
Semantics and Verification of Software
Winter Semester 2017/18

Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1718/sv-sw/

http://moves.rwth-aachen.de/teaching/ws-1718/sv-sw/

Recap: Evaluation Relations & Structural Induction

Outline of Lecture 3

Recap: Evaluation Relations & Structural Induction

Execution of Statements

Determinism of Evaluation/Execution

2 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Recap: Evaluation Relations & Structural Induction

Evaluation of Arithmetic Expressions

Remember: a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

Definition (Evaluation relation for arithmetic expressions)

If a ∈ AExp and σ ∈ Σ, then 〈a, σ〉 is called a configuration.

Expression a evaluates to z ∈ Z in state σ (notation: 〈a, σ〉 → z) if this relationship
is derivable by means of the following rules:
Axioms:

〈z, σ〉 → z 〈x, σ〉 → σ(x)

Rules:
〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1 + z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1 − z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1 · z2

3 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Recap: Evaluation Relations & Structural Induction

Excursus: Proof by Structural Induction

Proof principle

Given: an inductive set, i.e., a set S whose elements are either
• atomic or
• obtained from atomic elements by (finite) application of certain operations

To show: property P(s) applies to every s ∈ S
Proof: we verify:

Induction base: P(s) holds for every atomic element s
Induction hypothesis: assume that P(s1), P(s2) etc.
Induction step: then also P(f (s1, . . . , sn)) holds for every operation f of arity

n

Remark: structural induction is a special case of well-founded induction

4 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Recap: Evaluation Relations & Structural Induction

Free Variables

Lemma

Let a ∈ AExp and σ, σ′ ∈ Σ such that σ(x) = σ′(x) for every x ∈ FV (a). Then, for
every z ∈ Z,

〈a, σ〉 → z ⇐⇒ 〈a, σ′〉 → z.

Proof.

by structural induction on a (on the board)

5 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Recap: Evaluation Relations & Structural Induction

Evaluation of Boolean Expressions

Definition ((Strict) evaluation relation for Boolean expressions)

For b ∈ BExp, σ ∈ Σ, and t ∈ B, the evaluation relation 〈b, σ〉 → t is defined by:

〈t, σ〉 → t
〈a1, σ〉 → z 〈a2, σ〉 → z

〈a1=a2, σ〉 → true

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1=a2, σ〉 → false
if z1 6= z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → true
if z1 > z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → false
if z1 ≤ z2

〈b, σ〉 → false

〈¬b, σ〉 → true

〈b, σ〉 → true

〈¬b, σ〉 → false
〈b1, σ〉 → true 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → true

〈b1, σ〉 → true 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false
〈b1, σ〉 → false 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → false 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false
(∨ analogously)

6 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Execution of Statements

Outline of Lecture 3

Recap: Evaluation Relations & Structural Induction

Execution of Statements

Determinism of Evaluation/Execution

7 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Execution of Statements

Meaning of Statements

Effect of statement = modification of program state

Example 3.1

Goal: define execution relation→ such that, e.g.,

〈x := 5, σ〉 → σ[x 7→ 5]

where for every σ ∈ Σ, x, y ∈ Var , and z ∈ Z:

σ[x 7→ z](y) :=

{
z if y = x
σ(y) otherwise

8 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Execution of Statements

Meaning of Statements

Effect of statement = modification of program state

Example 3.1

Goal: define execution relation→ such that, e.g.,

〈x := 5, σ〉 → σ[x 7→ 5]

where for every σ ∈ Σ, x, y ∈ Var , and z ∈ Z:

σ[x 7→ z](y) :=

{
z if y = x
σ(y) otherwise

8 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Execution of Statements

Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end ∈ Cmd

Definition 3.2 (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined by:

(skip)

〈skip, σ〉 → σ
(asgn)

〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2 end, σ〉 → σ′

(if-f)

〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2 end, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c end, σ〉 → σ

(wh-t)

〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c end, σ′〉 → σ′′

〈while b do c end, σ〉 → σ′′

9 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Execution of Statements

Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 end | while b do c end ∈ Cmd

Definition 3.2 (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined by:

(skip)

〈skip, σ〉 → σ
(asgn)

〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)

