
Semantics and Verification of Software
Winter Semester 2017/18

Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Thomas Noll
Software Modeling and Verification Group
RWTH Aachen University

http://moves.rwth-aachen.de/teaching/ws-1718/sv-sw/

http://moves.rwth-aachen.de/teaching/ws-1718/sv-sw/

Recap: Total Correctness & Axiomatic Equivalence

Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by (where i ∈ LVar)

(skip)

{A} skip {⇓A}
(asgn)

{A[x 7→ a]} x := a {⇓A}

(seq)

{A} c1 {⇓C} {C} c2 {⇓B}
{A} c1;c2 {⇓B}

(if)

{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 end {⇓B}

(while)

|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i.i ≥ 0 ∧ A(i)} while b do c end {⇓A(0)}

(cons)

|= (A⇒ A′) {A′} c {⇓B′} |= (B′ ⇒ B)

{A} c {⇓B}
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable by
the Hoare rules. In case of (while), A(i) is called a (loop) invariant.

3 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Recap: Total Correctness & Axiomatic Equivalence

Axiomatic Equivalence

In the axiomatic semantics, two statements have to be considered equivalent if they
are indistinguishable w.r.t. (partial) correctness properties:

Definition (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent (notation: c1 ≈ c2)
if, for all assertions A,B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

(later: total correctness yields same notion of equivalence)

4 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Characteristic Assertions

Characteristic Assertions I

The following results are based of the following encoding of states by assertions:

Definition 12.1

Given a state σ ∈ Σ and a non-empty finite subset of program variables X ⊆ Var ,
the characteristic assertion of σ w.r.t. X is given by

state(σ,X) :=
∧
x∈X

(x = σ(x)︸︷︷︸
∈Z

) ∈ Assn

Moreover, we let state(σ, ∅) := true and state(⊥,X) := false.

Corollary 12.2

For all finite X ⊆ Var and σ ∈ Σ⊥,

σ |= state(σ,X)

6 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Characteristic Assertions

Characteristic Assertions II

Programs and characteristic state assertions are obviously related as follows:

Corollary 12.3

Let c ∈ Cmd, and let FV (c) ⊆ Var denote the set of all variables occurring in c.
Then, for every finite X ⊇ FV (c) and σ ∈ Σ,

|= {state(σ,X)} c {state(CJcKσ,X)}

Example 12.4 (Factorial program)

For c := (y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end), X = {x, y},
σ(x) = 3 and σ(y) = 0, we obtain

state(σ,X) = (x=3 ∧ y=0) and state(CJcKσ,X) = (x=1 ∧ y=6)
and thus |= {state(σ,X)} c {state(CJcKσ,X)}.
If X 6⊇ FV (c), then the claim does not hold: e.g., 6|= {y=0} c {y=6}!

7 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Partial vs. Total Equivalence

Partial vs. Total Equivalence

Now we can show that considering total rather than partial correctness properties
yields the same notion of equivalence:

Theorem 12.5

Let c1, c2 ∈ Cmd. The following propositions are equivalent:
1. ∀A,B ∈ Assn : |= {A} c1 {B} ⇐⇒ |= {A} c2 {B}
2. ∀A,B ∈ Assn : |= {A} c1 {⇓B} ⇐⇒ |= {A} c2 {⇓B}

Proof.

on the board

9 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Axiomatic vs. Operational/Denotational Equivalence

Axiomatic vs. Operational/Denotational Equiv.

Theorem 12.6

Axiomatic and operational/denotational equivalence coincide, i.e., for all
c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

Proof.

on the board

11 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Correctness Properties for Execution Time

The Approach

• Definition 11.3: proof system for total correctness
• Can be used to show that program terminates bus does not give any information about

required resources
• Goal: extend proof system to give (order of magnitude of) execution time of a statement
• Details in H.R. Nielson, F. Nielson: Semantics with Applications: An Appetizer, Springer,

2007, Section 10.2
• Informal guidelines (idea: each instruction of abstract machine of Lecture 4 takes one time

unit):
– skip: execution timeO(1) (that is, bounded by a constant)
– assignment: execution timeO(1) (with maximal size of RHS as constant)
– composition: sum of execution times of constituent statements
– conditional: maximal execution time of branches
– iteration: sum over all iterations of execution times of loop body

