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Negative exponential distribution

Time in discrete-time Markov chains

The advance of time in DTMCs

I Time in a DTMC proceeds in discrete steps
I Two possible interpretations:

1. accurate model of (discrete) time units
I e.g., clock ticks in model of an embedded device

2. time-abstract
I no information assumed about the time transitions take

I State residence time is geometrically distributed

Continuous-time Markov chains

I dense model of time
I transitions can occur at any (real-valued) time instant
I state residence time is (negative) exponentially distributed
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Negative exponential distribution

Continuous random variables

I X is a random variable (r.v., for short)
I on a sample space with probability measure Pr
I assume the set of possible values that X may take is dense

I X is continuously distributed if there exists a function f (x) such that:

Fx (d) = Pr{X 6 d} =
⁄ d

≠Œ
f (x) dx for each real number d

where f satisfies: f (x) > 0 for all x and
⁄ Œ

≠Œ
f (x) dx = 1

I FX (d) is the (cumulative) probability distribution function
I f (x) is the probability density function
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Negative exponential distribution

Negative exponential distribution

Density of exponential distribution

The density of an exponentially distributed r.v. Y with rate ⁄ œ R>0 is:

fY (x) = ⁄·e≠⁄·x for x > 0 and fY (x) = 0 otherwise

The cumulative distribution of r.v. Y with rate ⁄ œ R>0 is:

FY (d) =
⁄ d

0
⁄·e≠⁄·x dx = [≠e≠⁄·x ]d0 = 1 ≠ e≠⁄·d .

The rate ⁄ œ R>0 uniquely determines an exponential distribution.

Variance and expectation

Let r.v. Y be exponentially distributed with rate ⁄ œ R>0. Then:
I Expectation E [Y ] =

s Œ
0 x ·⁄·e≠⁄·x dx = 1

⁄

I Variance Var[Y ] =
s Œ

0 (x ≠ E [X ])2⁄·e≠⁄·x dx = 1
⁄2
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Negative exponential distribution

Exponential pdf and cdf

probability density function cumulative distribution function

The higher ⁄, the faster the cdf approaches 1.
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Negative exponential distribution

Why exponential distributions?

I Are adequate for many real-life phenomena
I the time until a radioactive particle decays
I the time between successive car accidents
I inter-arrival times of jobs, telephone calls in a fixed interval

I Are the continuous counterpart of the geometric distribution

I Heavily used in physics, performance, and reliability analysis

I Can approximate general distributions arbitrarily closely

I Yield a maximal entropy if only the mean is known
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Negative exponential distribution

Memoryless property

Theorem

1. For any exponentially distributed random variable X :

Pr{X > t + d | X > t} = Pr{X > d} for any t, d œ R>0.

2. Any cdf which is memoryless is a negative exponential one.

Proof:

Proof of 1. : Let ⁄ be the rate of X ’s distribution. Then we derive:

Pr{X > t + d | X > t} = Pr{X > t+d fl X > t}
Pr{X > t} = Pr{X > t+d}

Pr{X > t}

= e≠⁄·(t+d)

e≠⁄·t =

e≠⁄·d = Pr{X > d}.

Proof of 2. : By contraposition, using the total law of probability.
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Negative exponential distribution

Property 1: Closure under minimum

Minimum closure theorem

For independent, exponentially distributed random variables X and Y with
rates ⁄, µ œ R>0, the r.v. min(X , Y ) is exponentially distributed with rate
⁄+µ, i.e.,:

Pr{min(X , Y ) 6 t} = 1 ≠ e≠(⁄+µ)·t for all t œ R>0.

Proof:

On the blackboard.
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Negative exponential distribution

Proof

Let ⁄ (µ) be the rate of X ’s (Y ’s) distribution.

