
Language concepts
in old and recent
programming languages

Programming Languages Guest Lecture

Ivaylo Bonev

Aachen, 10th December 2018

Agenda

01 Motivation
• Why “old” programming languages are still relevant

02 Selected programming languages
• RPG, COBOL, PL/I, C, Java Script

03
Selected language concepts
• Parameterization und Reuse

• Program generators and 4th Level Languages

04 Conclusion

07.01.2019© itestra 2018

Who we are

07.01.2019© itestra 2018 3

About itestra

itestra GmbH = information

technology and strategy

Foundet in 2003 gegründet, bis heute

technologisch und finanziell unabhängig

Currently approx. 75 employees

and 25 students

8 locations across Europe - Munich, Cologne,

Stuttgart, Nuremberg, Hamburg, Hannover, Madrid,

Tallinn

07.01.2019© itestra 2018

Service Portfolio

We ensure and reestablish IT efficiency.

07.01.2019© itestra 2018

Solution Engineering

Governance &

Renovation

• Planning, design and implementation of cost

effective, high performance, mission critical IT

solutions

• Measurement of software quality and costs

• Systems renovation and optimization

• Reduced costs and increased value

Our Clients

07.01.2019© itestra 2018 6

Automotive / Industry Banks Insurance IT/Software Others

In total ~ 100 core applications with
~ 500 Mio LoC analyzed.

Reality in most large
scale enterprises

100s or even 1.000s of “applications”

(from standard products to individual SW)

10 - 100 Mio. LoC, value of 100 – 1.000 Mio. €

often several decades old

Languages

 COBOL, Java, ABAP

 Assembler

 PL/I, RPG, NATURAL, C/C++

 VaGen, DeltaGen,

 SAS, Easytrieve, PowerBuilder, Gupta, Synon, …

07.01.2019© itestra 2018 7

Your bank account is being

processed here…

age & size mean

success!

Heterogenity is
unavoidable in practice!

Long lifecycle, too big to

reimplement/migrate everything

every 10 years

Mergers & acquisitions

(besides, heterogenity also due to

hypes/personal preferences, lack

of strategy, …)

07.01.2019© itestra 2018 8

We get to see interesting systems …

1968

 Salary calculation system in COBOL

 Extended and modified for now 50 years!

1970

 Life Insurance

 5 Mio LoC Assembler

1980+

 Diverse systems in proprietary „4 GLs“: Coolgen, VaGen, Gupta, PowerBuilder,…

2012

 General insurance

 1 Mio LoC Java

 very messy and extremely high costs ;-)

07.01.2019© itestra 2018 9

Motivation (1)

A significant amount of all business

critical software systems is

implemented in programming

languages, which

 are not being taught anymore

 difficult to find staff, knowledge loss,

 do not offer concepts of modern languages,

 have limited tool-support,

 yet still need to be mastered in order to be able to maintain, run

and develop the extremely important systems built with them

07.01.2019© itestra 2018 10

Motivation (2)

Supposedly “new” products and approaches often

lack important basic concepts. The consequences

can be studied using existing systems, implemented

in „old“ languages.

“Those who cannot remember the

past are condemned to repeat it.“

George Santayana (US Philosoph, 1863-1952)

07.01.2019© itestra 2018 11

How are languages chosen for
projects?

In the absence of alternatives

(in the past there were (even) less proven-in-use languages available)

Dependency on hardware and infrastructure software

Successful marketing and sales by the providers

Compatibility to already existing components

(if a system is already implemented in COBOL, new modifications cannot be done in an arbitrary

language)

Inherited system, e.g. from a merger

Available qualifications

Concepts / Performance? … secondary!

07.01.2019© itestra 2018 12

History of development

07.01.2019© itestra 2018 13

Major developments 1960 – 2010s (1/2)

Hardware

Punch cards magnetic tape disks (i.e. from bytes to terabytes)

Closed systems  Internet  mobile Computing & Cloud

Performance of the CPUs, Multi-Core, Memory kBytes  GBytes

Infrastructural software

OS: Single-User & Task  Scheduling, parallelism

DB: Files  hierarchical databases  relational databases  distributed DB

Compiler: text replacement  attributed parse trees

07.01.2019© itestra 2018 14

Major developments 1960 – 2010s (2/2)

Software Engineering

Separation of Concerns, etc.

