

Semantics and Verification of Software

Winter Semester 2017/18

Lecture 8: Denotational Semantics of WHILE III (Fixpoint & Coincidence Theorem)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1718/sv-sw/

Characterisation of $fix(\Phi)$ II

Goals:

- Prove existence of $fix(\Phi)$ for $\Phi(f) = cond(\mathfrak{B}[b], f \circ \mathfrak{C}[c], id_{\Sigma})$
- Show how it can be "computed" (more exactly: approximated)

Sufficient conditions:

on domain $\Sigma \longrightarrow \Sigma$: chain-complete partial order on function Φ : monotonicity and continuity

Chains and Least Upper Bounds

Definition (Chain, (least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.

1. S is called a chain in D if, for every $s_1, s_2 \in S$,

$$s_1 \sqsubseteq s_2$$
 or $s_2 \sqsubseteq s_1$

(that is, S is a totally ordered subset of D).

- 2. An element $d \in D$ is called an upper bound of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
- 3. An upper bound d of S is called least upper bound (LUB) or supremum of S if $d \sqsubseteq d'$ for every upper bound d' of S (notation: $d = \bigcup S$).

Chain Completeness

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if each of its chains has a least upper bound.

Example

- 1. $(2^{\mathbb{N}}, \subseteq)$ is a CCPO with $\coprod S = \bigcup_{M \in S} M$ for every chain $S \subseteq 2^{\mathbb{N}}$.
- 2. (\mathbb{N}, \leq) is not chain complete (since, e.g., the chain \mathbb{N} has no upper bound).

Monotonicity

Definition (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \to D'$. F is called monotonic (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \Rightarrow F(d_1) \sqsubseteq' F(d_2).$$

Interpretation: monotonic functions "preserve information"

Example

- 1. Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $F_1 : T \to \mathbb{N} : S \mapsto \sum_{n \in S} n \text{ is monotonic w.r.t. } (2^{\mathbb{N}}, \subseteq) \text{ and } (\mathbb{N}, \leq).$
- 2. $F_2: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: S \mapsto \mathbb{N} \setminus S$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $F_2(\emptyset) = \mathbb{N} \not\subseteq F_2(\mathbb{N}) = \emptyset$).

Continuity

A function F is continuous if applying F and taking LUBs is commutable:

Definition (Continuity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be CCPOs and $F : D \to D'$ monotonic. Then F is called continuous (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every non-empty chain $S \subseteq D$,

$$F\left(\bigsqcup S\right) = \bigsqcup F(S).$$

Lemma

Let $b \in BExp$, $c \in Cmd$, and $\Phi(f) := \operatorname{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \operatorname{id}_{\Sigma})$. Then Φ is continuous w.r.t. $(\Sigma \longrightarrow \Sigma, \sqsubseteq)$.

Proof.

omitted

The Fixpoint Theorem

The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 8.1 (Fixpoint Theorem by Tarski and Knaster)

Let (D, \sqsubseteq) be a CCPO and $F : D \rightarrow D$ continuous. Then

$$\mathsf{fix}(F) := \bigsqcup \Big\{ F^n \Big(\bigsqcup \emptyset \Big) \mid n \in \mathbb{N} \Big\}$$

is the least fixpoint of F where $F^0(d) := d$ and $F^{n+1}(d) := F(F^n(d))$.

