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Probabilistic Computation Tree Logic

I PCTL is a language for formally specifying properties over DTMCs.

I It can also be used to specify properties over MDPs.

I It is a branching-time temporal logic based on CTL.

I Formula interpretation is Boolean, i.e., a state satisfies a formula or

not.

I The main operator is PJ(Ï)

I where Ï constrains the set of paths and J is a threshold on the

probability.

I it is the probabilistic counterpart of ÷ and ’ path-quantifiers in CTL.

I ranges over all possible resolutions of nondeterminism.
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PCTL syntax [Bianco & De Alfaro, 1995]

Probabilistic Computation Tree Logic: Syntax

PCTL consists of state- and path-formulas.

I PCTL state formulas over the set AP obey the grammar:

� ::= true

--- a
--- �1 · �2

--- ¬�

--- PJ(Ï)

where a œ AP, Ï is a path formula and J ™ [0, 1], J ”= ? is a

non-empty interval.

I PCTL path formulae are formed according to the following grammar:

Ï ::= • �

--- �1 U �2
--- �1 U

6n
�2

where �, �1, and �2 are state formulae and n œ IN.

Abbreviate P[0,0.5](Ï) by P60.5(Ï) and P]0,1](Ï) by P>0(Ï).
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Probabilistic Computation Tree Logic

I PCTL state formulas over the set AP obey the grammar:

� ::= true

--- a
--- �1 · �2

--- ¬�

--- PJ(Ï)

where a œ AP, Ï is a path formula and J ™ [0, 1], J ”= ?.

I PCTL path formulae are formed according to the following grammar:

Ï ::= • �

--- �1 U �2
--- �1 U

6n
�2 where n œ IN.

Intuitive semantics

I s0–0s1–1s2–2 . . . |= � U
6n

� if � holds until � holds within n steps

(where si–i+1 is a single step).

I s |= PJ(Ï) if the probability under all policies that paths starting in s
fulfill Ï lies in J .
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PCTL Semantics

Markov decision process (MDP)

Markov decision process

An MDP M is a tuple (S, Act, P, ÿinit, AP, L) where

I S is a countable set of states with initial distribution ÿinit : S æ [0, 1]

I Act is a finite set of actions

I P : S ◊ Act ◊ S æ [0, 1], transition probability function such that:

for all s œ S and – œ Act :
ÿ

sÕœS
P(s, –, s Õ

) œ { 0, 1 }

I AP is a set of atomic propositions and labeling L : S æ 2
AP

.

Assumption: in each state at least one action is enabled.
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PCTL Semantics

PCTL semantics (1)

Notation

M, s |= � if and only if state-formula � holds in state s of (possibly

infinite) MDP M. As M is known from the context we simply write

s |= �.

Satisfaction relation for state formulas

The satisfaction relation |= is defined for PCTL state formulas by:

s |= a i� a œ L(s)

s |= ¬ � i� not (s |= �)

s |= � · � i� (s |= �) and (s |= �)

s |= PJ(Ï) i� for all policies S on M. PrS(s |= Ï) œ J

where PrS(s |= Ï) = PrSs { fi œ Paths(s) | fi |= Ï }.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 8/37

-



PCTL Semantics

Semantics of P-operator

The probabilistic operator PJ(·) imposes probability bounds for all policies.

In particular, we have

s |= P6p(Ï) i� Prmax
(s |= Ï) 6 p i� supS PrS(s |= Ï) 6 p

and, dually,

s |= P>p(Ï) i� Prmin
(s |= Ï) > p i� infS PrS(s |= Ï) > p.

