
Compiler Construction
Lecture 1: Introduction

Winter Semester 2018/19

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

https://moves.rwth-aachen.de/teaching/ws-1819/cc/

https://moves.rwth-aachen.de/teaching/ws-1819/cc/

Preliminaries

Outline of Lecture 1

Preliminaries

What Is a Compiler?

Aspects of a Compiler

The High-Level View

Literature

2 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Preliminaries

People

• Lectures:
– Thomas Noll (noll@cs.rwth-aachen.de)

• Exercise classes:
– Philipp Berger (berger@cs.rwth-aachen.de)
– Matthias Volk (matthias.volk@cs.rwth-aachen.de)

• Student assistant:
– Justus Fesefeldt

3 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

noll@cs.rwth-aachen.de
berger@cs.rwth-aachen.de
matthias.volk@cs.rwth-aachen.de

Preliminaries

Target Audience

• BSc Informatik:
– Wahlpflicht Theoretische Informatik

• MSc Informatik:
– Wahlpflicht Theoretische Informatik

• MSc Software Systems Engineering:
– Theoretical Foundations of SSE

• ...

4 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Preliminaries

Expectations

• What you can expect:
– how to implement (imperative) programming languages
– application of theoretical concepts (scanning, parsing, static analysis, ...)
– compiler = example of a complex software architecture
– gaining experience with tool support

• What we expect: basic knowledge in
– (imperative) programming languages
– algorithms and data structures (queues, stacks, trees, ...)
– formal languages and automata theory (regular and context-free languages, finite and pushdown

automata, ...)

5 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Preliminaries

Expectations

• What you can expect:
– how to implement (imperative) programming languages
– application of theoretical concepts (scanning, parsing, static analysis, ...)
– compiler = example of a complex software architecture
– gaining experience with tool support

• What we expect: basic knowledge in
– (imperative) programming languages
– algorithms and data structures (queues, stacks, trees, ...)
– formal languages and automata theory (regular and context-free languages, finite and pushdown

automata, ...)

5 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Preliminaries

Organisation

• Schedule:
– Lecture Mon 12:30–14:00 AH 6 (starting 8 Oct)
– Lecture Thu 12:30–14:00 AH 5 (starting 11 Oct)
– Exercise class Mon 15:15–16:45 AH 5 (starting 15 Oct)
– Two special lectures in mid-December (itestra)
– see overview at https://moves.rwth-aachen.de/teaching/ws-1819/cc/

• Exercises:
– 1st assignment sheet next week, presented 22 Oct
– Work on assignments in groups of threefour people
– Recap of foundations (finite automata, ...) on 15 Oct

• Exam:
– Written exams (2 h, 6 Credits) 21.02.2019 and 25.03.2019
– Registration between 3 Dec and 10 Jan
– Admission requires at least 50% of the points in the exercises

• Written material in English (including exam), lecture and exercise classes in German, rest
up to you

6 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://moves.rwth-aachen.de/teaching/ws-1819/cc/

Preliminaries

Organisation

• Schedule:
– Lecture Mon 12:30–14:00 AH 6 (starting 8 Oct)
– Lecture Thu 12:30–14:00 AH 5 (starting 11 Oct)
– Exercise class Mon 15:15–16:45 AH 5 (starting 15 Oct)
– Two special lectures in mid-December (itestra)
– see overview at https://moves.rwth-aachen.de/teaching/ws-1819/cc/

• Exercises:
– 1st assignment sheet next week, presented 22 Oct
– Work on assignments in groups of threefour people
– Recap of foundations (finite automata, ...) on 15 Oct

• Exam:
– Written exams (2 h, 6 Credits) 21.02.2019 and 25.03.2019
– Registration between 3 Dec and 10 Jan
– Admission requires at least 50% of the points in the exercises

• Written material in English (including exam), lecture and exercise classes in German, rest
up to you

6 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://moves.rwth-aachen.de/teaching/ws-1819/cc/

Preliminaries

Organisation

• Schedule:
– Lecture Mon 12:30–14:00 AH 6 (starting 8 Oct)
– Lecture Thu 12:30–14:00 AH 5 (starting 11 Oct)
– Exercise class Mon 15:15–16:45 AH 5 (starting 15 Oct)
– Two special lectures in mid-December (itestra)
– see overview at https://moves.rwth-aachen.de/teaching/ws-1819/cc/