Proof.

on the board

The Fixpoint Theorem

An Example

Example 8.2

- **Domain:** $(2^{\mathbb{N}}, \subseteq)$ (CCPO with $\coprod S = \bigcup_{N \in S} N$ see Example 7.7)
- Function: $F: 2^{\mathbb{N}} \to 2^{\mathbb{N}}: N \mapsto N \cup A$ for some fixed $A \subseteq \mathbb{N}$
 - F monotonic: $M \subseteq N \Rightarrow F(M) = M \cup A \subseteq N \cup A = F(N)$
 - F continuous: $F(\bigcup S) = F(\bigcup_{N \in S} N) = (\bigcup_{N \in S} N) \cup A = \bigcup_{N \in S} (N \cup A) = \bigcup_{N \in S} F(N) = \bigcup F(S)$
- Fixpoint iteration: $N_n := F^n(| \emptyset)$ where $| \emptyset = \emptyset$
 - $-N_0= \coprod \emptyset = \emptyset$
 - $-N_1 = F(N_0) = \emptyset \cup A = A$
 - $-N_2 = F(N_1) = A \cup A = A = N_n$ for every $n \ge 1$
- $\Rightarrow fix(F) = A$
- Alternatively: $F(N) := N \cap A$

$$\Rightarrow \mathsf{fix}(F) = \emptyset$$

Application to $fix(\Phi)$

Altogether this completes the definition of $\mathfrak{C}[.]$. In particular, for the while statement:

Corollary 8.3

Let
$$b \in BExp$$
, $c \in Cmd$, and $\Phi(f) := \operatorname{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \operatorname{id}_{\Sigma})$. Then
$$\operatorname{graph}(\operatorname{fix}(\Phi)) = \bigcup_{n \in \mathbb{N}} \operatorname{graph}(\Phi^n(f_{\emptyset}))$$

Proof.

Using

- Lemma 7.9
 - $-(\Sigma \longrightarrow \Sigma, \sqsubseteq)$ CCPO with least element f_{\emptyset}
 - LUB = union of graphs
- Theorem 8.1 (Fixpoint Theorem)

Denotational Semantics of Factorial Program I

Example 8.4 (Factorial program)

- Let $c \in Cmd$ be given by y:=1; while $\neg(x=1)$ do y:=y*x; x:=x-1 end
- For every initial state $\sigma_0 \in \Sigma$, Definition 6.3 yields:

$$\mathfrak{C}[\![c]\!](\sigma_0) = fix(\Phi)(\sigma_1)$$

where $\sigma_1 := \sigma_0[y \mapsto 1]$ and, for every $f : \Sigma \dashrightarrow \Sigma$ and $\sigma \in \Sigma$,

$$\begin{split} \Phi(f)(\sigma) &= \mathsf{cond}(\mathfrak{B}\llbracket \neg (\mathtt{x=1}) \rrbracket, f \circ \mathfrak{C}\llbracket \mathtt{y} \colon = \mathtt{y} \star \mathtt{x} \colon \ \mathtt{x} \colon = \mathtt{x-1} \rrbracket, \mathsf{id}_{\Sigma})(\sigma) \\ &= \begin{cases} \sigma & \mathsf{if} \ \sigma(\mathtt{x}) = 1 \\ f(\sigma') & \mathsf{otherwise} \end{cases} \end{split}$$

with
$$\sigma' := \sigma[y \mapsto \sigma(y) * \sigma(x), x \mapsto \sigma(x) - 1]$$
.

Approximations of least fixpoint of Φ according to Theorem 8.1:

$$fix(\Phi) = \bigsqcup \{\Phi^n(f_{\emptyset}) \mid n \in \mathbb{N}\}\$$

(where graph(f_{\emptyset}) = \emptyset)

Denotational Semantics of Factorial Program II

Reminder:
$$\Phi(f)(\sigma) = \begin{cases} \sigma & \text{if } \sigma(x) = 1 \\ f(\sigma') & \text{otherwise} \end{cases}$$
 $\sigma' = \sigma[y \mapsto \sigma(y) * \sigma(x), x \mapsto \sigma(x) - 1]$

Example 8.4 (Factorial program; continued)

$$f_0(\sigma) := \Phi^0(f_\emptyset)(\sigma) \\ = f_\emptyset(\sigma) \\ = \text{undefined} \\ f_1(\sigma) := \Phi^1(f_\emptyset)(\sigma) \\ = \Phi(f_1)(\sigma) \\ = \Phi(f_0)(\sigma) \\ = f_0(\sigma) \\ = f_$$

