### 1 Lecture 1: Introduction

#### 2 Lecture 2: Message Sequence Charts



### Theoretical Foundations of the UML Lecture 1: Introduction

Joost-Pieter Katoen

#### Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

#### 9. Oktober 2017



# Target audience

### You are studying:

- Master Computer Science, or
- Master Systems Software Engineering, or
- Bachelor Computer Science, or

• . . . . . .

#### Usage as:

- elective course Theoretical Computer Science
- not a Wahlpflicht course for bachelor students
- specialization MOVES (Modeling and Verification of Software)
- complementary to Model-based Software Development (Rumpe)

#### In general:

- interest in system software engineering
- interest in formal methods for software
- interest in semantics and verification
- application of mathematical reasoning

#### Prerequisites:

- mathematical logic
- formal language and automata theory
- algorithms and data structures
- computability and complexity theory



|                                                                      | Day | Time          | Room |  |
|----------------------------------------------------------------------|-----|---------------|------|--|
| Lecture                                                              | Mon | 10:15 - 11:45 | 9U09 |  |
|                                                                      | Tue | 10:15 - 11:45 | 9U09 |  |
| Exercises                                                            | Tue | 14:15- 15:45  | 9U09 |  |
| about 21 lectures in total; Keep track of website for precise dates! |     |               |      |  |

| People involved: |                     |                                 |  |  |
|------------------|---------------------|---------------------------------|--|--|
|                  | Lecturer            | EMail                           |  |  |
| Lectures         | Joost-Pieter Katoen | katoen@cs.rwth-aachen.de        |  |  |
| Exercises        | Tim Quatmann        | tim.quatmann@cs.rwth-aachen.de  |  |  |
|                  | Matthias Volk       | matthias.volk@cs.rwth-aachen.de |  |  |
|                  |                     |                                 |  |  |

VIN VIN VIN 1

#### Assignments:

- (almost) weekly assignments
- available from course web-site
- first assignment: Tuesday October 17
- hand in solution at start next exercise class
- groups of maximally two students
- first exercise class: Tuesday October 24



### Examination: (6 ECTS credit points)

- written exam: February 6, 2018, 11:00–13:00
- written re-exam: March 12, 2018, 13:00–15:00

#### Admission:

• at least 40% of exercise points



## Motivation

### Scope:

- Goal: formal description + analysis of (concurr.) software systems
- Focus: the <u>Unified Modeling Language</u>

#### More specifically:

- Sequence Diagrams (used for requirements analysis)
- Propositional Dynamic Logic
- Communicating Finite State Automata
- Statecharts (behavioral description of systems)

### Aims:

- clarify and make precise the semantics of some UML fragments
- formal reasoning about basic properties of UML models
- convince you that UML models are much harder than you think

#### What is it **\*\***not**\*\*** about?

- the use of the UML in the software development cycle
  - see the complementary course by Prof. Rumpe
- other notations of the UML (e.g., class diagrams, activity diagrams)
- what is precisely in the UML, and what is not
  - liberal interpretation of which constructs belong to the UML
- applying the UML to concrete SW development case studies
- empirical results on the usage of UML
- drawing pictures

Ο...





#### 2 Lecture 2: Message Sequence Charts



## Theoretical Foundations of the UML Lecture 2: Message Sequence Charts

Joost-Pieter Katoen

#### Lehrstuhl für Informatik 2 Software Modeling and Verification Group

moves.rwth-aachen.de/teaching/ss-16/theoretical-foundations-of-the-uml/

#### 9. Oktober 2017



11/32

- 70s 80s: often used informally
- 1992: first version of MSCs standardized by CCITT (currently ITU) Z.120
- 1992 1996: many extensions, e.g., high-level + formal semantics (using process algebras)
- 1996: MSC'96 standard
- 2000: MSC 2000, time, data, o-o features
- 2005: MSC 2004 ...



# Variants of MSCs

- UML sequence diagrams
- (instantiations of) use cases
- triggered MSCs
- netcharts (= Petri net + MSC)
- STAIRS
- Live sequence charts
- . . .



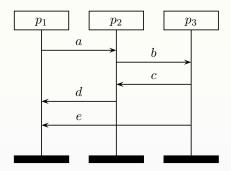
- scenario-based language
- visual representation
- "easy" to comprehend
- generalization possible towards automata (states are MSCs)
- widely used in industrial practice



- requirements specification (positive, negative scenarios, e.g., CREWS)
- system design and software engineering
- visualization of test cases (graphical extension to TTCN)
- feature interaction detection
- workflow management systems

• . . .





These pictures are formalized using partial orders.



Joost-Pieter Katoen Theoretical Foundations of the UML

16/32

### Partial orders

#### Definition

Let E be a set of events.

A partial order over E is a relation  $\leq E \times E$  such that:

- ②  $\leq$  is transitive, i.e.,  $e \leq e' \land e' \leq e''$  implies  $e \leq e''$ , and
- **③**  $\leq$  is anti-symmetric, i.e.,  $\forall e, e'. (e \leq e' \land e' \leq e) \Rightarrow e = e'.$

The pair  $(E, \preceq)$  is called a partially ordered set (poset, for short).