• Exercises:
– 1st assignment sheet next week, presented 22 Oct
– Work on assignments in groups of threefour people
– Recap of foundations (finite automata, ...) on 15 Oct

• Exam:
– Written exams (2 h, 6 Credits) 21.02.2019 and 25.03.2019
– Registration between 3 Dec and 10 Jan
– Admission requires at least 50% of the points in the exercises

• Written material in English (including exam), lecture and exercise classes in German, rest
up to you

6 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://moves.rwth-aachen.de/teaching/ws-1819/cc/

Preliminaries

Organisation

• Schedule:
– Lecture Mon 12:30–14:00 AH 6 (starting 8 Oct)
– Lecture Thu 12:30–14:00 AH 5 (starting 11 Oct)
– Exercise class Mon 15:15–16:45 AH 5 (starting 15 Oct)
– Two special lectures in mid-December (itestra)
– see overview at https://moves.rwth-aachen.de/teaching/ws-1819/cc/

• Exercises:
– 1st assignment sheet next week, presented 22 Oct
– Work on assignments in groups of threefour people
– Recap of foundations (finite automata, ...) on 15 Oct

• Exam:
– Written exams (2 h, 6 Credits) 21.02.2019 and 25.03.2019
– Registration between 3 Dec and 10 Jan
– Admission requires at least 50% of the points in the exercises

• Written material in English (including exam), lecture and exercise classes in German, rest
up to you

6 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://moves.rwth-aachen.de/teaching/ws-1819/cc/

What Is a Compiler?

Outline of Lecture 1

Preliminaries

What Is a Compiler?

Aspects of a Compiler

The High-Level View

Literature

7 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

What Is a Compiler?

What Is It All About?

https://en.wikipedia.org/wiki/Compiler

“A compiler is computer software that transforms computer code written in one
programming language (the source language) into another programming language
(the target language)... The name compiler is primarily used for programs that
translate source code from a high-level programming language to a lower level
language (e.g., assembly language, object code, or machine code) to create an
executable program.”

Compiler vs. interpreter

Compiler: translates an executable program in one language into an executable
program in another language (possibly applying “improvements”)

Interpreter: directly executes an executable program, producing the corresponding
results

8 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://en.wikipedia.org/wiki/Compiler

What Is a Compiler?

What Is It All About?

https://en.wikipedia.org/wiki/Compiler

“A compiler is computer software that transforms computer code written in one
programming language (the source language) into another programming language
(the target language)... The name compiler is primarily used for programs that
translate source code from a high-level programming language to a lower level
language (e.g., assembly language, object code, or machine code) to create an
executable program.”

Compiler vs. interpreter

Compiler: translates an executable program in one language into an executable
program in another language (possibly applying “improvements”)

Interpreter: directly executes an executable program, producing the corresponding
results

8 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://en.wikipedia.org/wiki/Compiler

What Is a Compiler?

Usage of Compiler Technology I

Programming language interpreters

• Ad-hoc implementation of small
programs in scripting languages
(JavaScript, Perl, Ruby, bash, ...)

• Programs usually interpreted, i.e.,
executed stepwise

• Moreover: many non-scripting
languages also involve interpreters
(e.g., JVM as byte code interpreter)

9 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

What Is a Compiler?

Usage of Compiler Technology II

Web browsers

• Receive HTML (XML) pages from web
server

• Analyse (parse) data and translate it to
graphical representation

10 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

What Is a Compiler?

Usage of Compiler Technology III

Text processors

• LATEX = “programming language” for
texts of various kinds

• Translated to DVI, PDF, ...

11 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Outline of Lecture 1

Preliminaries

What Is a Compiler?