Denotational Semantics of Factorial Program III

Reminder: $\Phi(f)(\sigma) = \begin{cases} \sigma & \text{if } \sigma(x) = 1 \\ f(\sigma') & \text{otherwise} \end{cases}$ $\sigma' = \sigma[y \mapsto \sigma(y) * \sigma(x), x \mapsto \sigma(x) - 1]$

Example 8.4 (Factorial program; continued)

$$\begin{split} f_3(\sigma) &:= \Phi^3(f_\emptyset)(\sigma) \\ &= \Phi(f_2)(\sigma) \\ &= \begin{cases} \sigma & \text{if } \sigma(x) = 1 \\ f_2(\sigma') & \text{otherwise} \end{cases} \\ &= \begin{cases} \sigma & \text{if } \sigma(x) = 1 \\ \sigma' & \text{if } \sigma(x) \neq 1, \sigma'(x) = 1 \\ \sigma'[y \mapsto 2 * \sigma'(y), x \mapsto 1] & \text{if } \sigma(x) \neq 1, \sigma'(x) \neq 2 \\ \text{undefined} & \text{if } \sigma(x) \neq 1, \sigma'(x) \neq 1, \sigma'(x) \neq 2 \end{cases} \\ &= \begin{cases} \sigma & \text{if } \sigma(x) = 1 \\ \sigma' & \text{if } \sigma(x) = 1 \\ \sigma'[y \mapsto 2 * \sigma'(y), x \mapsto 1] & \text{if } \sigma(x) = 3 \\ \text{undefined} & \text{if } \sigma(x) \neq \{1, 2, 3\} \end{cases} \\ &= \begin{cases} \sigma & \text{if } \sigma(x) = 1 \\ \sigma[y \mapsto 2 * \sigma(y), x \mapsto 1] & \text{if } \sigma(x) = 2 \\ \sigma[y \mapsto 3 * 2 * \sigma(y), x \mapsto 1] & \text{if } \sigma(x) = 3 \\ \text{undefined} & \text{if } \sigma(x) \notin \{1, 2, 3\} \end{cases} \end{split}$$

Denotational Semantics of Factorial Program IV

Reminder: $\Phi(f)(\sigma) = \begin{cases} \sigma & \text{if } \sigma(x) = 1 \\ f(\sigma') & \text{otherwise} \end{cases}$ $\sigma' = \sigma[y \mapsto \sigma(y) * \sigma(x), x \mapsto \sigma(x) - 1]$

Example 8.4 (Factorial program; continued)

• *n*-th approximation:

$$\begin{split} &f_n(\sigma)\\ &:= \Phi^n(f_\emptyset)(\sigma)\\ &= \begin{cases} \sigma[\mathbf{y} \mapsto \sigma(\mathbf{x}) * (\sigma(\mathbf{x}) - 1) * \dots * 2 * \sigma(\mathbf{y}), \mathbf{x} \mapsto 1] & \text{if } 1 \leq \sigma(\mathbf{x}) \leq n\\ \text{undefined} & \text{if } \sigma(\mathbf{x}) \notin \{1, \dots, n\} \end{cases}\\ &= \begin{cases} \sigma[\mathbf{y} \mapsto (\sigma(\mathbf{x}))! * \sigma(\mathbf{y}), \mathbf{x} \mapsto 1] & \text{if } 1 \leq \sigma(\mathbf{x}) \leq n\\ \text{undefined} & \text{if } \sigma(\mathbf{x}) \notin \{1, \dots, n\} \end{cases} \end{split}$$

• Fixpoint:

$$\mathfrak{C}[\![c]\!](\sigma_0) = \mathsf{fix}(\Phi)(\sigma_1) = \begin{cases} \sigma[\mathsf{y} \mapsto (\sigma(\mathsf{x}))!, \mathsf{x} \mapsto 1] & \mathsf{if} \ \sigma(\mathsf{x}) \geq 1 \\ \mathsf{undefined} & \mathsf{otherwise} \end{cases}$$