User requirements and market

Personal talk at the bank / insurance / … and written communication

 7x24 online, complete transparency, social networks

Established sales network  fast monopolization through

technology and venture capital, willingness to switch

07.01.2019© itestra 2018 15

Programming Paradigms

07.01.2019© itestra 2018 16

Some important conceptual features

Syntactic structure

 Tokens vs. columns, Lines vs. statements (in some

languages only 1 per line)

 Fixed vs. variable number of operands

Scope

 Local variables in blocks (methods, …)

 Differentiated control (private, public, friend, static, …)

Modularization, Parameterization, Reuse

 Parameterization (Units: procedures, functions, classes,

packages, …)

 Encapsulation of data AND operations

 Inheritance, Generic data structures and polymorphism

 Library concept (none vs. technical via text-inclusion and

linker vs. language)

Avoidance of programming errors

 Compile-time checking of types, signatures, …

 Memory management: Garbage Collection

07.01.2019© itestra 2018 17

The existence/ absence of these concepts has enormous consequences!

Selected languages:
RPG

07.01.2019© itestra 2018 18

RPG

Report Program Generator

Developed by IBM in 1959

For the creation of commercial reports

Data processing using tabulating machines

and punch cards  column-based Syntax

Global variables per RPG-program

Data access only via “file” cursors

Still new systems developed in RPG in the 90s!

07.01.2019© itestra 2018 19

Selected languages:
COBOL

07.01.2019© itestra 2018 20

COBOL

COBOL stands for „Common Business Oriented Language“

First version: 1960, created as part of US DoD program

Objectives:

 Human-readable, no need for computer scientists

ADD STEUER TO NETTO GIVING BRUTTO.

 Hardware-independent, standardized, problem-oriented language

 Easy-to-implement solutions for commercial problems

07.01.2019© itestra 2018 21

Instructions

Instructions: conditions, loops No user-defined functions (SECTION does not

return any value)

Program-global variables, no parameters or local

vars to SECTIONs

Functionality is often integrated in the language (thus

>300 keywords),

e.g. INSPECT, UNSTRING, REWIND, COMPUTE, …

07.01.2019© itestra 2018 22

Data

Data: Structures, Fixed Size Arrays (only!) No reusable definition of custom types

(except with COPY)

Native fix-comma types and arithmetics – still one

important argument why COBOL is used for financial

purposes – compare Java BigDecimal:

brutto = steuer.Add(netto)

07.01.2019© itestra 2018 23

Generally intensive use of nested

structures and REDEFINEs (storage

overlay) – amongst others also because

type definition is not possible

COPY-Concept

First approach for reuse of interface definitions Sometimes misused, e.g. for inclusion of code

07.01.2019© itestra 2018 24

SQL and transactions

Embedded SQL

Embedded CICS (e.g. EXEC CICS LINK, oder GETMAIN, …)

07.01.2019© itestra 2018 25

Selected languages:
PL/I

07.01.2019© itestra 2018 26

Remarks

 Developed in the 1960s

 Available on: z/OS, AS/400, Unix, Windows, ...

Objectives

 Domain-independent programming language

 So far: Focus on specific application scope

 Replace COBOL and Fortran on the Mainframe

 Very powerful preprocessor (subset of PL/I)

 Powerful features regarding it’s age, but difficult to compile

and not widespread

 No reserved keywords

IF IF = THEN THEN THEN = ELSE; ELSE ELSE = IF;

07.01.2019© itestra 2018 27

• Memory allocation,

Pointer arithmetic

• Fixed-point und floating-point

arithmetic

• Many data types, definition of

data structures

• Exceptions (Conditions)

• Local variables, parameters (!)

• Built-in functions

Selected languages:
C

07.01.2019© itestra 2018 28

Remarks

 All executable code structured as functions  positive

 No generic data structures (except by using pointer arithmetic),

Only weak type safety

 Library concept is based on macros and external tools (preprocessor, linker) – not a language feature!

Thus (amongst others):

• Limited ability to compile separately

• Explicit inclusion order spec. and multiple inclusion prevention needed

• Misuse possible (e.g. code in includes)

 No objects/inheritance, limited encapsulation

 no powerful libraries besides basic funcs (e.g. no generic collection)

 Side effects  high risks for correctness & security

Consequences: see for example Obfuscated C Contest

(counter measure e.g. MISRA)

07.01.2019© itestra 2018 29

Hashmap example

07.01.2019© itestra 2018 30

Selected languages:
Java Script

07.01.2019© itestra 2018 31

Remarks

 Weak type safety (including object orientation)

 many errors at runtime

 Creation of TypeScript

 Dynamic execution (eval)  static analysis limited, possible runtime errors

 Library concept based on includes

07.01.2019© itestra 2018 32

Parameterization and
Reuse

07.01.2019© itestra 2018 33

Parameterization

Idea: Extraction of common parts, parameterized reuse

Missing e.g. in COBOL

Consequences

High duplication

Large SECTIONs and files (80.000 LoC max.)

