
Compiler Construction
Lecture 13: Semantic Analysis II (Circularity Check)

Winter Semester 2018/19

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1819/cc/

https://moves.rwth-aachen.de/teaching/ws-1819/cc/

Recap: Attribute Grammars

Formal Definition of Attribute Grammars

Definition (Attribute grammar)

Let G = 〈N,Σ,P,S〉 ∈ CFGΣ with X := N] Σ.
• Let Att = Syn] Inh be a set of (synthesised or inherited) attributes, and let V =

⋃
α∈Att Vα

be a collection of value sets.
• Let att : X → 2Att be an attribute assignment, and let syn(Y) := att(Y) ∩ Syn and
inh(Y) := att(Y) ∩ Inh for every Y ∈ X .
• Every production π = Y0 → Y1 . . .Yr ∈ P determines the set

Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}
of attribute variables of π with the subsets of internal and external variables:

Intπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))} Extπ := Varπ \ Intπ
• A semantic rule of π is an equation of the form

α0.i0 = f (α1.i1, . . . , αn.in)
where n ∈ N, α0.i0 ∈ Intπ, αj .ij ∈ Extπ, and f : Vα1 × . . .× Vαn → Vα0.
• For each π ∈ P, let Eπ be a set with exactly one semantic rule for every internal variable of
π, and let E := (Eπ | π ∈ P).

Then A := 〈G,E ,V〉 is called an attribute grammar: A ∈ AG.

3 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Recap: Attribute Grammars

Attribution of Syntax Trees

Definition (Attribution of syntax trees)

Let A = 〈G,E ,V〉 ∈ AG, and let t be a syntax tree of G with the set of nodes K .
• K determines the set of attribute variables of t :

Var t := {α.k | k ∈ K labelled with Y ∈ X , α ∈ att(Y)}.

• Let k0 ∈ K be an (inner) node where production π = Y0 → Y1 . . .Yr ∈ P is applied, and let
k1, . . . , kr ∈ K be the corresponding successor nodes. The attribute equation system Ek0 of
k0 is obtained from Eπ by substituting every attribute index i ∈ {0, . . . , r} by ki .
• The attribute equation system of t is given by

Et :=
⋃
{Ek | k inner node of t}.

4 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Recap: Attribute Grammars

Solvability of Attribute Equation System

Definition (Solution of attribute equation system)

Let A = 〈G,E ,V〉 ∈ AG, and let t be a syntax tree of G. A solution of Et is a
mapping

v : Var t → V

such that, for every α0.k0 ∈ Var t and α0.k0 = f (α1.k1, . . . , αn.kn) ∈ Et ,

v(α0.k0) = f (v(α1.k1), . . . , v(αn.kn)).

In general, the attribute equation system Et of a given syntax tree t can have
• no solution,
• exactly one solution, or
• several solutions.

5 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Recap: Attribute Grammars

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = 〈G,E ,V〉 ∈ AG is called circular if there exists a syntax
tree t such that the attribute equation system Et is recursive (i.e., some attribute
variable of t depends on itself). Otherwise it is called noncircular.

Remark: because of the division of Varπ into Intπ and Extπ, cyclic dependencies
cannot occur at production level.

6 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Recap: Attribute Grammars

Attribute Dependency Graphs I

Goal: graphical representation of attribute dependencies

Definition (Production dependency graph)

Let A = 〈G,E ,V〉 ∈ AG with G = 〈N,Σ,P,S〉. Every production π ∈ P determines
the dependency graph Dπ := 〈Varπ,→π〉 where the set of edges→π⊆ Varπ × Varπ
is given by

x →π y iff y = f (. . . , x, . . .) ∈ Eπ.

Corollary

The dependency graph of a production is acyclic
(since→π⊆ Extπ × Intπ and Extπ ∩ Intπ = ∅).

7 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Recap: Attribute Grammars

Attribute Dependency Graphs II

Just as the attribute equation system Et of a syntax tree t is obtained from the
semantic rules of the contributing productions, the dependency graph of t is obtained
by “glueing together” the dependency graphs of the productions.

Definition (Tree dependency graph)

Let A = 〈G,E ,V〉 ∈ AG, and let t be a syntax tree of G.
• The dependency graph of t is defined by Dt := 〈Var t ,→t〉 where the set of edges,
→t ⊆ Var t × Var t , is given by

x →t y iff y = f (. . . , x , . . .) ∈ Et .

• Dt is called cyclic if there exists x ∈ Var t such that x →+
t x .

Corollary

An attribute grammar A = 〈G,E ,V〉 ∈ AG is circular iff there exists a syntax tree t of
G such that Dt is cyclic.