#### Definition

Let  $(E, \preceq)$  be a poset and let  $e, e' \in E$ . e and e' are comparable if  $e \preceq e'$  or  $e' \preceq e$ . Otherwise, they are incomparable.

 $\leq$  is a non-strict partial order as it is reflexive. A strict partial order is a relation  $\prec$  that is irreflexive, transitive and asymmetric (i.e., if  $e \prec e'$  then not  $e' \prec e$ ).

#### Definition

Let  $(E, \preceq)$  be a poset. The Hasse diagram  $(E, \lessdot)$  of  $(E, \preceq)$  is defined by:

$$e \lessdot e' \text{ iff } e \preceq e' \text{ and } \neg (\exists e'' \neq e, e'. e \preceq e'' \land e'' \preceq e')$$

Hasse diagrams can be used to visualize posets with finitely many elements in a succinct way.



#### Definition

Let  $(E, \preceq)$  be a poset. A linearization of  $(E, \preceq)$  is a total order  $\sqsubseteq \subseteq E \times E$  such that  $e \preceq e'$  implies  $e \sqsubseteq e'$ 

A linearization is a topological sort of the Hasse diagram of  $(E, \preceq)$ . Note that every partial order has at least one linearization.



# Example

#### Example

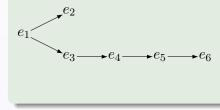
### Let $E = \{e_1, \dots, e_6\},\$

$$\leq = \{ (e_1, e_2), (e_1, e_3), (e_3, e_4), (e_4, e_5), (e_5, e_6), (e_1, e_4), \\ (e_3, e_5), (e_1, e_5), (e_1, e_6), (e_3, e_6), (e_4, e_6) \\ \}^r \text{ where } R^r \text{ denotes the reflexive closure of } R$$

Linearizations:

- $e_1 e_2 e_3 e_4 e_5 e_6$ ,
- $e_1e_3e_2e_4e_5e_6$ ,
- $e_1e_3e_4e_2e_5e_6$ ,
- $e_1e_3e_4e_5e_2e_6$ ,
- $e_1e_3e_4e_5e_6e_2$
- No linearizations:
  - $e_2 e_1 e_3 \dots$ , and  $e_1 e_4 e_3 \dots$

Hasse diagram:



#### Definition

- Let  $\mathcal{P}$ : finite set of (sequential) processes
  - C: finite set of message contents  $(a, b, c, \ldots \in C)$

### Definition

Communication action:  $p, q \in \mathcal{P}, p \neq q, a \in \mathcal{C}$ 

- !(p,q,a) "process p sends message a to process q"
- ?(p,q,a) "process p receives message a sent by process q"

Let Act denote the set of communication actions

# Message Sequence Chart (MSC) (1)

#### Definition

An MSC  $M = (\mathcal{P}, \mathcal{E}, \mathcal{C}, l, m, \preceq)$  with:

- $\mathcal{P}$ , a finite set of processes  $\{p_1, p_2, \ldots, p_n\}$  with n > 1
- E, a finite set of events

$$E = \biguplus_{p \in \mathcal{P}} E_p = E_? \cup E_!$$

- $\mathcal{C}$ , a finite set of message contents
- $l: E \to Act$ , a labelling function defined by:

$$l(e) = \begin{cases} !(p,q,a) & \text{if } e \in E_p \cap E_! \\ ?(p,q,a) & \text{if } e \in E_p \cap E_? \end{cases}, \text{ for } p \neq q \in \mathcal{P}, a \in \mathcal{C} \end{cases}$$

UNIVERSITY

# Message Sequence Chart (MSC) (2)

#### Definition

•  $m: E_! \to E_?$  a bijection ("matching function"), satisfying:

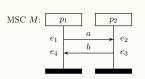
$$m(e) = e' \wedge l(e) = !(p,q,a) \text{ implies } l(e') = ?(q,p,a) \ (p \neq q, \ a \in \mathcal{C})$$

•  $\leq \subseteq E \times E$  is a partial order ("visual order") defined by:



where for relation R,  $R^*$  denotes its reflexive and transitive closure.

# Example (1)



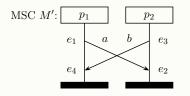
$$\begin{split} M &= (\mathcal{P}, E, \mathcal{C}, l, m, \preceq) \text{ with:} \\ \mathcal{P} &= \{p_1, p_2\} \qquad E_{p_1} = \{e_1, e_4\} \\ E &= \{e_1, e_2, e_3, e_4\} \qquad E_{p_2} = \{e_2, e_3\} \\ \mathcal{C} &= \{a, b\} \qquad E_! = \{e_1, e_3\}, \\ E_? &= \{e_2, e_4\} \\ l(e_1) &= !(p_1, p_2, a) \qquad m(e_1) = e_2 \\ l(e_2) &= ?(p_2, p_1, a) \\ l(e_3) &= !(p_2, p_1, b) \qquad m(e_3) = e_4 \\ l(e_4) &= ?(p_1, p_2, b) \end{split}$$

Ordering at processes:  $e_1 <_{p_1} e_4$  and  $e_2 <_{p_2} e_3$ Hasse diagram of  $(E, \preceq)$ :  $e_1 \longrightarrow e_2 \longrightarrow e_3 \longrightarrow e_4$ 

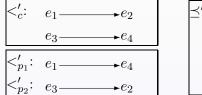
Linearizations?

