Semantics and Verification of Software
Winter Semester 2017/18

Lecture 8: Denotational Semantics of WHILE Il
(Fixpoint & Coincidence Theorem)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1718/sv-sw/

’ Software Modeling

‘ Il and Verification Chair

http://moves.rwth-aachen.de/teaching/ws-1718/sv-sw/

Recap: CCPOs and Continuous Functions

Characterisation of fix(®) Il

Goals:
e Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idx)
e Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain X --+ X: chain-complete partial order
on function ®: monotonicity and continuity

3 of 23 Semantics and Verification of Software Rm
Winter Semester 2017/18 Soft Modeli
Lecture 8: Denotational Semantics of WHILE Il ‘ - ar(:d “',":rri?ica(:iozlgﬂair

(Fixpoint & Coincidence Theorem)

Recap: CCPOs and Continuous Functions

Chains and Least Upper Bounds

Definition (Chain, (least) upper bound)

Let (D, C) be a partial order and S C D.
1. Sis called a chain in D if, for every sq, s, € S,

S1 L syors; L sy

(that is, S is a totally ordered subset of D).
2. An element d € D is called an upper bound of Sif s C d for every s € S (notation: S C d).
3. An upper bound d of S is called least upper bound (LUB) or supremum of S'if d C d’ for
every upper bound d’ of S (notation: d = | | S).

4 of 23 Semantics and Verification of Software
Winter Semester 2017/18
Software Modeling

Lecture 8: Denotational Semantics of WHILE 11l o -
(Fixpoint & Coincidence Theorem) ‘ Il and Verification Chair

RWTH

Recap: CCPOs and Continuous Functions

Chain Completeness

Definition (Chain completeness)

A partial order is called chain complete (CCPQ) if each of its chains has a least upper
bound.
Example

1. (2%, C)isa CCPO with | | S = |J,,.s M for every chain S C 2"
2. (N, <) is not chain complete (since, e.g., the chain N has no upper bound).

50f 23 Semantics and Verification of Software
Winter Semester 2017/18
Software Modeling

Lecture 8: Denotational Semantics of WHILE I o -
(Fixpoint & Coincidence Theorem) ‘ Ml and Verification Chair

RWTH

Recap: CCPOs and Continuous Functions

Monotonicity

Definition (Monotonicity)

Let (D, C) and (D', ') be partial orders, and let F : D — D'. F is called monotonic
(w.r.t. (D,C) and (D', ")) if, for every d, d> € D,

di C db = F(di) C' F(db).

Interpretation: monotonic functions “preserve information”
Example

1. Let T:= {SCN| Sfinite}. Then F; : T — N: S+ > _onis monotonic w.r.t. (2%, C)
and (N, <).

2. Fp: 2V — 28 S5 N\ Sis not monotonic w.r.t. (2, ©)
(since, e.g., € N but F5(0) = N € F(N) = ().

RWTH

6 of 23 Semantics and Verification of Software
Winter Semester 2017/18
Software Modeling

Lecture 8: Denotational Semantics of WHILE I A -
(Fixpoint & Coincidence Theorem) ‘ Ml and Verification Chair

Recap: CCPOs and Continuous Functions

Continuity

A function F is continuous if applying F and taking LUBs is commutable:
Definition (Continuity)

Let (D,C) and (D', ') be CCPOs and F : D — D' monotonic. Then F is called
continuous (w.r.t. (D, C) and (D', ")) if, for every non-empty chain S C D,

F (|_| s) —| |F(s).

Lemma

Letb € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],ids). Then ® is
continuous w.r.t. (X --» ¥).

Proof.
omitted

RWTH

7 of 23 Semantics and Verification of Software
Winter Semester 2017/18
Software Modeling

Lecture 8: Denotational Semantics of WHILE 11l A -
(Fixpoint & Coincidence Theorem) Ml and Verification Chair

The Fixpoint Theorem

The Fixpoint Theorem

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893—1990)

Theorem 8.1 (Fixpoint Theorem by Tarski and Knaster)

Let(D,C) be a CCPO and F : D — D continuous. Then

fix(F) := | | {F” (|_| Q)) I ne N}

is the least fixpoint of F where F°(d) := d and F""'(d) := F(F"(d)).

Proof.
on the board]
9 of 23 Semantics and Verification of Software Rm

Winter Semester 2017/18 .

