
Program Analysis and
Transformation from a 
Practitioner´s POV

Roland Hildebrandt

hildebrandt@itestra.de

17.12.2018



Many CS students

attend a compiler contruction class.

Few of them ever build a compiler

in their professional life.

07.01.2019© itestra 2018



Agenda

01
Background
• Business Information Systems

• itestra

02 Use Cases for Compiler Construction Methods in Practice

03 Program analysis
• Challenges, Experiences, Approaches

04 Programm transformation
• Challenges, Experiences, Approaches

07.01.2019© itestra 2018



Background
Kapitel 01

07.01.2019© itestra 2018



Reality in most large scale enterprises

100s or even 1.000s of “applications”

10 - 100 Mio. LoC, value of 100 – 1.000 Mio. €

often several decades old

07.01.2019© itestra 2018

Age & Size

mean

Success!

Your bank account is being

processed here…



Typical Technologies

Languages:

Java, JavaScript, ABAP

COBOL, PL/I, RPG, NATURAL, C/C++

Assembler

VaGen, DeltaGen, 

SAS, Easytrieve

PowerBuilder, Gupta, Synon, …

Data: DB2, Oracle, VSAM, IDMS, ADABAS, …

„Middleware“: CICS, IMS, MQ, …

Heterogenity is unavoidable in practice!

Long lifecycle, too big to reimplement/migrate everything every 10 years

Mergers & acquisitions (besides, heterogenity also due to hypes/personal preferences, lack of strategy, …)



Typical situation: High Redundancy

Consequences e.g.: repeated / superfluous / overly expensive modifications

Business changes such as SEPA, Euro (costing Mio. of € to implement)

Technical changes such as compiler version, new framework, …

Real example: Extent attribute from 4 to 8 digits in 10.000 locations

07.01.2019© itestra 2018

0

500.000

1.000.000

1.500.000

2.000.000

2.500.000

S
ta

n
d

a
rd

 S
Lo

C
* 

/ 
R

F
S

Lo
C Redundant

In particular for

elder systems, 

but equally existing for

newly developed Java!

Also:

Unused, e.g. 30 % Unused DB Tables

Inappropriate implementations

No documentation, incomprehensible naming



About itestra

Founded 2003, 

independent financially and technologically

75 (fixed contract) employees

8 locations - München, Köln, Stuttgart, Nürnberg, 

Hamburg, Hannover, Madrid, Tallinn

07.01.2019© itestra 2018



Service portfolio

07.01.2019© itestra 2018

Solution Engineering

Governance & 

Renovation

• Realisation of highly configurable IT solutions

for business-critical processes

• Measurement of quality and productivity

• Software renovation and optimisation

• Reducing costs and increasing business value



Use Cases for Compiler 
Construction Methods in 

Practice

Kapitel 02

07.01.2019© itestra 2018



Use Cases from a practitioner‘s POV

Program Analysis 

Identification of redundant or unused parts

Estimation of size, appropriate cost and renovation/migration effort

Identification of economically relevant quality problems

Impact analysis for changes / Support for maintenance/development staff

Program transformation

Automated migration (?)

Automated adaption, e.g. 

 systematic, high-impact technical change

 compiler or framework version

Refactoring support for maintenance/development staff

11



Isn‘t all of this build in Eclipse/IDEA IDE?

Often not covered (sufficiently) by existing tools:

Elder languages and technologies, Precompilers and macros

 lacking modern tool support

Scripting, modelling and configuration „languages“

Batch scripts, e.g. in Shell Script, JCL

Build configuration, e.g. ANT, mainframe compile jobs

Report and document generation, e.g. Jasper, Easytrieve

Graphic and other models, e.g. UML, workflow

 often overlooked, but may grow to significant size! 

Similar activitites in SW lifecycle as with code! 

Specific activitites not supported by common tools  Need to create custom tools!

12



A glance at the future

Will this be important any more when

all legacy systems have been shut off?

Everything from scratch every 10 years is impossible (cost & manpower!)

 Need to conserve a system‘s value through renovation

Today‘s software is tomorrow‘s legacy

(EJB 1.0, Java w/o Generics, classic ABAP, PHP3, …)

Software Engineering is Dead, Buy before Make

i.e. Customizing & Configuration of COTS is increasing

Product- und domain specific languages

 large amount of „source“ in proprietary format

07.01.2019© itestra 2018



Example: Maven POM analysis

dev-
modules

plugins

…

xyz

xyz-base-
webapp

Service
ProxyServle

t

webunits

71 dependencies

in pom.xml 

+85 dependencies

= 150 for many

components

+90 dependencies,

68 redundant

…submodules inherit

dependencies from parent

Maven build configuration

of a larger insurance system

(several dozen build modules)

14



Program analysis
Kapitel 03

07.01.2019© itestra 2018



Even before parsing…
Challenge 1: What to analyse?

