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Recall: continuous-time Markov chains

Overview

@ Recall: continuous-time Markov chains
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Recall: continuous-time Markov chains

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate A € Ry is:
fy(x) = \-e™**  for x >0 and fy(x) = 0 otherwise

The cumulative distribution of r.v. Y with rate A € R+g is:
d
Frld) = [ he™ dx = [-e ) = 1o,
0

The rate A € Ry uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate A\ € R-g. Then:
> Expectation E[Y] = [°x-A-e™ ™ dx = }
> Variance Var[Y] = [5°(x — E[X])?A-e ¥ dx = &
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Recall: continuous-time Markov chains

Continuous-time Markov chain

A CTMC is a tuple (S, P, r, Ly, AP, L) where
> (5,P, tinie, AP, L) is a DTMC, and
> r: S — Ry, the exit-rate function

Let R(s,s’) = P(s,s’) - r(s) be the transition rate of transition (s, s)

Interpretation

» residence time in state s is exponentially distributed with rate r(s).

» phrased alternatively, the average residence time of state s is %
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Recall: continuous-time Markov chains

CTMC semantics

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e~ R(s:5)t,

/ — R(S‘.S'>
-
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Recall: continuous-time Markov chains

CTMC semantics

Enabledness

The probability that transition s — s’ is enabled in [0, t] is 1 — e~ R(s:5)t,

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is:

R(s, s’ r(s)t
% (1),

resdente Fme v~ S s <t

>® r(s) = R(sv) +RIaD) +
@ @ R(s9) +. .,
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Recall: continuous-time Markov chains

CTMC semantics

Enabledness
—R(s;s)-t

The probability that transition s — s is enabled in [0, t] is 1 — e

State-to-state timed transition probability

The probability to move from non-absorbing s to s’ in [0, t] is:

R(s, s’ r(s)t
%.(1_(3 ().

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:

t
/ r(s)-e % dx = 1— e ")t
0
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Transient distribution

Overview

© Transient distribution
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Transient distribution

Transient distribution of a CTMC

Transient state probability

Let X(t) denote the state of a CTMC at time t € R>g. The probability to
be in state s at time t is defined by:

ps(t) = Pr{X(t)=s}
— 3 PAX(0) =5} PHX(t) = s| X(0) =5}

s'eS

Theorem: transient distribution as linear differential equation

The transient probability vector p(t) = (ps,(t), ..., ps,(t)) satisfies:

[s| =k
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Transient distribution

Transient distribution of a CTMC

Transient state probability

Let X(t) denote the state of a CTMC at time t € R>g. The probability to
be in state s at time t is defined by:

ps(t) = Pr{X(t)=s}
— 3 PAX(0) =5} PHX(t) = s| X(0) =5}

s'eS

Theorem: transient distribution as linear differential equation

The transient probability vector p(t) = (ps,(t), ..., ps,(t)) satisfies:

0 . .S R?D
p(t) = p(t)-(R—r) given p(0)
r(s) O
where r is the diagonal matrix of vector r. r= [O rh‘).__‘ ]
s
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Transient distribution

Transient distribution theorem

Theorem: transient distribution as linear differential equation

The transient probability vector p(t) = (ps,(t), ..., ps,(t)) satisfies:
p(t)-(R—r) given p(0)

where r is the diagonal matrix of vector r.

On the blackboard.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/32



(Ps (k) = P i )((E) :S’k

Con sioher 3C\\e -*\:\me a0\t a N —\\\mc \w’\wc\,

Tk, vvn)

— rP( { .?-\—03 [ Y c}vvr\\ij EIC,&—}DBS

b T P Y e Soe sk sfde s aa TR b)Y

—_— ~———
S/

vneldes SQ\Q--\QQP S— S

P (y) - B is-\-u:)\\ s S E%)\:-&-B).S

(f

- Z Po(b) - P ) ~~ove s'—s w U5, e
</

("

pet) - (A= cl)B) + 2 B (). R(s\s)-A
S/

(I

PO — p (Y F() A £ 2 L
S/
P (%) + Ps(%-b(h(s,s)-r(sb + 2 P (6

S'ﬁés e

I

(|

(« \eb Q = R- d\\\o::) Cr) —-k)

