

Exercise Sheet 4

Due date: November 22nd. You can hand in your solutions at the start of the exercise class.

Task 1: Chain Complete Partial Orders (4 points)

Determine whether each of the following statements is true or false. For true statements present a formal proof, and for false statements provide a counterexample.

- (a) Every continuous function $f: (D_1, \sqsubseteq_1) \to (D_1, \sqsubseteq_2)$ between two CCPOs (D_1, \sqsubseteq_1) and (D_2, \sqsubseteq_2) is monotonic.
- (b) Consider the partial order (\mathbb{Q}, \leq) of the rational numbers ordered by the natural order in the reals. (\mathbb{Q}, \leq) is chain complete.
- (c) If $f: (D_1, \sqsubseteq_1) \to (D_1, \sqsubseteq_2)$ is a monotonic function between two CCPOs and $D \subseteq D_1$ is a chain, then $f(\bigsqcup D) \sqsubseteq_2 \bigsqcup f(D)$.
- (d) Let (D, \sqsubseteq) be a partial order and let $f: (D, \sqsubseteq) \to (D, \sqsubseteq)$ be monotonic. If p is the least element in D satisfying $f(p) \sqsubseteq p$, then p is a fixed point of f.

Task 2: repeat-until Loops (3 Points)

(a) Define a transformer $F \colon (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma)$ such that

 $\mathfrak{C}\llbracket repeat \ c \ until \ b \rrbracket = fix(F)$.

The transformer F is allowed to depend on the semantics only of c and b (i.e. $\mathfrak{B}[\![b]\!]$ and $\mathfrak{C}[\![c]\!]$). You cannot rely on the existence of while-loops within the language to define F.

(b) Use the definition provided in (a) to compute the transformer $\hat{F} : (\Sigma \dashrightarrow \Sigma) \to (\Sigma \dashrightarrow \Sigma)$ whose least fixed point gives the semantics of program repeat skip until false. In other words, compute \hat{F} such that

 $\mathfrak{C}[\![\mathsf{repeat skip until false}]\!] = \mathsf{fix}(\hat{F})$.

(c) Show that $fix(\hat{F}) = f_{\emptyset}$.

Task 3: Closed Sets (3 Points)

A set $C \subseteq D$ is *closed* if and only if for each chain $G \subseteq C$, $\bigsqcup G \in C$. In the following, let (D, \sqsubseteq) be a chain complete partial order and $f: D \to D$ be a continous function. Prove the following two statements.

- (a) For each closed set $C \subseteq D$ with $f(x) \in C$ for each $x \in C$, we have fix $(f) \in C$.
- (b) $f(x) \sqsubseteq x$ implies $fix(f) \sqsubseteq x, x \in D$.