Aspects of a Compiler

The High-Level View

Literature

12 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Expected Properties of a Compiler I

Correctness of translation

Goals:
syntactic correctness: conformance to source and target language specifications

• accept all (and only) syntactically valid input programs
• produce correct target code

semantic correctness: “equivalence” of source and target code
• behaviour of target code “corresponds to” (expected) behaviour of source code

Techniques:
• compiler validation and verification
• proof-carrying code, ...
• cf. course on Semantics and Verification of Software (WS 2017/18, SS 2019)

13 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Expected Properties of a Compiler I

Correctness of translation

Goals:
syntactic correctness: conformance to source and target language specifications

• accept all (and only) syntactically valid input programs
• produce correct target code

semantic correctness: “equivalence” of source and target code
• behaviour of target code “corresponds to” (expected) behaviour of source code

Techniques:
• compiler validation and verification
• proof-carrying code, ...
• cf. course on Semantics and Verification of Software (WS 2017/18, SS 2019)

13 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Expected Properties of a Compiler II

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible

Techniques:
• program analysis and optimisation
• cf. course on Static Program Analysis (SS 2018)

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible (for input
programs of arbitrary size)
Techniques:
• fast (linear-time) algorithms
• sophisticated data structures

Remark: mutual tradeoffs!

14 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Expected Properties of a Compiler II

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
Techniques:
• program analysis and optimisation
• cf. course on Static Program Analysis (SS 2018)

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible (for input
programs of arbitrary size)
Techniques:
• fast (linear-time) algorithms
• sophisticated data structures

Remark: mutual tradeoffs!

14 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Expected Properties of a Compiler II

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
Techniques:
• program analysis and optimisation
• cf. course on Static Program Analysis (SS 2018)

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible (for input
programs of arbitrary size)

Techniques:
• fast (linear-time) algorithms
• sophisticated data structures

Remark: mutual tradeoffs!

14 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Expected Properties of a Compiler II

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
Techniques:
• program analysis and optimisation
• cf. course on Static Program Analysis (SS 2018)

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible (for input
programs of arbitrary size)
Techniques:
• fast (linear-time) algorithms
• sophisticated data structures

Remark: mutual tradeoffs!

14 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Expected Properties of a Compiler II

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
Techniques:
• program analysis and optimisation
• cf. course on Static Program Analysis (SS 2018)

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible (for input
programs of arbitrary size)
Techniques:
• fast (linear-time) algorithms
• sophisticated data structures

Remark: mutual tradeoffs!

14 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Aspects of a Programming Language

Syntax: “How does a program look like?”

• hierarchical composition of programs from structural components
(keywords, identifiers, expressions, statements, ...)

Semantics: “What does this program mean?”

• “Static semantics”: properties which are not (easily) definable in syntax
(declaredness of identifiers, type correctness, ...)

• “Operational semantics”: execution evokes state transformations of an (abstract) machine

Pragmatics

• length and understandability of programs
• learnability of programming language
• appropriateness for specific applications
• ...

15 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Aspects of a Programming Language

Syntax: “How does a program look like?”

• hierarchical composition of programs from structural components
(keywords, identifiers, expressions, statements, ...)

Semantics: “What does this program mean?”

• “Static semantics”: properties which are not (easily) definable in syntax
(declaredness of identifiers, type correctness, ...)

• “Operational semantics”: execution evokes state transformations of an (abstract) machine

Pragmatics

• length and understandability of programs
• learnability of programming language
• appropriateness for specific applications
• ...

15 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Aspects of a Programming Language

Syntax: “How does a program look like?”

• hierarchical composition of programs from structural components
(keywords, identifiers, expressions, statements, ...)

Semantics: “What does this program mean?”

• “Static semantics”: properties which are not (easily) definable in syntax
(declaredness of identifiers, type correctness, ...)

• “Operational semantics”: execution evokes state transformations of an (abstract) machine

Pragmatics

• length and understandability of programs
• learnability of programming language
• appropriateness for specific applications
• ...

15 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Motivation for Rigorous Formal Treatment

Example 1.1

1. From NASA’s Mercury Project: FORTRAN DO loop
– DO 5 K = 1,3: DO loop with index variable K
– DO 5 K = 1.3: assignment to (real) variable DO5K

(cf. Dirk W. Hoffmann: Software-Qualität, 2nd ed., Springer 2013)

2. How often is the following loop traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
Pascal: never

3. What if value of p is nil in the following program?
while p <> nil and p^.key < val do ...

Pascal: strict Boolean operations
Modula: non-strict Boolean operations X

16 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Motivation for Rigorous Formal Treatment