8 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Recap: Attribute Grammars

Attribute Dependency Graphs III

Example (cf. Example 12.1)

(Acyclic) dependency graph of the syntax tree for int x; x := x+1;:
Pgm

Dcl

Typ

int

var ; Dcl

ε

Cmd

var := Exp

Exp

var

+ Exp

num

; Cmd

ε

o

s

t i s

e o

i e t

e t

i

e t

e o

9 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Checking Attribute Grammars for Circularity

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax tree t is caused
by the occurrence of a “cover” production π = A0 → w0A1w1 . . .Arwr ∈ P in a node
k0 of t such that
• the dependencies in Ek0 yield the “upper end” of the cycle and
• for at least one i ∈ [r], some attributes in syn(Ai) depend on attributes in inh(Ai).

To identify such “critical” situations we need to determine for each i ∈ [r] the possible
ways in which attributes in syn(Ai) can depend on attributes in inh(Ai).

11 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Checking Attribute Grammars for Circularity

Attribute Dependency Graphs and Circularity II

Example 13.1

Typical situation (with “cover” production π = A0 → A1A2 ∈ P):

S

B

b

A0

A1

C

c

D

d

A2

a

α

α α

β α β α

β α β α

12 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Checking Attribute Grammars for Circularity

Attribute Dependency Graphs and Circularity III

Definition 13.2 (Attribute dependence)

Let A = 〈G,E ,V〉 ∈ AG with G = 〈N,Σ,P,S〉.
• If t is a syntax tree with root label A ∈ N and root node k , α ∈ syn(A), and β ∈ inh(A) such

that β.k →+
t α.k , then α is dependent on β below A in t (notation: β

A
↪→ α).

• For every syntax tree t with root label A ∈ N,

is(A, t) := {(β, α) ∈ inh(A)× syn(A) | β A
↪→ α in t}.

• For every A ∈ N,
IS(A) := {is(A, t) | t syntax tree with root label A} ⊆ 2Inh×Syn.

Remark: it is important that IS(A) is a system of attribute dependence sets, not a
union (otherwise: strong noncircularity – see later).

Example 13.3

on the board

13 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

The Circularity Check

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively computed. The
following notation is employed:

Definition 13.4

Given π = A→ w0A1w1 . . .Arwr ∈ P and isi ⊆ inh(Ai)× syn(Ai) for each i ∈ [r],

is[π; is1, . . . , isr] ⊆ inh(A)× syn(A)

is defined by
is[π; is1, . . . , isr] :={

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β′.pi, α
′.pi) | (β′, α′) ∈ isi})+

}
where pi :=

∑i
j=1 |wj−1| + i .

Example 13.5

on the board

15 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

The Circularity Check

The Circularity Check II

Algorithm 13.6 (Circularity check for attribute grammars)

Input: A = 〈G,E ,V〉 ∈ AG with G = 〈N,Σ,P,S〉
Procedure: 1. for every A ∈ N, iteratively construct IS(A) as follows:

i. if π = A→ w ∈ P, then
is[π] ∈ IS(A)

ii. if π = A→ w0A1w1 . . . Arwr ∈ P and isi ∈ IS(Ai) for every i ∈ [r], then

is[π; is1, . . . , isr] ∈ IS(A)

2. test whether A is circular by checking if there exist π = A→ w0A1w1 . . .Arwr ∈ P
and isi ∈ IS(Ai) for every i ∈ [r] such that the following relation is cyclic:

→π ∪
r⋃

i=1

{(β.pi , α.pi) | (β, α) ∈ isi}

(where pi :=
∑i

j=1 |wj−1| + i)

Output: “yes” or “no”

16 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

The Circularity Check

The Circularity Check III

Example 13.7

DS→AB:
S

A B

α

β α1 α2 β α1 α2

DB→AB:
B

A B

β α1 α2

β α1 α2 β α1 α2

DA→B:
A

B

β α1 α2

β α1 α2

DA→a:
A

a

β α1 α2

DA→c:
A

c

β α1 α2

DB→b:
B

b

β α1 α2

Application of Algorithm 13.6: on the board

17 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

Correctness and Complexity of the Circularity Check

Correctness and Complexity of Circularity Check

Theorem 13.8 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 13.6 yields the answer “yes”

Proof.

by induction on the syntax tree t with cyclic Dt

Lemma 13.9

The time complexity of the circularity check is exponential in the size of the attribute
grammar (= maximal length of right-hand sides of productions).

Proof.

by reduction of the word problem of alternating Turing machines (see M. Jazayeri: A
Simpler Construction for Showing the Intrinsically Exponential Complexity of the
Circularity Problem for Attribute Grammars, Comm. ACM 28(4), 1981, pp. 715–720)

19 of 19 Compiler Construction

Winter Semester 2018/19

Lecture 13: Semantic Analysis II (Circularity Check)

	Recap: Attribute Grammars
	Checking Attribute Grammars for Circularity
	The Circularity Check
	Correctness and Complexity of the Circularity Check

