
Semantics and Verification of Software
apl. Prof. Dr. Thomas Noll
Benjamin Kaminski Christoph Matheja

Exercise Sheet 2
Due date: November 8th. You can hand in your solutions at the start of the exercise class.

Hint: Notation is as in the lecture. That is, c is a program, b a Boolean expression, σ a
program state, etc.

Task 1: Operational Semantics & Derivation Trees (2 points)

Consider the following program:

c : x := 23; y := 42;

while(x ≤ y) do

y := y - x; x := x - 4

end

Depict the derivation tree for 〈c, σ〉 → σ′, where σ is some arbitrary, but fixed, initial state.

Task 2: Operational Semantics of other Statements (1 point)

Extend the rule system defining the (big-step) execution relation → from the lecture (Def.
3.2) to incorporate for a statement repeat c until b.

Task 3: Termination (2 points)

Prove that 〈while b do c , σ〉 → σ′ implies that 〈b, σ′〉 → false.

Task 4: Variables that do not matter (5 points)

In this exercise, we use a variant of the While language from the lecture that neither contains
if-then-else constructs nor while loops. It does, however, contain repeat-until loops.

(a) Define a recursive function
mod: Cmd→ 2Var

that computes the set of all variables that are modified by a program. That is, those
variables that occur on the left-hand side of assignments.

(b) Define a recursive function
dep: Cmd→ 2Var

that computes the set of variables that are read by a program. That is, those variables
that occur on the right-hand side of assignments or in loop guards.
Hint: You may use the function FV : AExp ∪ BExp → P(Var) that computes the set
of free variables of an arithmetic or Boolean expression(see Def. 2.4 for a definition
restricted to arithmetic expressions).

Page 1 of 2



(c) We consider two program states σ1, σ2 equivalent with respect to a set of variables
R ⊆ Var, written σ1 =R σ2 if they coincide for all variables in R. Formally,

σ1 =R σ2 iff ∀x ∈ R : σ1(x) = σ2(x)

Show for every program c and states σ1, σ2 with

• σ1 =dep(c) σ2,
• 〈c, σ1〉 → σ′1, and
• 〈c, σ2〉 → σ′2

that σ′1 =mod(c) σ
′
2.

Hint: You may use the following auxiliary results without proof:

(a) 〈c, σ〉 → σ′ and x /∈ mod(c) implies σ′(x) = σ(x).
(b) σ1 =dep(c) σ2 implies (∃σ′1 : 〈c, σ1〉 → σ′1 iff ∃σ′2 : 〈c, σ2〉 → σ′2).

Page 2 of 2