For finite MDPs we have:

Prmax
(s |= Ï) = maxSPrS(s |= Ï) and Prmin

(s |= Ï) = minSPrS(s |= Ï)

as for any finite MDP an fm-policy exists that maximises or minimises Ï.
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PCTL Semantics

PCTL semantics (2)

Satisfaction relation for path formulas

Let fi = s0 –0 s1 –1 s2 –2 . . . be an infinite path in (possibly infinite) MDP

M. Recall that fi[i ] = si denotes the (i+1)-st state along fi.

The satisfaction relation |= is defined for state formulas by:

fi |= •� i� s1 |= �

fi |= � U � i� ÷k > 0.( fi[k] |= � · ’0 6 i < k. fi[i ] |= � )

fi |= � U
6n

� i� ÷k > 0.( k 6 n · fi[k] |= � ·

’0 6 i < k. fi[i ] |= � )

There is indeed no di�erence with the PCTL semantics for DTMC paths.
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PCTL Semantics

Equivalence of PCTL formulas

PCTL equivalence

� ©MDP � if and only if for all MDPs M, it holds: SatM(�) = SatM(�).

� ©MC � if and only if for all DTMCs D, it holds: SatD(�) = SatD(�).

Since any DTMC is an MDP, it follows: � ©MDP � implies � ©MC �.

The converse, however, does not hold. For instance, for p < 1, we have

P6p(Ï) ©MC ¬P>p(Ï). But, P6p(Ï) ”©MDP ¬P>p(Ï).

s |= P6p(Ï) i� PrS(s |= Ï) 6 p for all policies S, but

s |= ¬P>p(Ï) i� not s |= P>p(Ï)

i� not

1
PrS(s |= Ï) > p for all policies S

2

i� PrS(s |= Ï) 6 p for some policy S.
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PCTL Model Checking

PCTL model checking

PCTL model checking problem

Input: a finite MDP M = (S, Act, P, ÿinit, AP, L), state s œ S, and

PCTL state formula �

Output: yes, if s |= �; no, otherwise.

Basic algorithm

In order to check whether s |= � do:

1. Compute the satisfaction set Sat(�) = { s œ S | s |= � }.

2. This is done recursively by a bottom-up traversal of �’s parse tree.

I The nodes of the parse tree represent the subformulae of �.

I For each node, i.e., for each subformula � of �, determine Sat(�).

I Determine Sat(�) as function of the satisfaction sets of its children:

e.g., Sat(�1 · �2) = Sat(�1) fl Sat(�2) and Sat(¬�) = S \ Sat(�).
3. Check whether state s belongs to Sat(�).
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PCTL Model Checking

Core model checking algorithm

Propositional formulas

Sat(·) is defined by structural induction as for PCTL on DTMCs.

Probabilistic operator P
In order to determine whether s œ Sat(P6p(Ï)), the probability

Prmax
(s |= Ï) needs to be established. Then

Sat(P6p(Ï)) =
)s œ S | Prmax

(s |= Ï) 6 p*
.

The same holds for strict upper bounds < p.

Similarly, lower bounds amount to determining Prmin
(s |= Ï), e.g.,

Sat(P>p(Ï)) =
)s œ S | Prmin

(s |= Ï) > p*
.
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PCTL Model Checking

The next-step operator

Recall that: s |= P6p(• �) if and only if Prmax
(s |= • �) 6 p.

Lemma

Prmax
(s |= • �) = max

) q

t œ Sat(�)
P(s, –, t) | – œ Act(s)

*
.

Algorithm

Determine xs = Prmax
(s |= • �) and return Sat(P6p(• �)) = { s œ S | xs6 p }.

The case for minimal probabilities is similar and omitted here.
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PCTL Model Checking

Example

Consider MDP:

and PCTL-formula:

P> 1
2

(• heads)

1. Sat(heads) = { s2 }

2. xs1 = Prmin
(s1 |= • heads) = min(0, 0.5) = 0

3. Applying that to all states yields:

!
Prmin(s |= • �)

"
sœS =

Q

ccca

0 1 0 0
0.7 0.3 0 0
0 0 0.5 0.5
0 0 1 0
0 0 0 1

R

dddb
·

Q

ca

0
0
1
0

R

db =

Q

ccca

0
0

0.5
1
0

R

dddb

4. Thus: Sat(P>0.5(• heads)) = { s2 }.
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PCTL Model Checking

Bounded until (1)

Recall that: s |= P>p(� U
6n

�) if and only if Prmin
(s |= � U

6n
�) > p.

