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Regular expressions vs. CFMs

Definition (Finitely generated)
Set of MSCs M ⊆ M is finitely generated if there is a finite set of MSCs
M̂ ⊆ M such that M ⊆ M̂∗.

Theorem [Morin 2002]

Let M be finitely generated. Then:

M is realisable

iff

there exists a star-connected regular expression α with L(α) = M.
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Some remaining questions

How do we obtain a CFM realising an MSG algorithmically?
in particular, for non-local choice MSGs

This algorithm exploits synchronisation messages
recall that weak CFMs do not involve synchronisation messages
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Today’s topics

Today’s lecture
An algorithm to realise local-choice MSGs using CFM with
synchronisation messages.

Results:
1 An algorithm that generates a CFM from local-choice MSG.
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Non-local choice

p q

a

p q

b

G:

v1 v2

Inconsistency if process p behaves according to vertex v1
and process q behaves according to vertex v2

=⇒ realisation by a CFM may yield a deadlock

Problem:
Subsequent behavior in G is determined by distinct processes. When several
processes independently decide to initiate behavior, they might start executing
different successor MSCs (= vertices). This is called a non-local choice.
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A (more involved) non-local choice

p1 p2 p3

a

p1 p2 p3

b

p1 p2 p3

c

Problem:
Inconsistency if p1 decides to send a and p3 decides to send c.
Which branch to take in the initial vertex?
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Preliminaries

Definition (Minimal event)
Let (E,�) be a poset. Event e ∈ E is a minimal event wrt. � if
¬(∃e′ �= e. e′ � e).

Intuition: there is no event that has to happen before e happens.
That is to say: the occurrence of e does not depend on any other event.

Definition (Partial order of a path)
For finite path π = v1 . . . vn in MSG G, let <M(π) be the partial order of
the MSC M(π) = λ(v1) • . . . • λ(vn).
Let min(π) be the set of minimal events wrt. <M(π) along finite path π.
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Branching vertices

A branching vertex in MSG G either has at least two successors, or is a
final vertex with at least one successor.

Pictorially, vertex v is branching if either:

v

v1 vn

v

. . .

...

or

︸ ︷︷ ︸
n ≥ 2

 ≥ 1

Without loss of generality we assume that branching final vertices do not
occur. They can be always be removed at the expense of copying such vertices.
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Local choice property

Definition (Local choice)
Let MSG G = (V,→, v0, F, λ). MSG G is local choice if for every
branching vertex v ∈ V it holds:

∃process p.
(∀π ∈ Paths(v). |min(π′)| = 1 ∧ min(π′) ⊆ Ep

)
where for π = vv1v2 . . . vn we have π′ = v1v2 . . . vn.

Intuition:
There is a single process that initiates behavior along every path from the
branching vertex v. This process decides how to proceed. In a realisation by a
CFM, it can inform the other processes how to proceed.

Local choice or not?
Deciding whether MSG G is local choice or not is in P. (Exercise.)
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Local choice MSGs

An example local-choice MSG on black board.
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Realising local choice (C)MSGs

Theorem [Genest et al., 2005]

Any local-choice MSG G is safely realisable by a CFM with additional
synchronisation data (which is of size linear in G).

Proof
As MSG G is local choice, at every branch v of G there is a unique
process, p(v), say, such that on every path from v the unique minimal
event occur at p(v). Then:

1 Process p(v) determines the successor vertex of v.
2 Process p(v) informs all other processes about its decision by

adding synchronisation data to the exchanged messages.
3 Synchronisation data is the path (in G) from v to the next

branching vertex along the direction chosen by p(v).
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Maximal non-branching paths

Definition (Maximal non-branching paths)
For MSG G = (V,→, v0, F, λ), let nbp : V → V ∗ be defined by:

nbp(v) =

{
v if v ∈ F or v is a branching vertex

v1 . . . vn otherwise

where v1 . . . vn ∈ V ∗ is a maximal path (i.e., a path that cannot be
prolonged) satisfying:

1 vi = v for some i, 0 < i � n, and
2 vn ∈ F or is a branching vertex, and
3 v1 = v0 or is a direct successor of a branching vertex, and
4 v2, . . . , vn−1 �∈ F and are all non-branching vertices

Intuition
nbp(v) is the maximal non-branching path to which v belongs.
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Structure of the CFM of local choice MSG G

Let MSG G = (V,→, v0, F , λ) be local choice.

Define the CFM AG = (((Sp,∆p))p∈P ,D, sinit , F ′) with:
1 Local automaton Ap = (Sp,∆p) as defined on next slides

2 D = {npb(v) | v ∈ V }
synchronisation data = maximal non-branching paths in G

3 sinit = { (v0,∅) }n where n = |P|
each local automaton Ap starts in initial state (v0,∅), i.e.,
in initial vertex v0 while no events of p have been performed

4 s ∈ F ′ iff for all p ∈ P, local state s[p] = (v,E) with E ⊆ Ep and:
1 v ∈ F and E contains a maximal event wrt. <p in MSC λ(v), or
2 v �∈ F and π = v . . . w is a path in G with w ∈ F and E contains a

maximal event wrt. <p in MSC λ(π).
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State space of local automaton Ap

Sp = V × Ep such that for any s = (v,E) ∈ Sp:

∀e, e′ ∈ λ(v).
(
e <p e

′ and e′ ∈ E implies e ∈ E
)

that is, E is downward-closed with respect to <p in MSC λ(v)

Intuition: a state (v,E) means that process p is currently in vertex
v of MSG G and has already performed the events E of λ(v)

Initial state of Ap is (v0,∅)
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Transition relation of local automaton Ap

Executing events within a vertex of the MSG G:

e ∈ Ep ∩ λ(v) and e �∈ E

(v,E)
l(e),nbp(v)−−−−−−−−→p (v,E ∪ { e })

Note: since E ∪ {e} is downward-closed wrt. <p, e is enabled
Taking an edge (possibly a self-loop) of the MSG G:

E = Ep ∩ λ(v) and e ∈ Ep ∩ λ(w) and
vu0 . . . unw ∈ V ∗ with p not active in u0 . . . un

(v,E)
l(e),nbp(w)−−−−−−−−→p (w, {e})

Note: vertex w is the first successor vertex of v on which p is active
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Examples

A couple of examples on the black board.
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