Exercise 1 (6 Points)

In the following we consider a grammar G whose derivation tree visualizes a Christmas tree.

Let $G = (N, \Sigma, P, R)$ be the CFG with $N = \{R, T, B\}$ and $\Sigma = \{\text{star, candle, red, blue}\}$.

The productions P are as follows:

$$
R \rightarrow T \\
T \rightarrow BTB \mid T \astar \\
B \rightarrow BBB \mid BB \mid B \mid \text{blue} \\
$$

An example Christmas tree (upside down with the root at the top) would look as follows:

![Christmas Tree Diagram]

Give an attribute grammar $A = (G, E, V)$ for G such that the obtained Christmas trees (i.e., derivation trees) satisfy the following restrictions:

(i) The distance from \astar to the start symbol R is greater than the distance between every other leaf and R.

(ii) The number of \astar on the left and right hand side of the tree (split by the trunk T) are equal.

(iii) When traversing the tree in a pre-order manner the \astar and blue are encountered alternatingly and the first visited ornament is \astar.

Hint: Pre-order is a depth-first traversal where first the node, then the left subtree and last the right subtree are visited.

As before, you may use a synthesized Boolean attribute b such that: A word w is in the language of $A = (G, E, V)$ if $w \in L(G)$ and, at the root of a derivation tree, $b = true$.

The given example Christmas tree satisfies all three restrictions as can be easily seen:

(i) The distance from \astar to the start symbol R is 6 whereas the largest other distance is 5.

(ii) On the left hand side there is one blue and on the right hand side there is one blue as well.

(iii) The traversal yields the following (correct) order of ornaments: $\astar, \astar, \astar, \astar$.

1For ease of notation you can also use $\Sigma = \{\text{star, candle, red, blue}\}$.

Exercise 2

(4 Points)

Consider the following intermediate code:

```
2: LIT(-1);  
3: LOAD(1, 3); (dif, off)  
4: LT;  
5: JFALSE(7);  
6: CALL(6, 1, 3); (ca, dif, loc)  
7: RET;
```

Give the next four states of the abstract machine starting in:

```
```

Recall that the procedure stack has the form:

```
st | dl | ra | v1 | . . . | vn | . . .
```

and the base-function is defined as:

```
base(p, 0) := 1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)
```

Exercise 3

(4 Points)

In addition to `while`-loops we want to have `for`-loops with implicit declaration of the counter variable in our example programming language:

```
for (var X := A ; B ; C1 ) C2
```

(a) Extend the translation function `ct` accordingly. You may assume that the variable `X` is already declared, i.e., it is `update(var X, st, l)` with `st` the symbol table and `l` the current level.

(b) Generate intermediate code for

```
for (var x := 0; x < 10; x := x + 1) P()
```

without parameters for the `CALL` instruction generated for `P()`.

We wish you a merry Christmas and
a Happy New Year!