Then we derive:

Pr{min(X , Y ) 6 t} = PrX ,Y {(x , y) œ R2
>0 | min(x , y) 6 t}

=
⁄ Œ

0

3⁄ Œ

0
Imin(x ,y)6t(x , y) · ⁄e≠⁄x · µe≠µy dy

4
dx

=
⁄ t

0

⁄ Œ

x
⁄e≠⁄x · µe≠µy dy dx +

⁄ t

0

⁄ Œ

y
⁄e≠⁄x · µe≠µy dx dy

=
⁄ t

0
⁄e≠⁄x · e≠µx dx +

⁄ t

0
e≠⁄y · µe≠µy dy

=
⁄ t

0
⁄e≠(⁄+µ)x dx +

⁄ t

0
µe≠(⁄+µ)y dy

=
⁄ t

0
(⁄+µ) · e≠(⁄+µ)z dz = 1 ≠ e≠(⁄+µ)t
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Negative exponential distribution

Property 1: Closure under minimum

Minimum closure theorem for several exponentially distributed r.v.’s

For independent, exponentially distributed random variables X1, X2, . . . , Xn
with rates ⁄1, ⁄2, . . . , ⁄n œ R>0 the r.v. min(X1, X2, . . . , Xn) is
exponentially distributed with rate

q
0<i6n ⁄i , i.e.,:

Pr{min(X1, X2, . . . , Xn) 6 t} = 1 ≠ e≠
q

0<i6n ⁄i ·t for all t œ R>0.

Proof:

Generalization of the proof for the case of two exponential distributions.
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Negative exponential distribution

Property 2: Winning the race with two competitors

The minimum of two exponential distributions

For independent, exponentially distributed random variables X and Y with
rates ⁄, µ œ R>0, it holds:

Pr{X 6 Y } = ⁄

⁄+µ
.

Proof:

On the blackboard.
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Negative exponential distribution

Proof

Let ⁄ (µ) be the rate of X ’s (Y ’s) distribution. Then we derive:

Pr{X 6 Y } = PrX ,Y {(x , y) œ R2
>0 | x 6 y}

=
⁄ Œ

0
µe≠µy

3⁄ y

0
⁄e≠⁄x dx

4
dy

=
⁄ Œ

0
µe≠µy !

1 ≠ e≠⁄y "
dy

= 1 ≠
⁄ Œ

0
µe≠µy ·e≠⁄y dy = 1 ≠

⁄ Œ

0
µe≠(µ+⁄)y dy

= 1 ≠ µ

µ+⁄
·
⁄ Œ

0
(µ+⁄)e≠(µ+⁄)y dy

¸ ˚˙ ˝
=1

= 1 ≠ µ

µ+⁄
= ⁄

µ+⁄
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Negative exponential distribution

Property 2: Winning the race with many

competitors

The minimum of several exponentially distributed r.v.’s

For independent, exponentially distributed random variables X1, X2, . . . , Xn
with rates ⁄1, ⁄2, . . . , ⁄n œ R>0 it holds:

Pr{Xi = min(X1, . . . , Xn)} = ⁄iqn
j=1 ⁄j

.

Proof:

Generalization of the proof for the case of two exponential distributions.
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Continuous-time Markov chains

Overview

1 Negative exponential distribution

2 Continuous-time Markov chains

3 Summary
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Continuous-time Markov chains

Continuous-time Markov chains

I Continuous-time Markov chains
I labeled transition systems augmented with rates
I discrete state space
I continuous time steps
I delays exponentially distributed

I Suited to modelling
I reliability models
I control systems
I queueing networks
I biological pathways
I chemical reactions
I . . .
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Continuous-time Markov chains

Continuous-time Markov chain

Continuous-time Markov chain

A CTMC is a tuple (S, P, r , ÿinit, AP, L) where
I (S, P, ÿinit, AP, L) is a DTMC, and
I r : S æ R>0, the exit-rate function

Interpretation

I residence time in state s is exponentially distributed with rate r(s).
I phrased alternatively, the average residence time of state s is 1

r(s) .
I thus, the higher the rate r(s), the shorter the average residence time

in s.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 17/30
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Continuous-time Markov chains

Example

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
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Continuous-time Markov chains

Example: a classical perspective

r(s) = 25, r(t) = 4, r(u) = 2 and r(v) = 100
The transition rate R(s, s Õ) = P(s, s Õ)·r(s)

We use (S, P, r , ÿinit, AP, L) and (S, R, ÿinit, AP, L) interchangeably.
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Continuous-time Markov chains