Example 1.1

1. From NASA’s Mercury Project: FORTRAN DO loop
– DO 5 K = 1,3: DO loop with index variable K
– DO 5 K = 1.3: assignment to (real) variable DO5K

(cf. Dirk W. Hoffmann: Software-Qualität, 2nd ed., Springer 2013)
2. How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
Pascal: never

3. What if value of p is nil in the following program?
while p <> nil and p^.key < val do ...

Pascal: strict Boolean operations
Modula: non-strict Boolean operations X

16 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Motivation for Rigorous Formal Treatment

Example 1.1

1. From NASA’s Mercury Project: FORTRAN DO loop
– DO 5 K = 1,3: DO loop with index variable K
– DO 5 K = 1.3: assignment to (real) variable DO5K

(cf. Dirk W. Hoffmann: Software-Qualität, 2nd ed., Springer 2013)
2. How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
Pascal: never

3. What if value of p is nil in the following program?
while p <> nil and p^.key < val do ...

Pascal: strict Boolean operations
Modula: non-strict Boolean operations X

16 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Aspects of a Compiler

Historical Development

Code generation: since 1940s
• ad-hoc techniques
• concentration on back-end
• first FORTRAN compiler in 1960

Formal syntax: since 1960s
• LL/LR parsing
• shift towards front-end
• semantics defined by compiler/interpreter

Formal semantics: since 1970s
• operational
• denotational
• axiomatic
• cf. course on Semantics and Verification of Software

Automatic compiler generation: since 1980s
• [f]lex, yacc/bison, ANTLR, ...
• cf. https://www.thefreecountry.com/programming/compilerconstruction.shtml

17 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://www.thefreecountry.com/programming/compilerconstruction.shtml

Aspects of a Compiler

Historical Development

Code generation: since 1940s
• ad-hoc techniques
• concentration on back-end
• first FORTRAN compiler in 1960

Formal syntax: since 1960s
• LL/LR parsing
• shift towards front-end
• semantics defined by compiler/interpreter

Formal semantics: since 1970s
• operational
• denotational
• axiomatic
• cf. course on Semantics and Verification of Software

Automatic compiler generation: since 1980s
• [f]lex, yacc/bison, ANTLR, ...
• cf. https://www.thefreecountry.com/programming/compilerconstruction.shtml

17 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://www.thefreecountry.com/programming/compilerconstruction.shtml

Aspects of a Compiler

Historical Development

Code generation: since 1940s
• ad-hoc techniques
• concentration on back-end
• first FORTRAN compiler in 1960

Formal syntax: since 1960s
• LL/LR parsing
• shift towards front-end
• semantics defined by compiler/interpreter

Formal semantics: since 1970s
• operational
• denotational
• axiomatic
• cf. course on Semantics and Verification of Software

Automatic compiler generation: since 1980s
• [f]lex, yacc/bison, ANTLR, ...
• cf. https://www.thefreecountry.com/programming/compilerconstruction.shtml

17 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://www.thefreecountry.com/programming/compilerconstruction.shtml

Aspects of a Compiler

Historical Development

Code generation: since 1940s
• ad-hoc techniques
• concentration on back-end
• first FORTRAN compiler in 1960

Formal syntax: since 1960s
• LL/LR parsing
• shift towards front-end
• semantics defined by compiler/interpreter

Formal semantics: since 1970s
• operational
• denotational
• axiomatic
• cf. course on Semantics and Verification of Software

Automatic compiler generation: since 1980s
• [f]lex, yacc/bison, ANTLR, ...
• cf. https://www.thefreecountry.com/programming/compilerconstruction.shtml

17 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

https://www.thefreecountry.com/programming/compilerconstruction.shtml

The High-Level View

Outline of Lecture 1

Preliminaries

What Is a Compiler?