Lots of technical code, no separation between technical and business code

Enormous overhead for the development process

Key feature of Java and other newer languages

User created functionality can be encapsulated and reused

Separation of concerns

07.01.2019© itestra 2018 34

Cloning: Example

 Modul A Modul B

07.01.2019© itestra 2018 35

Possibilities for clone avoidance

Inheritance, polymorphism

Extraction of common logic

07.01.2019© itestra 2018 36

abstract class LetterBase {

public void printLetter() {
…
printBankAccount();
…

}

abstract void printBankAccount ();

}

…

class LetterWorld
extends LetterBase {

void printBankAccount() {
String nation = searchNationDescription(nationCode);
…

}

The base class implements the common parts

Subclass inherits the common parts from the

base class and implements only the specific

functionality

The procedure printBankAccount can be called,

although not implemented in the base class

The procedure printBankAccount can be called,

although not implemented in the base class

The Model-driven disaster (1)

Two projects with intensive MDA/MDD usage:

Parameterization in the model barely possible

 Cloning in the model and the generated classes

Enormous amount of trivial, highly redundant code

(increases compile, deploy, debug costs etc.)

The worst observed productivity in Java yet!

07.01.2019© itestra 2018 37

Model clone

for Dialog with /

without option X

Inheritance/Interfaces

Allows the development of Frameworks, i.e.

 Generic solution

 Reuse of algorithms

 E.g.: HashMap, Persistence Layer

Modeling of Parent-Child relations

 E.g. Domain model, UI elements

07.01.2019© itestra 2018 38

Libraries, COBOL example

Nearly all „necessary“ base funcionality is integrated in laguage (keywords)

Hardly any COBOL libraries available

High effort for simple functionality (if not language integrated): e.g. String.trim() in COBOL:

 String being „inspected“ for spaces from left and right

Special chars like tab are not matched!

07.01.2019© itestra 2018 39

Libraries, Java example

In Java

Easy packaging of modules in jar files,

easy integration and execution by Java-VM (no recompile).

OO allows for powerful, generic frameworks

Consequences

Large collection of useful libraries, frameworks, …

E.g. Apache commons, Guava, JSF,…

07.01.2019© itestra 2018 40

Any Stream instance!

Visibilities / Encapsulation

Java

public / protected / private for methods, variables and classes

How about larger components?

 no established, language-integrated solutions besides “package” level, further possibilities include

 different Eclipse projects

 OSGI

 Java 9 Jigsaw

COBOL

All variables are program-global

Example for large information system (~800kSLoC):

more than 5.000 variable accessible in nearly all programs

Complete static analysis of access impossible due to memory overlay, …

07.01.2019© itestra 2018 41

Program generators,
proprietary languages and

click-tools

07.01.2019© itestra 2018 42

Idea

Assumption: Requirements are already

specified in a formal way (diagrams, tables)

Thus: Generate code directly from the

requirements

Code generation exists since the 70s

~2000: Hype „Model Driven Architecture“ (MDA),

„Domain Specific Languages“ (DSLs)

 Modeling of business objects and processes with UML, subsequent multi-stage

generation, promoted by OMG

 Graphical or textual DSLs, Oriented towards a business domain, e.g. insurance

 Amongst others: support in Visual Studio (Domain-Specific Language Tools)

and Eclipse (EMF)

07.01.2019© itestra 2018 43

Program generators, MDA, DSLs

Code generation, MDA, DSLs are no „Silver Bullets“

 No technology is able to completely reproduce complicated business logic within a simplified model

 A model language, powerful enough to describe all the specific cases

(and these do occur!), is usually too complicated itself

Generation is almost obsolete in powerful, modern languages (Java) (instead: skillful usage of

OO-concepts, AOP etc.)

 Generation is primarily a relict from COBOL-times!

 Exceptions: Adapter for fixed interfaces, very high performance (e.g. parser)

„Clicking-up“ of program logic is often more time-consuming than typing,

full feature search, refactorings, etc. are often not even possible!