16

Which modules are relevant?

Upper/lower case!



Even before parsing… 
Challenge 1: What to analyse?

17

COBOL

Assembler

C

Compile-Log

Encoding problems

A whole application landscape

in one folder…

Is it complete?

Does it compile?



Challenge 1: What to analyse?
„Version Control“-Systems

Task: get a version of the source 1 year ago

Many, but not all projects do have a version control system

E.g. MDA models

Some version control system treat each file separately

and do not support an overall view / version number

CVS w/o tags

Many VCS on mainframe

SAP 

07.01.2019© itestra 2018



Challenge 2: Syntax
Partially generated modules

/* Generated – edit only in designated sections */

public class VertragHandler {

private VertragHandler instance;

public void handle(Event e) {

/* --- BEGIN MANUAL SECTION --- */ 

int id = e.getSelectedID();

Vertrag v = vertragDAO.load(id);

…

/* --- END MANUAL SECTION --- */ 

}

…
19

Goal: ignore the generated sections for analysis

Cutting the manual section is possible –

but what remains is not valid Java!



Challenge 2: Syntax
Language mixture

20

Java

JSP

JavaScript

HTML

Filename

Getter in Java



Challenge 2: Syntax 
Undigestable comments

21



Challenge 2: Syntax
Preprocessors or other homegrown tools

22



Challenge 2: Syntax Exotic Grammars

Keywords allowed as identifiers

Valid PL/I: IF IF = THEN THEN IF = ELSE ELSE IF = THEN END

Non-LL/LR parseable (?)

Valid COBOL: IF A = B OR C = 1 OR 2 OR 3

Column-based:

23



Challenge 2: Syntax Exotic Grammars

Keywords allowed as identifiers

Valid PL/I: IF IF = THEN THEN IF = ELSE ELSE IF = THEN END

Non-LL/LR parseable (?)

Valid COBOL: IF A = B OR C = 1 OR 2 OR 3

Column-based:

24

May be a function or
variable



Challenge 2: Syntax Exotic Grammars

Keywords allowed as identifiers

Valid PL/I: IF IF = THEN THEN IF = ELSE ELSE IF = THEN END

Non-LL/LR parseable (?)

Valid COBOL: IF A = B OR C = 1 OR 2 OR 3

Column-based:

25

May be a function or
variable



Challenge 2: Syntax Exotic Grammars

Keywords allowed as identifiers

Valid PL/I: IF IF = THEN THEN IF = ELSE ELSE IF = THEN END

Non-LL/LR parseable (?)

Valid COBOL: IF A = B OR C = 1 OR 2 OR 3

Column-based:

26

May be a function or
variable



Challenge 3: Special Cases

Needed for detecting Dead Code:

External extry points

Calls / references

27



Challenge 3: Special Cases

Needed for detecting Dead Code:

External extry points

Calls / references

…but there are a number of special cases, e.g.

Reflection and dynamic calls (worst case: name is dynamically concatenated)

Declarative objekt creation: e.g. EJB class is never referenced explicitely!

References in configuration files

A real-world analysis must consider these!

Just asking for ideal prerequisites does‘nt work!

28



Approaches

Be lazy & stand on the shoulders of giants:

Use automisation where appropriate

Use existing tools/ building blocks if fitting

But know the limits: 

Use Brains resp. manual steps for special cases and context specifica

Configure, extend or build tools to automate steps that can be automated but 

exceed the capabilities of existing tools

29



80/20

Combination of manual and automated techniques

30



Tools & Building blocks

Existing universal tools, e.g.:

ShellScript & Unix Tools, Python 

Excel (!)

FileLocator, Astrogrep etc.

Building blocks for new challenges:

Lexer / Lexer generator for different languages

Parser, Parse Utilities, Parser generator

Dependency graphs

Preprocessing tools

Eclipse

Keep your skripts – you will run them again!

31



Example: Document creation scripts

Customer with 1000s of IBM ASF skripts

Proprietary skripting language

for document generation

High infrastructure cost, no future

Migration needed

Questions from preparatory analysis e.g.

How is a value calculated? 

Which fields depend (directly) on a parameter?

Which parameters are assignes/passed but never used?

Approach: create parser using ANTLR, create output similar to JavaDoc

32

[STRASSENZEILE,&STRASSE. &HAUSNUMMER.]

.if &L'&$TXTIDKOST. > 0

[INSTITUTSBLZ,&$BLZ.]

.se lauf = &lauf. + 1



33

Example ctd.: Tooling

Grammar for lexing/parsing ASF script

…creates syntax-tree:

(partially
shown)



34

Example ctd.: Resulting output

Assignments including link to Code 

Line, conditions etc.