Lecture 8: Denotational Semantics of WHILE IlI = ggat“",':rrﬁig?gﬂ'gﬂair

(Fixpoint & Coincidence Theorem)

The Fixpoint Theorem

An Example
Example 8.2

e Domain: (2", C) (CCPO with | | S = (.5 N — see Example 7.7)

e Function: F: 2% — 2 - N — N U A for some fixed A C N

— F monotonic: M C N= F(M) = MUAC NUA = F(N)

— F continuous: F(]S) = F (Unes N) = (Unes N) UA = Upnes (NU A) = Upes F(N) = LI F(S)
e Fixpoint iteration: N, := F"(| |0) where | |} = ()

~No=1[]0=10

~-N,=F(No) =0 UA=A

— Ny = F(Ny) =AUA=A= N, forevery n > 1

= fix(F) = A
e Alternatively: F(N) :=NNA
= fix(F) = 0
10 of 23 Semantics and Verification of Software
Winter Semester 2017/18 o Software Modeli Rm
Lecture 8: Denotational Semantics of WHILE I oftware lodeling
(FixF;Joint & Coincidlence Theore:n) ‘ B and Verification Chair

Application to fix(®)

Application to fix(®)

Altogether this completes the definition of €[.]. In particular, for the while statement:
Corollary 8.3

Letb € BExp, c € Cmd, and ®(f) := cond(%[[b]] fo G[[c]] idy). Then

graph(fix(P U graph(®"(f))
neN
Proof.
Using
e Lemma 7.9

— (X --» X, C) CCPO with least element f;
— LUB = union of graphs

e Lemma 7.16 (¢ continuous)

e Theorem 8.1 (Fixpoint Theorem)

RWTH

Winter Semester 2017/18

. . Software Modeling
Lecture 8: Denotational Semantics of WHILE Il P .
(Fixpoint & Coincidence Theorem) B and Verification Chair

12 of 23 Semantics and Verification of Software o

Application to fix(®)

Denotational Semantics of Factorial Program |
Example 8.4 (Factorial program)

e Letc € Cmd be givenby y:=1; while —(x=1) do y:=y*x; x:=x-1 end
e For every initial state oy € 2, Definition 6.3 yields:
C[c](oo) = fix(P)(o1)
where o1 := ogly — 1] and, forevery f : ¥ --» Y and o € %,

d(f)(o) = cond(*B[—(x=1)], f o Cfly:=y*x; x:=x-1],idx)(0)
o if o(x) =1
f(o') Ic>th((er3vise

with o’ := oy — o(y) * 0(x),x — o(x) — 1].
e Approximations of least fixpoint of ® according to Theorem 8.1:

fix(®) = | [{®"(f) | n € N}
(where graph(f;) = 0)

13 of 23 Semantics and Verification of Software Rm
Winter Semester 2017/18 soft Modali
Lecture 8: Denotational Semantics of WHILE I oftware lodeling
(Fixpoint & Coincidence Theorem) ‘ B and Verification Chair

Application to fix(®)

Denotational Semantics of Factorial Program i

Reminder: ¢(f)(0) = {?(0/) ic]:tggr(v)vi:;

o' =oly — o(y) *o(x),x = o(x) — 1]

Example 8.4 (Factorial program; continued)

fy(c) := °(fy) () = o(fi)(0)
= fy(o) _Jo if o(x) =1
= undefined | fi(¢!) otherwise
(.
o if o(x) =1
=0 if o(x) #1,0'(x) =1
fi(c) := ®'(f) (o) >undefined if o(x) #1,0'(x) # 1
= O(f)(0) o if o(x) =1
_Jo if o(x) =1 =<0 if o(x) =2
fo(c’) otherwise undefined if o(x) # 1, 0(x) # 2
_ o if O'(X) =1 o if O'(X) =
undefined otherwise = oly—=2*0(y),x— 1] ifo(x) =
| undefined if o(x) #1,0(x) # 2
14 of 23 aﬁrr::rntsizsmznsc:e\:ezrg;c;t:cgn of Software o . Rm

Lecture 8: Denotational Semantics of WHILE 11l
(Fixpoint & Coincidence Theorem)

‘ Il and Verification Chair

Application to fix(®)

Denotational Semantics of Factorial Program lll

o if o(x) =1

Reminder: ®(f)(o) = {f(a’) otherwise

o =oly — o(y) xo(x),x — o(x) — 1]

Example 8.4 (Factorial program; continued)
fi(0) = ®°(fy)(0)

= &(%2)(0)
o if o(x) = 1
N {fQ(OJ) otherwise
(o if o(x) = 1
I X if o(x) #1,0'(x) =1
_<J’[yH2*0’(y),Xl—>1] if o(x) #1,0'(x) =2
undefined if o(x) #1,0'(x) #1,0'(x) #2
>O' if o(x) = 1
X if o(x) =2
N <(7’[y|—>2>:<0’(y),><|—>1] if o(x) =3
undefined if o(x) ¢ {1,2,3}
o if o(x) =1
_ Joly—2x0(y),x — 1] if o(x) =2
_<J[yr—>3*2>ka(y),xr—>1] if o(x) =3
| undefined if o(x) ¢ {1,2,3}
15 of 23 aﬁrr::rntézsmznsc:e\:ezrg;c;t;cgn of Software o — Rm
(ot & Conciaence Thaorem o e 1! M o

Application to fix(®)