= for sYs : QGsD = n(ss’) +)



P () + p(B)-B Q(ss)

+ z (PS' (%) Q(S',S) RA
s'ds

S A
S/

o :
P (\:+b> L Ps(\‘)
. _ = 2 Per L8) “Q(s)s)
AN 4
. Ps (erd) —p s (V)
SO] ‘-\>S(§C> = ’\;M =
A—>D 0

(

Z ol Q (st

S

S yé(k) = p () ( R- ey m)}




Transient distribution

Computing transient probabilities

|
The transient probability vector p(t) = (ps, (1), ..., ps,(t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

|
Solution using standard knowledge yields: p(t) = E(O)-e(R_')'t.

r\‘o\er 2— Jen Lce«

At
e
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Transient distribution

Computing transient probabilities

|
The transient probability vector p(t) = (ps,(t), ..., ps(t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

|
Solution using standard knowledge yields: p(t) = p(0)-e(R-")t.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion.

w o
v

W
= 271

\ b= o}
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Computing transient probabilities

The transient probability vector p(t) = (ps, (). .-, ps, (t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

Solution using standard knowledge yields: p(t) = p(0)-e(R-")t.

Computing a matrix exponential

First attempt: use Taylor-Maclaurin expansion. This yields

B(t) = E(O)'e(R—r)'t = p(O)i((R_I:W
i=0

But: numerical instability due to fill-in of (R—r)’ in presence of positive
and negative entries in the matrix R—r.
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Overview

© Uniformization
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Uniformization
Let CTMC C = (S, P, r, 1y, AP, L) with S finite.

Uniform CTMC
CTMC C is uniform if r(s) = r for all s € S for some r € R+o.

cmcC anormizeNon oo
c — ce Cf
(f\gﬁ w'\s\w\«)
\g(k) — ?C’(\:)
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Uniformization
Let CTMC C = (S, P, r, 1y, AP, L) with S finite.

Uniform CTMC

CTMC C is uniform if r(s) = r for all s € S for some r € R+o.

Uniformization [Gross and Miller, 1984]

Let r € R-q such that r > maxses r(s). Then unif(r,C) is the tuple
(S,P, 7, tinie, AP, L) with 7(s) = r for all s € S , and:

P(s,s') = L:)-P(s, s)ifs#s and P(s,s)= —2-P(s,s)+1— @

It follows that P is a stochastic matrix and unif(r,C) is a CTMC.
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Uniformization: example

Let r € Ry such that r > maxses r(s). Then unifir,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = L:).P(s,s’) ifs'#s and P(s s)= rTS)-P(s,s) +1— Lrs)

CTMC C and its uniformized counterpart unif(6,C)

Joost-Pieter Katoen
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Uniformization: intuition

Let r € R such that r > maxscs r(s). Then unif(r,C) = (S, P, 7, tini, AP, L)
with 7(s) = r for all s € S, and:

P(s,s') = r—rS)-P(s, s)ifs'#s and P(s,s)= Lrs)-P(s,s) +1-— r(s)

r

Intuition

> Fix all exit rates to (at least) the maximal exit rate r occurring in CTMC C.

» Thus, % is the shortest mean residence time in the CTMC C.
» Then normalize the residence time of all states with respect to r as follows:

1

1. replace an average residence time % by a shorter (or equal) one,

2. decrease the transition probabilities by a factor r(s)

r
3. increase the self- ili a factor #ﬁz

That is, shemeimmmn state s whenever r(s) < r. acce\ercke ““h‘:"J
( ) ou¥go\ng boais ons fSow s
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Strong and weak bisimulation

Overview
\m\%‘
T C >) c™cC
wrt ¢
C “f\.\g (“. C)
\e/
0 Strong and weak bisimulation n\c-\‘\,\s\nfp
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Strong bisimulation on DTMCs
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Strong bisimulation on DTMCs

Probabilistic bisimulation [Larsen & Skou, 1989]

Let D = (S, P, tini, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. P(s, C) = P(t, C) for all equivalence classes C € S/R
where P(s, C) = > o cc P(s, 5').

|
For states in R, the probability of moving by a single transition to some
equivalence class is equal.