Summary: Denotational Semantics

Summary: Denotational Semantics

- Semantic model: partial state transformations $(\Sigma \longrightarrow \Sigma)$
- Compositional definition of functional $\mathfrak{C}[\![.]\!]: Cmd \to (\Sigma \dashrightarrow \Sigma)$
- Capturing the recursive nature of loops by a fixpoint definition (for a continuous function on a CCPO)
- Approximation by fixpoint iteration

Equivalence of Semantics I

Remember: in Definition 4.1, $\mathfrak{D}[.]: Cmd \to (\Sigma \longrightarrow \Sigma)$ was given by

$$\mathfrak{O}[\![c]\!](\sigma) = \sigma' \iff \langle c, \sigma \rangle \to \sigma'$$

Theorem 8.5 (Coincidence Theorem)

For every $c \in Cmd$,

$$\mathfrak{O}\llbracket c
rbracket = \mathfrak{C}\llbracket c
rbracket,$$

i.e., $\langle c, \sigma \rangle \to \sigma'$ iff $\mathfrak{C}[\![c]\!](\sigma) = \sigma'$, and thus $\mathfrak{D}[\![.]\!] = \mathfrak{C}[\![.]\!]$.

Equivalence of Semantics II

The proof of Theorem 8.5 employs the following auxiliary propositions:

Lemma 8.6

1. For every $a \in AExp$, $\sigma \in \Sigma$, and $z \in \mathbb{Z}$:

$$\langle a, \sigma \rangle \to z \iff \mathfrak{A}[a](\sigma) = z.$$

2. For every $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$:

$$\langle b, \sigma \rangle \to t \iff \mathfrak{B}[\![b]\!](\sigma) = t.$$

Proof.

- 1. structural induction on a
- 2. structural induction on b

Equivalence of Semantics III

Proof (Theorem 8.5).

We have to show that

$$\langle \boldsymbol{c}, \sigma \rangle \to \sigma' \iff \mathfrak{C}[\![\boldsymbol{c}]\!](\sigma) = \sigma'$$

- \Rightarrow by structural induction over the derivation tree of $\langle c, \sigma \rangle \to \sigma'$
- \leftarrow by structural induction over c (with a nested complete induction over fixpoint index n)

(on the board)

Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

$$\frac{\langle a,\sigma\rangle \to z}{\langle \text{skip},\sigma\rangle \to \sigma} \qquad \qquad \frac{\langle a,\sigma\rangle \to z}{\langle x:=a,\sigma\rangle \to \sigma[x\mapsto z]}$$

Definition (6.3; Denotational semantics of statements)

$$\begin{array}{c} \mathfrak{C}[\![\mathsf{skip}]\!] := \mathsf{id}_{\Sigma} \\ \mathfrak{C}[\![x := a]\!] \sigma := \sigma[x \mapsto \mathfrak{A}[\![a]\!] \sigma] \\ \mathfrak{C}[\![c_1; c_2]\!] := \mathfrak{C}[\![c_2]\!] \circ \mathfrak{C}[\![c_1]\!] \\ \mathfrak{C}[\![\mathsf{if}\ b\ \mathsf{then}\ c_1\ \mathsf{else}\ c_2\ \mathsf{end}]\!] := \mathsf{cond}(\mathfrak{B}[\![b]\!], \mathfrak{C}[\![c_1]\!], \mathfrak{C}[\![c_2]\!]) \\ \mathfrak{C}[\![\mathsf{while}\ b\ \mathsf{do}\ c\ \mathsf{end}]\!] := \mathsf{fix}(\Phi)\ \mathsf{where}\ \Phi(f) := \mathsf{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \mathsf{id}_{\Sigma}) \end{array}$$