Aspects of a Compiler

The High-Level View

Literature

18 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Compiler Phases

Lexical analysis (Scanner):
• recognition of symbols, delimiters, and comments
• by regular expressions and finite automata

Syntax analysis (Parser):
• determination of hierarchical program structure
• by context-free grammars and pushdown automata

Semantic analysis:
• checking context dependencies, data types, ...
• by attribute grammars

Generation of intermediate code:
• translation into (target-independent) intermediate code
• by tree translations

Code optimisation: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimisation of target code, symbol table, error handling

19 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Compiler Phases

Lexical analysis (Scanner):
• recognition of symbols, delimiters, and comments
• by regular expressions and finite automata

Syntax analysis (Parser):
• determination of hierarchical program structure
• by context-free grammars and pushdown automata

Semantic analysis:
• checking context dependencies, data types, ...
• by attribute grammars

Generation of intermediate code:
• translation into (target-independent) intermediate code
• by tree translations

Code optimisation: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimisation of target code, symbol table, error handling

19 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Compiler Phases

Lexical analysis (Scanner):
• recognition of symbols, delimiters, and comments
• by regular expressions and finite automata

Syntax analysis (Parser):
• determination of hierarchical program structure
• by context-free grammars and pushdown automata

Semantic analysis:
• checking context dependencies, data types, ...
• by attribute grammars

Generation of intermediate code:
• translation into (target-independent) intermediate code
• by tree translations

Code optimisation: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimisation of target code, symbol table, error handling

19 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Compiler Phases

Lexical analysis (Scanner):
• recognition of symbols, delimiters, and comments
• by regular expressions and finite automata

Syntax analysis (Parser):
• determination of hierarchical program structure
• by context-free grammars and pushdown automata

Semantic analysis:
• checking context dependencies, data types, ...
• by attribute grammars

Generation of intermediate code:
• translation into (target-independent) intermediate code
• by tree translations

Code optimisation: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimisation of target code, symbol table, error handling

19 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Compiler Phases

Lexical analysis (Scanner):
• recognition of symbols, delimiters, and comments
• by regular expressions and finite automata

Syntax analysis (Parser):
• determination of hierarchical program structure
• by context-free grammars and pushdown automata

Semantic analysis:
• checking context dependencies, data types, ...
• by attribute grammars

Generation of intermediate code:
• translation into (target-independent) intermediate code
• by tree translations

Code optimisation: to improve runtime and/or memory behavior

Generation of target code: tailored to target system
Additionally: optimisation of target code, symbol table, error handling

19 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Compiler Phases

Lexical analysis (Scanner):
• recognition of symbols, delimiters, and comments
• by regular expressions and finite automata

Syntax analysis (Parser):
• determination of hierarchical program structure
• by context-free grammars and pushdown automata

Semantic analysis:
• checking context dependencies, data types, ...
• by attribute grammars

Generation of intermediate code:
• translation into (target-independent) intermediate code
• by tree translations

Code optimisation: to improve runtime and/or memory behavior
Generation of target code: tailored to target system

Additionally: optimisation of target code, symbol table, error handling

19 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Compiler Phases

Lexical analysis (Scanner):
• recognition of symbols, delimiters, and comments
• by regular expressions and finite automata

Syntax analysis (Parser):
• determination of hierarchical program structure
• by context-free grammars and pushdown automata

Semantic analysis:
• checking context dependencies, data types, ...
• by attribute grammars

Generation of intermediate code:
• translation into (target-independent) intermediate code
• by tree translations

Code optimisation: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimisation of target code, symbol table, error handling

19 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimisation

Generation of target code

Target code

regular expressions/
finite automata

context-free grammars/
pushdown automata

attribute grammars

tree translations

[omitted: symbol table, error handling]

x1 := y2 + 1;

(id, x1)(gets,)(id, y2)(plus,)(int, 1)(sem,)

LOAD y2; LIT 1; ADD; STO x1

...

...

20 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimisation

Generation of target code

Target code

regular expressions/
finite automata

context-free grammars/
pushdown automata

attribute grammars

tree translations

[omitted: symbol table, error handling]

x1 := y2 + 1;

(id, x1)(gets,)(id, y2)(plus,)(int, 1)(sem,)

LOAD y2; LIT 1; ADD; STO x1

...

...

20 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimisation

Generation of target code

Target code

regular expressions/
finite automata

context-free grammars/
pushdown automata

attribute grammars

tree translations

[omitted: symbol table, error handling]

x1 := y2 + 1;

(id, x1)(gets,)(id, y2)(plus,)(int, 1)(sem,)

LOAD y2; LIT 1; ADD; STO x1

...

...