• Procedure:
1. Extend evaluation relation for expressions to give exact evaluation times
2. Extend execution relation for statements to give exact execution times
3. Extend total correctness proof system to give order of magnitude of execution time of statements

13 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Operational Semantics with Exact Execution Times

Recap: Translation of Arithmetic Expressions

Definition (Translation of arithmetic expressions (Definition 5.1))

The translation function
TaJ.K : AExp → Code

is given by
TaJzK := PUSH(z)
TaJxK := LOAD(x)

TaJa1+a2K := TaJa1K;TaJa2K;ADD
TaJa1-a2K := TaJa1K;TaJa2K;SUB
TaJa1*a2K := TaJa1K;TaJa2K;MULT

15 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Operational Semantics with Exact Execution Times

Timed Evaluation of Arithmetic Expressions

Definition 12.7 (Timed Evaluation of arithmetic expressions (extends Definition 2.2))

Expression a evaluates to z ∈ Z in state σ in τ ∈ N steps (notation: 〈a, σ〉 τ−→ z) if
this relationship is derivable by means of the following rules:
Axioms:

〈z, σ〉 1−→ z 〈x, σ〉 1−→ σ(x)

Rules:
〈a1, σ〉

τ1−→ z1 〈a2, σ〉
τ2−→ z2

〈a1+a2, σ〉
τ1+τ2+1−→ z

where z := z1 + z2

〈a1, σ〉
τ1−→ z1 〈a2, σ〉

τ2−→ z2

〈a1-a2, σ〉
τ1+τ2+1−→ z

where z := z1 − z2

〈a1, σ〉
τ1−→ z1 〈a2, σ〉

τ2−→ z2

〈a1*a2, σ〉
τ1+τ2+1−→ z

where z := z1 · z2

16 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Operational Semantics with Exact Execution Times

Recap: Translation of Boolean Expressions

Definition (Translation of Boolean expressions (Definition 5.3))

The translation function
TbJ.K : BExp → Code

is given by
TbJtrueK := PUSH(true)
TbJfalseK := PUSH(false)
TbJa1=a2K := TaJa1K;TaJa2K;EQ
TbJa1>a2K := TaJa1K;TaJa2K;GT

TbJ¬bK := TbJbK;NOT
TbJb1 ∧ b2K := TbJb1K;TbJb2K;AND
TbJb1 ∨ b2K := TbJb1K;TbJb2K;OR

17 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Operational Semantics with Exact Execution Times

Timed Evaluation of Boolean Expressions

Definition 12.8 (Timed Evaluation of Boolean expressions (extends Definition 2.7))

For b ∈ BExp, σ ∈ Σ, τ ∈ N, and t ∈ B, the timed evaluation relation 〈b, σ〉 τ−→ t is defined by:

〈t, σ〉 1−→ t

〈a1, σ〉
τ1−→ z 〈a2, σ〉

τ2−→ z

〈a1=a2, σ〉
τ1+τ2+1−→ true

〈a1, σ〉
τ1−→ z1 〈a2, σ〉

τ2−→ z2

〈a1=a2, σ〉
τ1+τ2+1−→ false

if z1 6= z2

〈a1, σ〉
τ1−→ z1 〈a2, σ〉

τ2−→ z2

〈a1>a2, σ〉
τ1+τ2+1−→ true

if z1 > z2
〈a1, σ〉

τ1−→ z1 〈a2, σ〉
τ2−→ z2

〈a1>a2, σ〉
τ1+τ2+1−→ false

if z1 ≤ z2

〈b, σ〉 τ−→ false

〈¬b, σ〉 τ+1−→ true

〈b, σ〉 τ−→ true

〈¬b, σ〉 τ+1−→ false

〈b1, σ〉
τ1−→ true 〈b2, σ〉

τ2−→ true

〈b1 ∧ b2, σ〉
τ1+τ2+1−→ true

〈b1, σ〉
τ1−→ true 〈b2, σ〉

τ2−→ false

〈b1 ∧ b2, σ〉
τ1+τ2+1−→ false

〈b1, σ〉
τ1−→ false 〈b2, σ〉

τ2−→ true

〈b1 ∧ b2, σ〉
τ1+τ2+1−→ false

〈b1, σ〉
τ1−→ false 〈b2, σ〉

τ2−→ false

〈b1 ∧ b2, σ〉
τ1+τ2+1−→ false

(∨ analogously)