〈c1, σ〉 → σ′ 〈c2, σ
′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2 end, σ〉 → σ′

(if-f)

〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2 end, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c end, σ〉 → σ

(wh-t)

〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c end, σ′〉 → σ′′

〈while b do c end, σ〉 → σ′′

9 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Execution of Statements

An Execution Example

Example 3.3

• c := y := 1; while¬(x=1)︸ ︷︷ ︸
b

do y := y*x︸ ︷︷ ︸
c1

; x := x-1︸ ︷︷ ︸
c2︸ ︷︷ ︸

c0

end

• Claim: 〈c, σ〉 → σ1,6 for every σ ∈ Σ with σ(x) = 3
• Notation: σi,j means σ(x) = i , σ(y) = j
• Derivation tree: on the board

10 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Execution of Statements

Non-Terminating Statements

Corollary 3.4

The execution relation for statements is not total, i.e., there exist c ∈ Cmd and σ ∈ Σ
such that 〈c, σ〉 → σ′ for no σ′ ∈ Σ.

Proof.

Example: c = while true do skip end (proof by contradiction; on the board)

11 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Execution of Statements

Non-Terminating Statements

Corollary 3.4

The execution relation for statements is not total, i.e., there exist c ∈ Cmd and σ ∈ Σ
such that 〈c, σ〉 → σ′ for no σ′ ∈ Σ.

Proof.

Example: c = while true do skip end (proof by contradiction; on the board)

11 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Outline of Lecture 3

Recap: Evaluation Relations & Structural Induction

Execution of Statements

Determinism of Evaluation/Execution

12 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem 3.5

The execution relation for statements is deterministic, i.e., whenever c ∈ Cmd and
σ, σ′, σ′′ ∈ Σ such that 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′, then σ′ = σ′′.

The proof is based on the corresponding result for expressions.

13 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem 3.5

The execution relation for statements is deterministic, i.e., whenever c ∈ Cmd and
σ, σ′, σ′′ ∈ Σ such that 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′, then σ′ = σ′′.

The proof is based on the corresponding result for expressions.

13 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Evaluation Relations

Lemma 3.6

1. For every a ∈ AExp, σ ∈ Σ, and z, z ′ ∈ Z:
〈a, σ〉 → z and 〈a, σ〉 → z ′ implies z = z ′.

2. For every b ∈ BExp, σ ∈ Σ, and t , t ′ ∈ B:
〈b, σ〉 → t and 〈b, σ〉 → t ′ implies t = t ′.

Remarks:
• Lemma 3.6(1) is not implied by Lemma 2.6

(“σ|FV (a) = σ′|FV (a) ⇒ (〈a, σ〉 → z ⇐⇒ 〈a, σ′〉 → z)”)!

The latter just implies

{z ∈ Z | 〈a, σ〉 → z} = {z ∈ Z | 〈a, σ′〉 → z}
while Lemma 3.6(1) states that

|{z ∈ Z | 〈a, σ〉 → z}| ≤ 1.

• Lemma 3.6 can easily be shown by induction on the structure of expressions.

14 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Evaluation Relations

Lemma 3.6

1. For every a ∈ AExp, σ ∈ Σ, and z, z ′ ∈ Z:
〈a, σ〉 → z and 〈a, σ〉 → z ′ implies z = z ′.

2. For every b ∈ BExp, σ ∈ Σ, and t , t ′ ∈ B:
〈b, σ〉 → t and 〈b, σ〉 → t ′ implies t = t ′.

Remarks:
• Lemma 3.6(1) is not implied by Lemma 2.6

(“σ|FV (a) = σ′|FV (a) ⇒ (〈a, σ〉 → z ⇐⇒ 〈a, σ′〉 → z)”)!

The latter just implies

{z ∈ Z | 〈a, σ〉 → z} = {z ∈ Z | 〈a, σ′〉 → z}
while Lemma 3.6(1) states that

|{z ∈ Z | 〈a, σ〉 → z}| ≤ 1.

• Lemma 3.6 can easily be shown by induction on the structure of expressions.