20 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimisation

Generation of target code

Target code

regular expressions/
finite automata

context-free grammars/
pushdown automata

attribute grammars

tree translations

[omitted: symbol table, error handling]

x1 := y2 + 1;

(id, x1)(gets,)(id, y2)(plus,)(int, 1)(sem,)

Asg

Var Exp

Sum

Var Con

LOAD y2; LIT 1; ADD; STO x1

...

...

20 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimisation

Generation of target code

Target code

regular expressions/
finite automata

context-free grammars/
pushdown automata

attribute grammars

tree translations

[omitted: symbol table, error handling]

x1 := y2 + 1;

(id, x1)(gets,)(id, y2)(plus,)(int, 1)(sem,)

Asg

Var Exp

Sum

Var Con

Asg ok

Varint Exp int

Sum int

Varint Con int

LOAD y2; LIT 1; ADD; STO x1

...

...

20 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimisation

Generation of target code

Target code

regular expressions/
finite automata

context-free grammars/
pushdown automata

attribute grammars

tree translations

[omitted: symbol table, error handling]

x1 := y2 + 1;

(id, x1)(gets,)(id, y2)(plus,)(int, 1)(sem,)

Asg ok

Varint Exp int

Sum int

Varint Con int

LOAD y2; LIT 1; ADD; STO x1

...

...

20 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimisation

Generation of target code

Target code

regular expressions/
finite automata

context-free grammars/
pushdown automata

attribute grammars

tree translations

[omitted: symbol table, error handling]

x1 := y2 + 1;

(id, x1)(gets,)(id, y2)(plus,)(int, 1)(sem,)

LOAD y2; LIT 1; ADD; STO x1

...

...

20 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimisation

Generation of target code

Target code

regular expressions/
finite automata

context-free grammars/
pushdown automata

attribute grammars

tree translations

[omitted: symbol table, error handling]

x1 := y2 + 1;

(id, x1)(gets,)(id, y2)(plus,)(int, 1)(sem,)

LOAD y2; LIT 1; ADD; STO x1

...

...

20 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Classification of Compiler Phases

Analysis vs. synthesis

Analysis: lexical/syntax/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/target) code + optimisation

Front-end vs. back-end

Front-end: machine-independent parts
(analysis + intermediate code + machine-independent optimisations)

Back-end: machine-dependent parts (generation + optimisation of target code)
• instruction selection
• register allocation
• instruction scheduling

21 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Classification of Compiler Phases

Analysis vs. synthesis

Analysis: lexical/syntax/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/target) code + optimisation

Front-end vs. back-end

Front-end: machine-independent parts
(analysis + intermediate code + machine-independent optimisations)

Back-end: machine-dependent parts (generation + optimisation of target code)
• instruction selection
• register allocation
• instruction scheduling

21 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

The High-Level View

Role of the Runtime System

• Memory management services
– allocation (on heap/stack)
– deallocation
– garbage collection

• Run-time type checking (for non-“strongly typed” languages)
• Error processing, exception handling
• Interface to the operating system (input and output, ...)
• Support for parallelism (communication and synchronisation)

22 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Literature

Outline of Lecture 1

Preliminaries

What Is a Compiler?

Aspects of a Compiler

The High-Level View

Literature

23 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Literature

Literature (CS Library: “Handapparat Softwaremodellierung und Verifikation”)

General

• A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles, Techniques, and Tools;
2nd ed., Addison-Wesley, 2007

• A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge University
Press, 2002

• D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler Design, Wiley &
Sons, 2000

• R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Specific

• O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
• D. Brown, R. Levine T. Mason: lex & yacc, O’Reilly, 1995
• T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007

24 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

Literature

Literature (CS Library: “Handapparat Softwaremodellierung und Verifikation”)

General

• A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles, Techniques, and Tools;
2nd ed., Addison-Wesley, 2007

• A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge University
Press, 2002

• D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler Design, Wiley &
Sons, 2000

• R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Specific

• O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
• D. Brown, R. Levine T. Mason: lex & yacc, O’Reilly, 1995
• T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007

24 of 24 Compiler Construction

Winter Semester 2018/19

Lecture 1: Introduction

	Preliminaries
	What Is a Compiler?
	Aspects of a Compiler
	The High-Level View
	Literature