Lemma

Let S=1 = Sat(�), S=0 = S \ (Sat(�) fi Sat(�)), and S? = S \ (S=0 fi S=1).

Then: Prmin
(s |= � U

6n
�) equals

Y
____]

____[

1 if s œ S=1
0 if s œ S=0
0 if s œ S? · n=0

min
)ÿ

sÕœS
P(s, –, s Õ

) · Prmin
(s Õ

|= � U
6n≠1

�) | – œ Act(s)
*

otherwise

The case for maximal probabilities is analogous.
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PCTL Model Checking

Bounded until (2)

Lemma

Let S=1 = Sat(�), S=0 = S \ (Sat(�) fi Sat(�)), and S? = S \ (S=0 fi S=1).
Then: Prmin(s |= � U6n �) equals

Y
___]

___[

1 if s œ S=1
0 if s œ S=0
0 if s œ S? · n=0
min

)ÿ

sÕœS

P(s, –, s Õ) · Prmin(s Õ |= � U6n≠1 �) | – œ Act(s)
*

otherwise

Algorithm

1. Let P�,� be the probability matrix of M[S=0 fi S=1]
1
.

2. Then
!Prmin

(s |= � U
60

�)
"

sœS = b�

3. And
!Prmin

(s |= � U
6i+1

�)
"

sœS = P�,� ·
!Prmin

(s |= � U
6i

�)
"

sœS .

4. This requires n matrix-vector multiplications and n minimum

operators.

1That is, make the states in S=0 and those in S=1 absorbing.
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PCTL Model Checking

Example
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PCTL Model Checking

Until

Recall that: s |= P>p(� U �) if and only if Prmin
(s |= � U �) > p.

Algorithm

1. Determine S=1 = Sat(P=1(� U �)) by a graph analysis.

2. Determine S=0 = Sat(P=0(� U �)) by a graph analysis.

3. Then solve a linear program (or use value iteration) over all remaining states.

Importance of pre-computation

1. Determining S=0 ensures unique solution of linear program.

2. Determining S=1 reduces the number of variables in the linear program.

3. Gives exact results for the states in S=1 and S=0 (i.e., no round-o�).

4. For qualitative properties, no further computation is needed.
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PCTL Model Checking

Precomputations

Qualitative reachability

1. Determine all states for which probability is zero

1.1 minimum: { s œ S | Prmin
(s |= � U �) = 0 }

1.2 maximum: { s œ S | Prmax
(s |= � U �) = 0 }

2. Determine all states for which probability is one

2.1 minimum: { s œ S | Prmin
(s |= � U �) = 1 }

2.2 maximum: { s œ S | Prmax
(s |= � U �) = 1 }

3. Then solve a linear program (or use value iteration) over all remaining states.

The first case has been treated in the previous lecture (for ⌃G).
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PCTL Model Checking

Qualitative reachability

I Goal is to compute { s œ S | Prmax
(s |= ⌃G) = 1 }

I First make all states in G absorbing, i.e., P(s, –s , s) = 1

I Iteratively remove state t for which Prmax
(t |= ⌃G) < 1

Sketch of algorithm

1. Let U0 = S \ Sat(÷⌃G); this can be done by a graph analysis

2. Remove all actions – from state u for which Post(u, –) fl U0 ”= ?
3. If after removal of actions Act(u) = ?, then remove state u
4. Repeat this procedure for all states, yielding the new MDP M

Õ

5. As this may yield new states from which G is unreachable, repeat the

above steps until all states can reach G

This procedure is quadratic in the size of the MDP.
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PCTL Model Checking
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PCTL Model Checking

Algorithm
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Complexity

Time complexity

Let |�| be the size of �, i.e., the number of logical and temporal operators in �.

