
Semantics and Verification of Software
apl. Prof. Dr. Thomas Noll
Benjamin Kaminski Christoph Matheja

Exercise Sheet 9
Due date: January 17th. You can hand in your solutions at the start of the exercise class.

Hint: Notation is as in the lecture. That is, c is a program, b a Boolean expression, σ a
program state, etc.

Task 1: Equivalence of Statements in ParWHILE (2 Points)

Recall that two statements c1, c2 are equivalent, written c1 ≈ c2, if and only if

∀σ, σ′ ∈ Σ : 〈c1, σ〉 →∗ σ′ ⇔ 〈c2, σ〉 →∗ σ′.

Previously, we occasionally made use of the fact that program statements can be replaced
by equivalent ones without changing the programs behavior. That is, for all WHILE programs
P containing a single occurrence of a statement c, c1 ≈ c2 implies P [c 7→ c1] ≈ P [c 7→ c2].
Here, P [c 7→ c′] denotes the syntactic replacement of statement c by c′ in P .

Prove or disprove that all ParWHILE programs have the same property.

Task 2: Fairness in CSP (2 Points)

Prove or disprove: Every strongly unfair execution is weakly unfair.

Task 3: Axiomatic Semantics of Nondeterminism (6 Points)

Consider an extension of the WHILE programming language with a nondeterministic operator
c1�c2 as in the lecture. There are two possible interpretations of this operator. In the
demonic model to establish a postcondition Q one requires that every possible program
execution (induced by its nondeterministic choices) establishes Q. In the angelic model one
requires that at least one execution establishes Q.

a) Extend the Hoare logic proof system by a rule for demonic nondeterminism.
b) Give an inductive definition of wp (c1�c2, Q) in the demonic model.1

c) Prove or disprove for a demonic model of nondeterminism:

wp (c,Q1 ∨Q2) = wp (c,Q1) ∨ wp (c,Q2)

d) Extend the Hoare logic proof system by a rule for angelic nondeterminism.
e) Give an inductive definition of wp (c1�c2, Q) in the angelic model.
f) Prove or disprove for an angelic model of nondeterminism:

wp (c,Q1 ∧Q2) = wp (c,Q1) ∧ wp (c,Q2)

1You may of course reuse the definition of weakest preconditions for ordinary WHILE programs.

Page 1 of 1