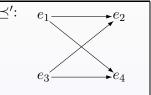


# Example (2)



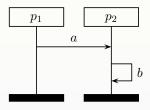
$$M' = (\underbrace{\mathcal{P}, E, \mathcal{C}, l, m}_{\text{as above}}, \preceq')$$
 with:







### This is not an MSC





Joost-Pieter Katoen Theoretical Foundations of the UML

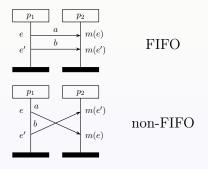
26/32

# FIFO property

MSC  $M = (\mathcal{P}, E, \mathcal{C}, l, m, \preceq)$  has the *First-In-First-Out* (FIFO) property whenever: for all  $e, e' \in E_1$  we have

 $e \prec e' \land l(e) = !(p,q,a) \land l(e') = !(p,q,b) \text{ implies } m(e) \prec m(e')$ 

i.e., "no message overtaking allowed"



$$l(e) = !(p_1, p_2, a) l(e') = !(p_1, p_2, b) e \prec e' m(e) \prec m(e')$$

#### Note:

 $\Rightarrow$ 

We assume an MSC to possess the FIFO property, unless stated otherwise!

### Definition

Let Lin(M) = denote the set of linearizations of MSC M.

### MSCs and its linearizations are interchangeable

There is a one-to-one correspondence between an MSC and its set of linearizations.

#### Thus:

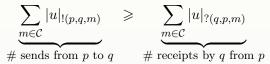
Lin(M) uniquely characterizes the MSC M.

From MSCs to its set of linearizations is straightforward. The reverse direction is discussed in the following. First: well-formedness.

### Well-formedness

Let  $Ch := \{(p,q) \mid p \neq q, p, q \in \mathcal{P}\}$  be the set of channels over  $\mathcal{P}$ . We call  $w = a_1 \dots a_n \in Act^*$  proper if

• every receive in w is preceded by a corresponding send, i.e.:  $\forall (p,q) \in Ch$  and prefix u of w, we have:



where  $|u|_a$  denotes the number of occurrences of action a in u2 the FIFO policy is respected, i.e.:  $\forall 1 \leq i < j \leq n, (p,q) \in Ch$ , and  $a_i = !(p,q,m_1), a_j = ?(q,p,m_2)$ :  $\sum_{m \in \mathcal{C}} |a_1 \dots a_{i-1}|_{!(p,q,m)} = \sum_{m \in \mathcal{C}} |a_1 \dots a_{j-1}|_{?(q,p,m)}$  implies  $m_1 = m_2$ 

A proper word w is well-formed if  $\sum_{m \in \mathcal{C}} |w|_{!(p,q,m)} = \sum_{m \in \mathcal{C}} |w|_{?(q,p,m)}$ 

#### Proposition

#### For every MSC M and every $w \in Lin(M)$ , w is well-formed.

Lin(M) denotes a set of words (and not linearizations) the word of linearization  $e_1 \dots e_n$  equals  $\ell(e_1) \dots \ell(e_n)$ 



### From linearizations to posets

Associate to  $w = a_1 \dots a_n \in Act^*$  an Act-labelled poset

$$M(w) = (E, \preceq, \ell)$$

such that:

•  $E = \{1, \ldots, n\}$  are the positions in w labelled with  $\ell(i) = a_i$ •  $\preceq = \left(\bigcup_{p \in \mathcal{P}} \prec_p \cup \prec_{msg}\right)^*$  where •  $i \prec_p j$  if and only if i < j, for every  $i, j \in E_p$ •  $i \prec_{msg} j$  if for some  $(p, q) \in Ch$  and  $m \in \mathcal{C}$  we have:  $\ell(i) = !(p, q, m)$  and  $\ell(j) = ?(q, p, m)$  and  $\sum_{m \in \mathcal{C}} |a_1 \ldots a_{i-1}|_{!(p,q,m)} = \sum_{m \in \mathcal{C}} |a_1 \ldots a_{j-1}|_{?(q,p,m)}$ 

#### Example

construct M(w) for  $w = !(r,q,m)!(p,q,m_1)!(p,q,m_2)?(q,p,m_1)?(q,p,m_2)?(q,r,m)$ 

### Relating well-formed words to MSCs

For every well-formed  $w \in Act^*$ , M(w) is an MSC.

#### Definition

 $(E, \leq, \ell)$  and  $(E', \leq', \ell')$  are isomorphic if there exists a bijection  $f: E \to E'$  such that  $e \leq e'$  iff  $f(e) \leq' f(e')$  and  $\ell(e) = \ell'(f(e))$ .

#### Linearizations yield isomorphic MSCs

For every well-formed  $w \in Act^*$  and  $w' \in Lin(M(w))$ :

M(w) and M(w') are isomorphic.