Time complexity of PCTL model checking of MDPs

For finite MDP M and PCTL state-formula �, the PCTL model-checking

problem can be solved in time

O
! poly(size(M)) · nmax · |�|

"

where nmax = max{ n | �1 U
6n

�2 occurs in � } with max? = 1.
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Example: Dining Cryptographers Problem

Dining cryptographers problem

Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the

cryptographer on the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the

one it flipped and the one the left-hand neighbour flipped—are the

same (agree) or di�erent (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead

states the opposite (disagree if the coins are the same and agree if the

coins are di�erent).

Claim

An odd number of agrees indicates that the master paid, while an even

number indicates that a cryptographer paid.
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2. Each cryptographer states whether the two coins that it can see—the

one it flipped and the one the left-hand neighbour flipped—are the

same (agree) or di�erent (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead

states the opposite (disagree if the coins are the same and agree if the

coins are di�erent).

Claim

An odd number of agrees indicates that the master paid, while an even

number indicates that a cryptographer paid.
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Example: Dining Cryptographers Problem

Dining cryptographers problem

Example scenario in which master paid (left) or cryptographer A paid

(right) and provides a misleading vote.
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Example: Dining Cryptographers Problem

Dining cryptographers problem

Dining cryptographer’s protocol

1. Each cryptographer flips an unbiased coin and only informs the cryptographer on
the right of the outcome.

2. Each cryptographer states whether the two coins that it can see—the one it
flipped and the one the left-hand neighbour flipped—are the same (agree) or
di�erent (disagree).

Caveat: if a cryptographer actually paid for the dinner, then it instead states the
opposite (disagree if the coins are the same and agree if the coins are di�erent).

Generalisation

The dining cryptographer’s protocol can be generalised to any number N of

cryptographers. Then:

I if N is odd, then an odd number of agrees indicates that the master paid

while an even number indicates that a cryptographer paid.

I if N is even, then an even number of agrees indicates that the master paid

while an odd number indicates that a cryptographer paid.
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Example: Dining Cryptographers Problem

MDP generation times

The number of states and transitions in the MDP representing the model

for the dining cryptographers problem with N cryptographers.
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Example: Dining Cryptographers Problem

Checking correctness

pay ∆ P=1 (⌃(done · par = N%2)) · ¬pay ∆ P=1 (⌃(done · par ”= N%2)).

That is: if the master paid, the parity of the number of agrees matches the parity

of N and, if a cryptographer paid, it does not.
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Example: Dining Cryptographers Problem

Checking anonymity

To verify anonymity – when a cryptographer pays then no cryptographer can tell

who has paid – we check that any possible combination of agree and disagree has

the same likelihood no matter which of the cryptographers pays. This needs to be

checked for all 2
N

possible outcomes. Above the results are listed for one possible

outcome.

Joost-Pieter Katoen Modeling and Verification of Probabilistic Systems 33/37



Fairness
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Fairness

Fairness

I A policy S is fair if for every state s, the probability under S of all

fair paths from s is one

I A fairness assumption is realizable in MDP M if there is some fair

policy for M

I Realizable fairness assumptions are irrelevant for maximal reachability

probabilities (i.e., safety)

I They are relevant for minimal reachability probabilities (i.e., liveness)

I Computing minimal reachability probabilities under strongly fair

policies is reducible to computing maximal reachability probabilities
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Summary

Summary

I PCTL is a variant of CTL with operator � = PJ(Ï).

I PCTL model checking is performed by a recursive descent over �.

I Checking whether s |= P>p(Ï) amounts to determine Prmin
(s |= Ï).

I Checking whether s |= P<p(Ï) amounts to determine Prmax
(s |= Ï).

I The next operator amounts to a single matrix-vector multiplication

and a max/min.

I The bounded-until operator U
6n

amounts to n matrix-vector

multiplications + n minimums (or maximums).

I The until-operator amounts to solving a linear inequation system.

I The worst-case time complexity is polynomial in the size of the MDP

and linear in the size of the formula.
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