Probabilistic bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically bisimilar to t,
denoted s ~,, t, if there exists a probabilistic bisimulation R with (s, t) € R.
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Strong and weak bisimulation

Strong bisimulation on CTMCs

Probabilistic bisimulation [Buchholz, 1994]

Let C = (S,P,r, i, AP, L) be a CTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and '
R(S,S' = P(’l’ ) : r(S)
r(s) = r(%), and : R(s,C)

3. P(s, C) = P(t, C) for all equivalence classes C € S/R
R(s)c)

The last two conditions amount to R(s, C) = R(t, C) for all equivalence classes
CeS/R.
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Strong bisimulation on CTMCs

Probabilistic bisimulation [Buchholz, 1994]

Let C = (S,P, r, Ly, AP, L) be a CTMC and R C S x S an equivalence.
Then: R is a probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and
2. r(s) = r(t), and
3. P(s, C) = P(t, C) for all equivalence classes C € S/R

|
The last two conditions amount to R(s, C) = R(t, C) for all equivalence classes
CeS/R.

Probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is probabilistically bisimilar to t,
denoted s ~, t, if there exists a probabilistic bisimulation R with (s, t) € R.
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Weak bisimulation on DTMCs
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Strong and weak bisimulation

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tinit, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. if P(s,[s]r) < 1 and P(&[t]r) < 1.

—_—
s con~\eout
I “‘Dun’ eq.c\ass

Wi positve ok ity
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Strong and weak bisimulation

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tinit, AP, L) be a DTMC and R C S x S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:

1. L(s) = L(t), and

2. if P(s,[s]r) < 1 and P(t, [t]g) < 1, then:

PssC)  P(t.C) -
T=P(s. ) 1-P(olde) o CE/RCFR =

— —

Comd. ﬁm\a-
et 5 \eages

W oon e&,c\ess

Joost-Pieter Katoen

Modeling and Verification of Probabilistic Systems 17/32



Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tinie, AP, L) be a DTMC and R C S x S an equivalence.

Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and

2. if P(s,[s]r) < 1 and P(t, [t]g) < 1, then:

P(sC)  P(tC) -
TPl [l)  1-P(ode) o CE/RCFIR =R

3. s can reach a state outside [s]g iff t can reach a state outside [t]r.
—

4
—
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Strong and weak bisimulation

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tinie, AP, L) be a DTMC and R C S x S an equivalence.

Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and

2. if P(s,[s]r) < 1 and P(t, [t]g) < 1, then:

P(sC)  P(tC) -
TPl [l)  1-P(ode) o CE/RCFIR =R

3. s can reach a state outside [s]g iff t can reach a state outside [t]r.

For states in R, the conditional probability of moving by a single transition to

another equivalence class is equal. In addition, either all states in an equivalence
class C almost surely stay there, or have an option to escape from C.
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Strong and weak bisimulation

Weak bisimulation on DTMCs

Weak probabilistic bisimulation

[Baier & Hermanns, 1996]
Let D = (S, P, tini, AP, L) be a DTMC and R C S x S an equivalence.

Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and

2. if P(s,[s]gr) <1 and P(t, [t]g) < 1, then:

P(s,C)  P(t,C) . L
1-P(s,[s]g)  1-P(t[tlr) forall C € S/R, C # [s]r = [t]r-

3. s can reach a state outside [s]|g iff t can reach a state outside [t]g.

Probabilistic weak bisimilarity

Let D be a DTMC and s, t states in D. Then: s is probabilistically weak bisimilar
to t, denoted s =, t, if there exists a probabilistic weak bisimulation R with
(s, t) € R.