CTMC semantics by example

CTMC semantics

I Transition s æ s Õ := r.v. Xs,sÕ with rate R(s, s Õ)

I Probability to go from state s0 to, say, state s2 is:

Pr{Xs0,s2 6 Xs0,s1 fl Xs0,s2 6 Xs0,s3}
=

R(s0, s2)
R(s0, s1) + R(s0, s2) + R(s0, s3) = R(s0, s2)

r(s0)

I Probability of staying at most t time in s0 is:

Pr{min(Xs0,s1 , Xs0,s2 , Xs0,s3) 6 t}
=

1 ≠ e≠(R(s0,s1)+R(s0,s2)+R(s0,s3))·t = 1 ≠ e≠r(s0)·t
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Continuous-time Markov chains

CTMC semantics by example
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Continuous-time Markov chains

CTMC semantics by example
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Continuous-time Markov chains

Simple CTMC example

Modelling a queue of jobs
I initially the queue is empty
I jobs arrive with rate 3/2 (i. e., mean inter-arrival time is 2/3)
I jobs are served with rate 3 (i. e., mean service time is 1/3)
I maximum size of the queue is 3
I state space S = {si | 0 6 i 6 3} where si indicates i jobs in queue.

s0start s1 s2 s3

{empty} {full}3/2 3/2

3

3/2

3 3
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Continuous-time Markov chains

CTMC semantics

Enabledness

The probability that transition s æ s Õ is enabled in [0, t] is 1 ≠ e≠R(s,sÕ)·t .

State-to-state timed transition probability

The probability to move from non-absorbing s to s Õ in [0, t] is:

R(s, s Õ)
r(s) ·

1
1 ≠ e≠r(s)·t

2
.

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:
⁄ t

0
r(s)·e≠r(s)·x dx = 1 ≠ e≠r(s)·t
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Continuous-time Markov chains

CTMC semantics
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Continuous-time Markov chains

CTMC semantics

State-to-state timed transition probability

The probability to move from non-absorbing s to s Õ in [0, t] is:

R(s, s Õ)
r(s) ·

1
1 ≠ e≠r(s)·t

2
.

Proof:

On the blackboard.
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Continuous-time Markov chains

CTMC semantics

Residence time distribution

The probability to take some outgoing transition from s in [0, t] is:
⁄ t

0
r(s)·e≠r(s)·x dx = 1 ≠ e≠r(s)·t

Proof:

On the blackboard.
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Continuous-time Markov chains

Enzyme-catalysed substrate conversion

Source: wikipedia (June 2011)
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Continuous-time Markov chains

Stochastic chemical kinetics

I Types of reaction described by stochiometric equations:
E + S k1⌦

k2
ES k3≠≠æ E + P

I N di�erent types of molecules that randomly collide
where state X (t) = (x1, . . . , xN) with xi = # molecules of sort i

I Reaction probability within infinitesimal interval [t, t+�):

–m(x̨) · � = Pr{reaction m in [t, t+�) | X (t) = x̨} where

–m(x̨) = km · # possible combinations of reactant molecules in x̨

I This process is a continuous-time Markov chain.
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Continuous-time Markov chains
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Continuous-time Markov chains
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Continuous-time Markov chains

Enzyme-catalyzed substrate conversion as a CTMC
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Continuous-time Markov chains

CTMCs are omnipresent!

I Markovian queueing networks (Kleinrock 1975)

I Stochastic Petri nets (Molloy 1977)

I Stochastic activity networks (Meyer & Sanders 1985)

I Stochastic process algebra (Herzog et al., Hillston 1993)

I Probabilistic input/output automata (Smolka et al. 1994)

I Calculi for biological systems (Priami et al., Cardelli 2002)

CTMCs are one of the most prominent models in performance analysis
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Summary

Overview

1 Negative exponential distribution

2 Continuous-time Markov chains

3 Summary
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Summary

Summary

Main points

I Exponential distributions are closed under minimum.
I The probability to win a race amongst several exponential

distributions only depends on their rates.
I A CTMC is a DTMC where state residence times are exponentially

distributed.
I CTMC semantics distinguishes between enabledness and taking a

transition.
I CTMCs are frequently used as semantical model for high-level

formalisms.
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