Metrics

Original source



Example: Parsing conditionals

Application landscape containing hard-coded references and conditions

on products and tariffs (> 10.000 in 4 Mio SLoC)

Goal: 1. Find them

2. If possible, replace them by call to rule engine

Approach: Custom-built condition normalization,

built upon an existing parser (~ 10 days effort)

and(BAUSPARTARIF=6, 
or(TARIFVARIANTE='C', 
TARIFVARIANTE='D'))

Both equivalent to

or(BAUSPARTARIF=2, BAUSPARTARIF=9)

29



Heuristics

Depending on the Use Case, fuzzy results may be acceptable

and allow the processing of large data sets

often not possible within a compiler, e.g. in code generation …

…but acceptable for code metrics

1. Ignore unknow stuff (maybe issue a warning)

2. Analyses based on tokens instead of full parsing

(or use Shallow Parsing / Island Parsing)

 Robustness in case of unexpected content

 Speed & Memory consumption

Example: COBOL unused include file analysis requires only

 detection of include files (no occurrence of PROCEDURE DIVISION)

 detection of include statements (COPY <filename>)

36



Programm 
transformation

Kapitel 04

07.01.2019© itestra 2018



Automated migration

Tempting idea: automated legacy-systems migration

COBOL  Java / C#

ADABAS, IMS, VSAM  DB2

etc.

Claims:

Cheap

Fast

Error-free

38



Translation examples: NACA

39

CobolJava



Translation examples: OpenCobol2Java

40

CobolJava



Structure, Redundancy avoidance

42

StringUtils.replaceUmlaut(fd37);

…what about

• adequate naming

• service-orientation

• processing strategies, e.g. batch pipeline

• datamodel normalization

?



Evaluation

Mistakes and problems of the legacy language are conserved

The amount of code usually remains the same or even increases

Usually, migrated code has to be post-processed manually to obtain a (realistically) 

human-readable form

 Maintenance will be at least as expensive as before or even costlier

(and performance usually decreases too!)

43

Business Processes

Use Cases / Biz Rules

Biz Entities & Services

Tech. Architecture & Services

Code Statements

Machine Code

Business Processes

Use Cases / Biz Rules

Biz Entities & Services

Tech. Architecture & Services

Code Statements

Machine Code

S
O

U
R

C
E

T
A

R
G

E
T



Evaluation

Nevertheless, there are Use Cases for automated migration

 (fast) reduction of infrastructure cost, i.e. CPU or license, through platform change

 Incremental migration scenario

 Partial code generation for interface classes, data migration etc. 

07.01.2019© itestra 2018

Target:

new code

on new platform

Situation:

Old code on

legacy platform

Automated

migration:

Run old code

on new platform

Incremental replacement

of old components by

newly designed ones

with possible interaction

of old and new parts



45

Incremental migration of COBOL system to C#

Data migration, test result comparison and interface between old&new requires access to “flat” in old format (dozens of 

formats, 100s of fields)

 Generator creates C# access classes from COBOL copy

Example: Interface generation



Example: Reengineering

Situation

Legal insurance system (> 1,4 Mio. Verträge)

Legacy technology (700.000 LOC RPG, AS400), 

only 2 developers with Know How

Barely any innovation, changes expensive

Threat: Loss of market share

Solution: Iterative modernisation (Java, Portal)

Reverse Engineering of business logic

Minimal support by business experts needed

Incremental migration of business functionality

Redocumentation

 mostly manual work

…but necessary for reasonable results!

46



Weiteres Interesse?
Kapitel 6

07.01.2019© itestra 2018 47



Informatiker gefragt!

• Festanstellung 

• Werkstudententätigkeit

• Praktikum 

• Abschlussarbeiten

(Bachelor & Master) 

Bewerben Sie sich! 

jobs@itestra.de
07.01.2019© itestra 2018 48



Praxis-Workshop 
RWTH Aachen, 09.01.2019

In kleinen Teams entwickelt ihr anhand eines 

Praxisbeispiels selbstständig die Architektur für ein 

Informationssystem. Außerdem lernt ihr den Arbeitsalltag 

eines Softwarearchitekten bei itestra kennen.

 09. Januar 2019, 9-16 Uhr 

 RWTH Aachen, Informatik-Zentrum

 Anmeldung bis 02. Januar 2019

itestra.com/workshop-aachen 

07.01.2019© itestra 2018 49



Kontakt

itestra GmbH

Destouchesstraße 68, 80796 München

E-Mail: jobs@itestra.com

Tel.: +49 89 381570-113

Fax: +49 89 381570-119

mailto:jobs@itestra.com