Joost-Pieter Katoen
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Strong and weak bisimulation

Weak bisimulation on DTMC: example
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Strong and weak bisimulation

Weak bisimulation on DTMC: example

& @®
1

8 4 3
The equivalence relation R with S/R = { {s1, 5, 53,53}, {u1, 2, u3} } is a

weak bisimulation. This can be seen as follows. For C = { vy, up, u3 } and
s1, 52, sa with P(s;, [si]r) < 1 we have:

P(s1, C) 1/8 1/4 P(2,C)  1/3 P(si, C)

1-P(s,[s1])  1-5/8 1-1/4 1—P(s,[s]) 1 1-P(s[sa)])

Note that P(s3, [s3]gr) = 1. Since s3 can reach a state outside [s3] as si, s» and
s, it follows that s; ~, s, ~p, 53 X Sa.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Strong and weak bisimulation

Reachability condition

Consider the following DTMC:
OO O]

It is not difficult to establish s; =, s,. Note: P(sy, [s1]gr) = 1, but

P(sy, [s2]r) < 1. Both s; and s, can reach a state outside [s1]g = [s2]g. The
reachability condition is essential to establish s; ~, s, and cannot be dropped:
otherwise s; and s, would be weakly bisimilar to an equally labelled absorbing

state.

Modeling and Verification of Probabilistic Systems
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Weak bisimulation on CTMCs
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Weak bisimulation on CTMCs

Weak probabilistic bisimulation

[Bravetti, 2002]
Let C = (S,P, r, L, AP, L) be a CTMC and R C S x S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and

2. R(s,C) =R(t,C) for all C € S/Révith C#[slr = [t]R)

<

8%5 k;JNV\%\ ﬂ"‘gf\
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Weak bisimulation on CTMCs

Weak probabilistic bisimulation

[Bravetti, 2002]
Let C = (S,P, r, L, AP, L) be a CTMC and R C S x S an equivalence.
Then: R is a weak probabilistic bisimulation on S if for any (s, t) € R:
1. L(s) = L(t), and

2. R(s,C) =R(t, C) for all C € S/R with C # [s]r = [t]r

Weak probabilistic bisimilarity

Let C be a CTMC and s, t states in C. Then: s is weak probabilistically bisimilar

to t, denoted s ~, t, if there exists a weak probabilistic bisimulation R with
(s.t) € R.

Joost-Pieter Katoen
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A useful lemma

]
Let C be a CTMC and R an equivalence relation on S with (s, t) € R,
P(s, [s]r) <1 and P(t,[t]r) < 1. Then: the following two statements are
equivalent:

1. forall C € S/R, C # [s]r = [t]r:

Ps,C) _ P(tC)

T=P(s ) 1=P(r im0 RE2 Nl =R r)

2. R(s,C) =R(t, C) for all C € S/R with C # [s]r = [t]r.

Left as an exercise.
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Strong and weak bisimulation

Weak bisimulation on CTMCs: example

[\

Equivalence relation R with S/R = { {s1, %, 53, 4, S5, S}, {1, t2, U3, g, us} } is
a weak bisimulation on the CTMC depicted above. This can be seen as follows.
For C = { uy, up, us, ug, us }, we have that all s-states enter C with rate 2. The
rates between the s-states are not relevant.
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Properties (without proof)
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Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:

s~omu iff s=pu iff s ~p w0

N N e~
CT™MCs DM™C(Cs
F()=r VieS.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 24/32



Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:

s~omu iff s=pu iff s ~p

|
For any CTMC C, we have: C ~p, unif(r,C) with r > maxses r(s).

w’»g
C —— wtw )
M~ T
’\ZW\
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Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:

s~mu iff s u iff s ~p

|
For any CTMC C, we have: C ~p, unif(r,C) with r > maxses r(s).

Preservation of transient probabilities
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Properties (without proof)

Strong and weak bisimulation in uniform CTMCs

For all uniform CTMCs C and states s, u in C, we have:

s~mu iff s u iff s ~p

|
For any CTMC C, we have: C ~p, unif(r,C) with r > maxses r(s).

Preservation of transient probabilities

For all CTMCs C with states s, u in C and t € R>g, we have:
s~mu implies p°(t) = p“(t)

where p(0) = 15 and p“(0) = 1, where 15 is the characteristic function
for state s, i.e.,, 15(s’) =1 iff s =¢'.
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Computing transient probabilities

Overview

Loike Arons. prob
cme C fg(n
\ )
Liwecr
R,
i Qﬂ\a&"\\\n
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e
© Computing transient probabilities
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Computing transient probabilities

The transient probability vector p(t) = (ps, (). .-, ps, (t)) satisfies:
p'(t) = p(t) - (R—r) given p(0).