Besides that:

 Generation should always be automated and reproducible

Otherwise: Instant Legacy (efficient change with one-shot is impossible)

 The lifecycle of the generator is essential (open source?)

07.01.2019© itestra 2018 44

VisualAge generator

07.01.2019© itestra 2018 45

The Model-driven Disaster (2)

Two projects with intensive MDA/MDD usage:

Basic functionality not available in the tool:

 merge

 Diff

 concurrent editing

 Editing conflicts between the developers

Weekly (!) update because of slow code generation

 In the meantime: manual change of the generated code

07.01.2019© itestra 2018 46

Conclusion

07.01.2019© itestra 2018 47

Conclusion

Older programming languages are in practice still very important (and exciting!) for computer

scientists

These languages often miss essential concepts from today’s point of view

Particular relevance is attributed to the concepts of:

 Composition and (parameterized) reuse of components

 Definition of visibilities/scopes

Type safety and other approaches for error avoidance (e.g. Garbage Collection)

„Modern“ products and technologies (rule engines, MDA, scripting languages, …) should be

carefully examined to this effect!

07.01.2019© itestra 2018 48

New ways of programming?

07.01.2019© itestra 2018 49

@Constraint(validatedBy = ValidAmountOfDoorsValidator.class)
@Target({ElementType.METHOD, ElementType.FIELD, ElementType.ANNOTATION_TYPE,
ElementType.CONSTRUCTOR, ElementType.PARAMETER, ElementType.TYPE_USE})
@Retention(RetentionPolicy.RUNTIME)
@interface ValidAmountOfDoors {

String message() default
"{ibiss.common.example.model.constraints.ValidAmountOfDoors.message}";

Class<?>[] groups() default {};
Class<? extends Payload>[] payload() default {};

}

@ValidAmountOfDoors
class CarBE { /*...*/ }

class ValidAmountOfDoorsValidator implements ConstraintValidator<ValidAmountOfDoors,
CarBE> {
@Override

public boolean isValid(final CarBE car, final ConstraintValidatorContext context) {
context.buildConstraintViolationWithTemplate(

context.getDefaultConstraintMessageTemplate())
.addPropertyNode(CarBE.PROPERTY_AMOUNT_DOORS)
.addConstraintViolation()
.disableDefaultConstraintViolation();

final CarTypeEnum carType = car.getCarType();
final int amntDoors = car.getAmountOfDoors();
return CAR_TYPE_TO_DOORS.get(carType).contains(amntDoors);

}

New ways of programming?

07.01.2019© itestra 2018 50

Optimization Examples

07.01.2019© itestra 2018 51

Hashmap in COBOL (1)

Column-wise storage of stock rates in a DB table

Search over

 Date (Index )

 FOKZN (Stock ID)

Current approach:

 Read the line for the searched date

 Linear search for FOKZN in the

(not sorted) data structure

Alternative:

07.01.2019© itestra 2018

52

Datum

Fonds 1 Fonds 2 …

FOKZN
BWFR
UECK ERT

BWFER
T FOKZN

BWFRU
ECK ERT

BWFER
T …

1.10.2010 AA 4,38 0,00 0,00 AH 12,88 0,00 0,00 …

2.10.2010 AA 4,12 0,00 0,00 AH … … … …

3.10.2010 AA … … … AH … … … …

AA Index/
Hash value

Index in Stock-
rate-table.

0303 01

… …

7377 126

… …

8321 18

Index Fonds

1 AA

2 AH

3 AD

4 AC

… …

Hash function

(FOKZN  Number)

0303

1x calculate: Hashtable Stock-rate-table

Stock ID

Hashmap in COBOL (2)

07.01.2019© itestra 2018 53

Generated hashtable:

once, but repeatable

Hash value /
Index Index in Fonds-S.

0303 01

… …

7377 126

… …

8321 18

...

...
Calculate hash value and determine

index for the searched input

Simple, but effective

hash function

0

5

10

15

20
Original

Optimiert

- ca. 56%

Weiteres Interesse?

07.01.2019© itestra 2018 54

Informatiker/innen
gefragt!

• Festanstellung

• Werkstudententätigkeit

• Praktikum

• Abschlussarbeiten

(Bachelor & Master)

Bewerben Sie sich!

jobs@itestra.de
07.01.2019© itestra 2018 55

Kontakt

itestra GmbH

Destouchesstraße 68

80796 München

E-Mail: info@itestra.com

Tel.: +49 89 381570-110

Fax: +49 89 381570-119

mailto:info@itestra.com