18 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Operational Semantics with Exact Execution Times

Recap: Translation of Statements

Definition (Translation of statements (Definition 5.4))

The translation function TcJ.K : Cmd → Code is given by

TcJskipK := ε
TcJx := aK := TaJaK;STO(x)
TcJc1;c2K := TcJc1K;TcJc2K

TcJif b then c1 else c2 endK := TbJbK;JMPF(|TcJc1K| + 2);
TcJc1K;JMP(|TcJc2K| + 1);
TcJc2K

TcJwhile b do c endK := TbJbK;JMPF(|TcJcK| + 2);
TcJcK;JMP(−(|TbJbK| + |TcJcK| + 1))

19 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Operational Semantics with Exact Execution Times

Timed Execution of Statements

Definition 12.9 (Timed execution relation for statements (extends Definition 3.2))

For c ∈ Cmd , σ, σ′ ∈ Σ, and τ ∈ N, the timed execution relation 〈c, σ〉 τ−→ σ′ is
defined by:

(skip)

〈skip, σ〉 1−→ σ
(asgn)

〈a, σ〉 τ−→ z

〈x := a, σ〉 τ+1−→ σ[x 7→ z]

(seq)

〈c1, σ〉
τ1−→ σ′ 〈c2, σ

′〉 τ2−→ σ′′

〈c1;c2, σ〉
τ1+τ2−→ σ′′

(if-t)

〈b, σ〉 τ−→ true 〈c1, σ〉
τ1−→ σ′

〈if b then c1 else c2 end, σ〉
τ+τ1+2−→ σ′

(wh-f)

〈b, σ〉 τ−→ false

〈while b do c end, σ〉 τ+1−→ σ
(if-f)

〈b, σ〉 τ−→ false 〈c2, σ〉
τ2−→ σ′

〈if b then c1 else c2 end, σ〉
τ+τ2+1−→ σ′

(wh-t)

〈b, σ〉 τ−→ true 〈c, σ〉 τ1−→ σ′ 〈while b do c end, σ′〉 τ2−→ σ′′

〈while b do c end, σ〉 τ+τ1+τ2+2−→ σ′′

20 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Timed Correctness Properties

Recap: Total Correctness Properties

So far: total correctness properties of the form

{A} c {⇓B}
where c ∈ Cmd and A,B ∈ Assn

Validity of property {A} c {⇓B}

For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

22 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Timed Correctness Properties

Timed Correctness Properties

Now: timed correctness properties of the form

{A} c {e⇓B}
where c ∈ Cmd , A,B ∈ Assn, and e ∈ AExp

Validity of property {A} c {e⇓B}

For all states σ ∈ Σ which satisfy A: the execution of c in σ terminates in a state
satisfying B, and the required execution time is in O(e)

Example 12.10

1. {x = 3} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {1⇓ true} expresses that for
constant input 3, the execution time of the factorial program is bounded by a constant

2. {x > 0} y:=1; while ¬(x=1) do y:=y*x; x:=x-1 end {x⇓ true} expresses that for
positive input values, the execution time of the factorial program is linear in that value

23 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

Timed Correctness Properties

Semantics of Timed Correctness Properties

Definition 12.11 (Semantics of timed correctness properties (extends Definition 11.1))

Let A,B ∈ Assn, c ∈ Cmd , and e ∈ AExp. Then {A} c {e⇓B} is called valid
(notation: |= {A} c {e⇓B}) if there exists k ∈ N such that for each I ∈ Int and each
σ |=I A, there exist σ′ ∈ Σ and τ ≤ k · AJeKσ such that 〈c, σ〉 τ−→ σ′ and σ′ |=I B

Note: e is evaluated in initial (rather than final) state

24 of 24 Semantics and Verification of Software
Winter Semester 2017/18
Lecture 12: Axiomatic Semantics of WHILE IV
(Axiomatic Equivalence & Timed Correctness Properties)

	Recap: Total Correctness & Axiomatic Equivalence
	Characteristic Assertions
	Partial vs. Total Equivalence
	Axiomatic vs. Operational/Denotational Equivalence
	Correctness Properties for Execution Time
	Operational Semantics with Exact Execution Times
	Timed Correctness Properties