14 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Excursus: Proof by Structural Induction V

Application: Boolean expressions (Def. 1.2)

Definition: BExp is the least set which
• contains the truth values t ∈ B and, for every a1, a2 ∈ AExp, a1=a2 and a1>a2, and
• contains ¬b1, b1 ∧ b2 and b1 ∨ b2 whenever b1, b2 ∈ BExp

Induction base: P(t), P(a1=a2) and P(a1>a2) holds
(for every t ∈ B, a1, a2 ∈ AExp)

Induction hypothesis: P(b1) and P(b2) holds
Induction step: P(¬b1), P(b1 ∧ b2) and P(b1 ∨ b2) holds

Proof (Lemma 3.6).

1. by structural induction on a (omitted)
2. by structural induction on b (omitted)

15 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Excursus: Proof by Structural Induction V

Application: Boolean expressions (Def. 1.2)

Definition: BExp is the least set which
• contains the truth values t ∈ B and, for every a1, a2 ∈ AExp, a1=a2 and a1>a2, and
• contains ¬b1, b1 ∧ b2 and b1 ∨ b2 whenever b1, b2 ∈ BExp

Induction base: P(t), P(a1=a2) and P(a1>a2) holds
(for every t ∈ B, a1, a2 ∈ AExp)

Induction hypothesis: P(b1) and P(b2) holds
Induction step: P(¬b1), P(b1 ∧ b2) and P(b1 ∨ b2) holds

Proof (Lemma 3.6).

1. by structural induction on a (omitted)
2. by structural induction on b (omitted)

15 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation II

• How to prove that 〈c, σ〉 → σ′ is deterministic (Theorem 3.5)?
• Idea: use induction on the syntactic structure of c

16 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Excursus: Proof by Structural Induction VI

Application: syntax of WHILE statements (Def. 1.2)

Definition: Cmd is the least set which
• contains skip and, for every x ∈ Var and a ∈ AExp, x := a, and
• contains c1;c2, if b then c1 else c2 end and while b do c1 end whenever

b ∈ BExp and c1, c2 ∈ Cmd

Induction base: P(skip) and P(x := a) holds (for every x ∈ Var and a ∈ AExp)
Induction hypothesis: P(c1) and P(c2) holds
Induction step: P(c1;c2), P(if b then c1 else c2 end) and P(while b do c1 end)

holds (for every b ∈ BExp)

17 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation III

• But: proof of Theorem 3.5 fails!

• Problematic case:

c = while b do c0 end where 〈b, σ〉 → true

• Here 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′ require existence of σ1, σ2 ∈ Σ such that

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ1 〈c, σ1〉 → σ′

〈c, σ〉 → σ′

and

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ2 〈c, σ2〉 → σ′′

〈c, σ〉 → σ′′

• c0 proper substatement of c
⇒ induction hypothesis yields σ1 = σ2

• c not proper substatement of c ⇒ conclusion σ′ = σ′′ invalid!

18 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation III

• But: proof of Theorem 3.5 fails!
• Problematic case:

c = while b do c0 end where 〈b, σ〉 → true

• Here 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′ require existence of σ1, σ2 ∈ Σ such that

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ1 〈c, σ1〉 → σ′

〈c, σ〉 → σ′

and

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ2 〈c, σ2〉 → σ′′

〈c, σ〉 → σ′′

• c0 proper substatement of c
⇒ induction hypothesis yields σ1 = σ2

• c not proper substatement of c ⇒ conclusion σ′ = σ′′ invalid!

18 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation III

• But: proof of Theorem 3.5 fails!
• Problematic case:

c = while b do c0 end where 〈b, σ〉 → true

• Here 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′ require existence of σ1, σ2 ∈ Σ such that

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ1 〈c, σ1〉 → σ′

〈c, σ〉 → σ′

and

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ2 〈c, σ2〉 → σ′′

〈c, σ〉 → σ′′

• c0 proper substatement of c
⇒ induction hypothesis yields σ1 = σ2

• c not proper substatement of c ⇒ conclusion σ′ = σ′′ invalid!

