

Exercise Sheet 2

Due date: November 8th. You can hand in your solutions at the start of the exercise class. **Hint:** Notation is as in the lecture. That is, c is a program, b a Boolean expression, σ a program state, etc.

Task 1: Operational Semantics & Derivation Trees (2 points)

Consider the following program:

c: x := 23; y := 42; while(x \leq y) do y := y - x; x := x - 4 end

Depict the derivation tree for $\langle c, \sigma \rangle \to \sigma'$, where σ is some arbitrary, but fixed, initial state.

Task 2: Operational Semantics of other Statements (1 point)

Extend the rule system defining the (big-step) execution relation \rightarrow from the lecture (Def. 3.2) to incorporate for a statement repeat c until b.

Task 3: Termination (2 points)

Prove that (while b do c, σ) $\rightarrow \sigma'$ implies that $\langle b, \sigma' \rangle \rightarrow \texttt{false}$.

Task 4: Variables that do not matter (5 points)

In this exercise, we use a variant of the WHILE language from the lecture that neither contains if-then-else constructs nor while loops. It does, however, contain repeat-until loops.

(a) Define a recursive function

 $\operatorname{mod}\colon \operatorname{Cmd}\to 2^{\operatorname{Var}}$

that computes the set of all variables that are modified by a program. That is, those variables that occur on the left-hand side of assignments.

(b) Define a recursive function

dep: $\operatorname{Cmd} \rightarrow 2^{\operatorname{Var}}$

that computes the set of variables that are read by a program. That is, those variables that occur on the right-hand side of assignments or in loop guards.

Hint: You may use the function $FV : AExp \cup BExp \rightarrow \mathcal{P}(Var)$ that computes the set of free variables of an arithmetic or Boolean expression(see Def. 2.4 for a definition restricted to arithmetic expressions).

(c) We consider two program states σ_1, σ_2 equivalent with respect to a set of variables $R \subseteq Var$, written $\sigma_1 =_R \sigma_2$ if they coincide for all variables in R. Formally,

$$\sigma_1 =_R \sigma_2$$
 iff $\forall x \in R : \sigma_1(x) = \sigma_2(x)$

Show for every program c and states σ_1, σ_2 with

•
$$\sigma_1 =_{\operatorname{dep}(c)} \sigma_2$$
,

- $\langle c, \sigma_1 \rangle \rightarrow \sigma'_1$, and
- $\langle c, \sigma_2 \rangle \to \sigma'_2$

that $\sigma'_1 =_{\text{mod}(c)} \sigma'_2$.

Hint: You may use the following auxiliary results without proof:

- (a) $\langle c, \sigma \rangle \to \sigma'$ and $x \notin \text{mod}(c)$ implies $\sigma'(x) = \sigma(x)$.
- (b) $\sigma_1 =_{\operatorname{dep}(c)} \sigma_2$ implies $(\exists \sigma'_1 : \langle c, \sigma_1 \rangle \to \sigma'_1 \text{ iff } \exists \sigma'_2 : \langle c, \sigma_2 \rangle \to \sigma'_2).$