Denotational Semantics of Factorial Program IV

o if o(x) =1

Reminder: ¢(f)(o0) = {f(a’) otherwise

o' =oly — o(y) *o(x),x = o(x) — 1]
Example 8.4 (Factorial program; continued)

e n-th approximation:

fa(0)
= "(fy) (o)
Jolym oax)x(o(x) = 1) x...x2x0(y),x— 1] if1<o(x)<n
~ | undefined if o(x) ¢ {1,...,n}
oy (cx) xo(y),x—1] if1<o(x)<n
| undefined if o(x) ¢ {1,...,n}
e Fixpoint:
. oy (e(x),x— 1] ifo(x) > 1
Elel(o0) = fix(®)(o1) = {undefined otherwise
16 of 23 sﬁ:::rntsizsmznsc:e\:ezrg;c;t:cgn of Software o | nm
Lecture 8: Denotational Semantics of WHILE 11| ‘ - gg:‘t“",':rri'f’ig‘;sﬂ'gﬂair

(Fixpoint & Coincidence Theorem)

Summary: Denotational Semantics

Summary: Denotational Semantics

e Semantic model: partial state transformations (- --» %)
e Compositional definition of functional €[.| : Cmd — (X --»)

e Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

e Approximation by fixpoint iteration

18 of 23 Semantics and Verification of Software Rm
Winter Semester 2017/18 Soft Modeli
Lecture 8: Denotational Semantics of WHILE I ‘ m ar(:d ‘\',":,'i‘f’ica‘iio‘?,'g?.ai,

(Fixpoint & Coincidence Theorem)

Equivalence of Operational and Denotational Semantics

Equivalence of Semantics |
Remember: in Definition 4.1, O[.] : Cmd — (X --» ¥) was given by

Oc =0 <= (c,0) = o'

Theorem 8.5 (Coincidence Theorem)

For every c € Cmd,
Olc] = €[],

ie., (c,o) — o iff€]c](c) = o', and thus O[.] = €[.].

20 of 23 Semantics and Verification of Software Rm
Winter Semester 2017/18 Soft Modeli
Lecture 8: Denotational Semantics of WHILE Il ‘ - ar(:d “",':rri?ica(:iozlgﬂair

(Fixpoint & Coincidence Theorem)

Equivalence of Operational and Denotational Semantics

Equivalence of Semantics Il

The proof of Theorem 8.5 employs the following auxiliary propositions:
Lemma 8.6

1. Foreveryac AExp,o € ¥, and z € /:

(a,0) - z — A[a](0) = z.
2. Foreveryb € BExp,oc € X, andt € B:

(b,ogy —t < ‘B[b](r) =t.

Proof.

1. structural induction on a
2. structural induction on b

21 of 23 Semantics and Verification of Software
Winter Semester 2017/18

Lecture 8: Denotational Semantics of WHILE IlI 4
(Fixpoint & Coincidence Theorem)

RWTH

Software Modeling
Il and Verification Chair

Equivalence of Operational and Denotational Semantics

Equivalence of Semantics Il

Proof (Theorem 8.5).
We have to show that

(¢c,0) = 0" < €c =0’

=> by structural induction over the derivation tree of (¢, o) — o’
<= by structural induction over ¢ (with a nested complete induction over fixpoint

index n)
(on the board) L
22 of 23 Semantics and Verification of Software Rm

Winter Semester 2017/18 .

Lecture 8: Denotational Semantics of WHILE IlI ‘ = ggat‘\",'::i?ig?ﬂ'gﬂair

(Fixpoint & Coincidence Theorem)

Equivalence of Operational and Denotational Semantics

Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

aoc) — 2
(skip) : (asgn) < 7 >
(skip,0) — o (x :=a,0) = o[x — Z]
(c1,0) = 0’ (c2,0") — " (b,o) — true (cy,0) — o

(seq) (if-t)

(c1;00,0) = o (if b then ¢y else ¢; end, o) — o

(b,o) — false (¢, 0) — o (b,o) — false

(wh-f

(if-f)

)
(if b then ¢y else ¢; end, o) — o (while bdo cend,0) — o

(b,o) — true (c,0) — ¢’ (while bdo cend,o’) — o”
(while bdo cend, o) — o”

(wh-t)

Definition (6.3; Denotational semantics of statements)

C[skip] :=idy
Clx :=ajo := o[x — A[a]o]
Qt[[C1 ;Cg]] = C[[Cg]]) Qt[[C1]]
C[1if b then c; else ¢, end] := cond(B[b], €[c1], €[c2])
C[while b do ¢ end] := fix(®) where ®(f) := cond(B[b], f o €[c], ids)

23 of 23 Semantics and Verification of Software nm
Winter Semester 2017/18 Soft Modeli
Lecture 8: Denotational Semantics of WHILE Il ‘ - ar(:d “",':rri?ica(:iozlgﬂair

(Fixpoint & Coincidence Theorem)

	Recap: CCPOs and Continuous Functions
	The Fixpoint Theorem
	Application to fix()
	Summary: Denotational Semantics
	Equivalence of Operational and Denotational Semantics