Standard knowledge vyields: p(t) = p(0)~e(R*r)'t_

As uniformization preserves transient probabilities, we replace R—r by its
variant for the uniformized CTMC, i.e., R—T.

_ (N=r
R(s,s)= Plss')-F(s)

= P(ss)-r \ :{
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Computing transient probabilities

Computing transient probabilities

|
The transient probability vector p(t) = (ps, (). .-, ps, (t)) satisfies:

p'(t) = p(t) - (R—r) given p(0).

Standard knowledge vyields: p(t) = p(0)~e(R*r)'t_

|
As uniformization preserves transient probabilities, we replace R—r by its
variant for the uniformized CTMC, i.e., R—r. We have:

R(s,s') = P(s,s')7(s) =P(s,s')-r and F¥=1Ir.
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Computing transient probabilities

Computing transient probabilities

B(t) _ B(O)~e<ﬁ7?)'t _ B(O)_e(P-rfl-r)»t _ E(O).e(Pfl)-r-t _ B(0)~efrt-e"t'P4

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields:

p(O)e e F = poe. 3o L

i=0
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Computing transient probabilities

Computing transient probabilities

B(t) _ B(O).e(ﬁfF)»t _ B(O)_e(P-rfl-r)-t _ E(O).e(Pfl)mt _ B(O).efrt.er-t»P‘

Computing a matrix exponential

Exploit Taylor-Maclaurin expansion. This yields: disce® el

p(0)ye e ® = po)ye- Y TR = pg). Y et C B

i=0 ! i=0 ~—_——
Poisson prob.

As P is a stochastic matrix, computing the matrix exponential P'is
numerically stable.
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Intermezzo: Poisson distribution
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Computing transient probabilities

Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event. -
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Computing transient probabilities

Intermezzo: Poisson distribution

Poisson distribution

The Poisson distribution is a discrete probability distribution that expresses
the probability of a given number i of events occurring in a fixed interval
of time [0, t] if these events occur with a known average rate r and
independently of the time since the last event. Formally, the pdf is:

f(i;rt) = e"'t(r;_f)l

where r is the mean of the Poisson distribution.

The Poisson distribution can be derived as a limiting case to the binomial

distribution as the number of trials goes to infinity and the expected number of
successes remains fixed.
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Computing transient probabilities

Transient probabilities: example

1>_(o5 = (4 ,o)
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Computing transient probabilities

Transient probabilities: example

win O
Wl =
)

3 01 3 =
oo SRS HELS
2
Let initial distribution p(0) = (1,0), and time bound t=1. Then:

p(1) = p(0) Y 5P
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(0.404043, 0.595957)
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Truncating the infinite sum

Computing transient probabilities
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Truncating the infinite sum

Computing transient probabilities

» Summation can be truncated a priori for a given error bound ¢ > 0.
» The error that is introduced by truncating at summand k. is:

(St 3 ot ]
i=0 i=0 i=ke+
—Y ~——
\"—_v_\_/
” 4
< vor

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems



Truncating the infinite sum

Computing transient probabilities

» Summation can be truncated a priori for a given error bound ¢ > 0.
» The error that is introduced by truncating at summand k. is:

‘ Z e_’t%-_(i)
i=ko+1

kE

Z e"tﬂg(i) — Z e_”%)l-g(i)

o0
; il ; il
0 i=0

» Strategy: choose k. minimal such that:

o o0 i ks kE

—re(rt) e (rt)’ —n(rt) e (rt)’
Ze il —Ze il _Ze il _1_26 il S ¢
i=key1 i=0 i=0 i=0

> e () — 1 due to the fact that e is a (Poisson) distribution

i=0 il il
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Overview

Q@ Summary
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Summary

» Bisimilar states are equally labelled and their cumulative rate to any
equivalence class coincides.

» Weak bisimilar states have equal conditional probabilities to move to
some equivalence class, and can either both leave their class or both
can't.

» Uniformization normalizes the exit rates of all states in a CTMC.
» Uniformization transforms a CTMC into a weak bisimilar one.

» Transient distribution are obtained by solving a system of linear
differential equations.

» These equations can be solved conveniently on the uniformized
CTMC.
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