! ·p(i) ≠
kÁÿ

i=0
e≠rt (rt)

i

i! ·p(i)
..... =

.....

Œÿ

i=kÁ+1
e≠rt (rt)

i

i! ·p(i)
.....

I Strategy: choose kÁ minimal such that:

Œÿ

i=kÁ+1

e≠rt (rt)
i

i! =

Œÿ

i=0
e≠rt (rt)

i

i! ≠
kÁÿ

i=0
e≠rt (rt)

i

i! = 1 ≠
kÁÿ

i=0
e≠rt (rt)

i

i! 6 Á

qŒ
i=0 e≠rt (rt)i

i! = 1 due to the fact that e≠rt (rt)i

i! is a (Poisson) distribution

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/32



Computing transient probabilities

Truncating the infinite sum
Computing transient probabilities

p(t) = p(0) ·
Œÿ

i=0
e≠r ·t (r ·t)

i

i! ·Pi

I Summation can be truncated a priori for a given error bound Á > 0.

I The error that is introduced by truncating at summand kÁ is:

.....

Œÿ

i=0
e≠rt (rt)

i

i! ·p(i) ≠
kÁÿ

i=0
e≠rt (rt)

i

i! ·p(i)
..... =

.....

Œÿ

i=kÁ+1
e≠rt (rt)

i

i! ·p(i)
.....

I Strategy: choose kÁ minimal such that:

Œÿ

i=kÁ+1

e≠rt (rt)
i

i! =

Œÿ

i=0
e≠rt (rt)

i

i! ≠
kÁÿ

i=0
e≠rt (rt)

i

i! = 1 ≠
kÁÿ

i=0
e≠rt (rt)

i

i! 6 Á

qŒ
i=0 e≠rt (rt)i

i! = 1 due to the fact that e≠rt (rt)i

i! is a (Poisson) distribution

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/32

- -

77



Computing transient probabilities

Truncating the infinite sum
Computing transient probabilities

p(t) = p(0) ·
Œÿ

i=0
e≠r ·t (r ·t)

i

i! ·Pi

I Summation can be truncated a priori for a given error bound Á > 0.

I The error that is introduced by truncating at summand kÁ is:

.....

Œÿ

i=0
e≠rt (rt)

i

i! ·p(i) ≠
kÁÿ

i=0
e≠rt (rt)

i

i! ·p(i)
..... =

.....

Œÿ

i=kÁ+1
e≠rt (rt)

i

i! ·p(i)
.....

I Strategy: choose kÁ minimal such that:

Œÿ

i=kÁ+1

e≠rt (rt)
i

i! =

Œÿ

i=0
e≠rt (rt)

i

i! ≠
kÁÿ

i=0
e≠rt (rt)

i

i! = 1 ≠
kÁÿ

i=0
e≠rt (rt)

i

i! 6 Á

qŒ
i=0 e≠rt (rt)i

i! = 1 due to the fact that e≠rt (rt)i

i! is a (Poisson) distribution
Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 30/32



Summary

Overview

1 Recall: continuous-time Markov chains

2 Transient distribution

3 Uniformization

4 Strong and weak bisimulation

5 Computing transient probabilities

6 Summary

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 31/32



Summary

Summary

Main points

I Bisimilar states are equally labelled and their cumulative rate to any

equivalence class coincides.

I Weak bisimilar states have equal conditional probabilities to move to

some equivalence class, and can either both leave their class or both

can’t.

I Uniformization normalizes the exit rates of all states in a CTMC.

I Uniformization transforms a CTMC into a weak bisimilar one.

I Transient distribution are obtained by solving a system of linear

di�erential equations.

I These equations can be solved conveniently on the uniformized

CTMC.
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