18 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation III

• But: proof of Theorem 3.5 fails!
• Problematic case:

c = while b do c0 end where 〈b, σ〉 → true

• Here 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′ require existence of σ1, σ2 ∈ Σ such that

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ1 〈c, σ1〉 → σ′

〈c, σ〉 → σ′

and

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ2 〈c, σ2〉 → σ′′

〈c, σ〉 → σ′′

• c0 proper substatement of c
⇒ induction hypothesis yields σ1 = σ2

• c not proper substatement of c ⇒ conclusion σ′ = σ′′ invalid!

18 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation III

• But: proof of Theorem 3.5 fails!
• Problematic case:

c = while b do c0 end where 〈b, σ〉 → true

• Here 〈c, σ〉 → σ′ and 〈c, σ〉 → σ′′ require existence of σ1, σ2 ∈ Σ such that

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ1 〈c, σ1〉 → σ′

〈c, σ〉 → σ′

and

(wh-t)

〈b, σ〉 → true 〈c0, σ〉 → σ2 〈c, σ2〉 → σ′′

〈c, σ〉 → σ′′

• c0 proper substatement of c
⇒ induction hypothesis yields σ1 = σ2

• c not proper substatement of c ⇒ conclusion σ′ = σ′′ invalid!

18 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Excursus: Proof by Structural Induction VII

Application: derivation trees of execution relation (Def. 3.2)

(skip): for every σ ∈ Σ,
〈skip, σ〉 → σ

is a derivation tree for 〈skip, σ〉 → σ

(asgn): if s is a derivation tree for 〈a, σ〉 → z (Def. 2.2), then s
〈x := a, σ〉 → σ[x 7→ z]

is a derivation tree for

〈x := a, σ〉 → σ[x 7→ z]

(seq): if s1 and s2 are derivation trees for 〈c1, σ〉 → σ′ and, respectively, 〈c2, σ
′〉 → σ′′, then

s1 s2

〈c1;c2, σ〉 → σ′′
is a

derivation tree for 〈c1;c2, σ〉 → σ′′

(if-t): if s1 and s2 are derivation trees for 〈b, σ〉 → true (Def. 2.7) and, respectively, 〈c1, σ〉 → σ′, then
s1 s2

〈if b then c1 else c2 end, σ〉 → σ′
is a derivation tree for 〈if b then c1 else c2 end, σ〉 → σ′

(if-f): analogously
(wh-t): if s1, s2 and s3 are derivation trees for 〈b, σ〉 → true (Def. 2.7), 〈c, σ〉 → σ′ and

〈while b do c end, σ′〉 → σ′′, respectively, then
s1 s2 s3

〈while b do c end, σ〉 → σ′′
is a derivation tree for

〈while b do c end, σ〉 → σ′′

(wh-f): if s is a derivation tree for 〈b, σ〉 → false (Def. 2.7), then s
〈while b do c end, σ〉 → σ

is a derivation tree

for 〈while b do c end, σ〉 → σ

19 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Excursus: Proof by Structural Induction VIII

Application: derivation trees of execution relation (continued)

Induction base: P

(
〈skip, σ〉 → σ

)
holds for every σ ∈ Σ, and P(s) holds for

every derivation tree s for an arithmetic or Boolean expression.
Induction hypothesis: P(s1), P(s2) und P(s3) hold.
Induction step: it also holds that

• P

(
(asgn)

s1

〈x:=a, σ〉 → σ[x 7→ z]

)
• P

(
(seq)

s1 s2

〈c1;c2, σ〉 → σ′′

)
• P

(
(if-t):

s1 s2

〈if b then c1 else c2 end, σ〉 → σ′

)
• P

(
(if-f):

s1 s2

〈if b then c1 else c2 end, σ〉 → σ′

)

• P

(
(wh-t)

s1 s2 s3

〈while b do c end, σ〉 → σ′′

)
• P

(
(wh-f)

s1

〈while b do c end, σ〉 → σ

)

20 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

Determinism of Evaluation/Execution

Determinism of Execution Relation IV

Proof (Theorem 3.5).

To show:
〈c, σ〉 → σ′, 〈c, σ〉 → σ′′ ⇒ σ′ = σ′′

(by structural induction on derivation trees; on the board)

21 of 21 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 3: Operational Semantics of WHILE II (Execution of Statements)

	Recap: Evaluation Relations & Structural Induction
	Execution of Statements
	Determinism of Evaluation/Execution

