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Motivation

Nets with identical sequential runs (a occurs before b, or vice versa), but the left
net allows the simultaneous execution of a and b whereas the right one does not.

Interleaving semantics cannot distinguish these nets!

This requires a finer perspective on transition execution.
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Nets and markings

Nets
Net
A Petri net N is a triple (P,T ,F ) where:

I P is the countable set of places
I T is the countable set of transitions with P ∩ T = ∅
I F ⊆ (P × T ) ∪ (T × P) are the arcs.

Places and transitions are generically called nodes.
We assume that •t and t• are finite, for each t ∈ T .

Note that the set of places and transitions is countable, not necessarily finite
(anymore).

Marking
A marking M of a net N = (P,T ,F ) is a mapping M : P → IN.
For net N = (P,T ,F ) and marking M0, the tuple (P,T ,F ,M0) is called
an elementary system net. M0 is the initial marking of N.
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Transition occurrence

Enabling and occurrence of a transition
A marking M enables a transition t if M(p) > 1
for each place p ∈• t.

Transition t can occur in marking M if t is
enabled at M. Its occurrence leads to marking
M ′, denoted M t−→M ′, defined for place p ∈ P
by:

M ′(p) = M(p)− F (p, t) + F (t, p).

where we represent F by its characteristic
function.
M t−→M ′ is also called a step of the net N.
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Reachable markings

Step sequence
A sequence of transitions σ = t1 t2 . . . tn is a step sequence if there exist
markings M1 through Mn such that:

M0
t1−−→M1

t2−−→ · · · tn−1−−−→Mn−1
tn−−→Mn

Marking Mn is reached by the occurrence of σ, denoted M0
σ−−→Mn.

M is a reachable marking if there exists a step sequence σ with M0
σ−−→M.
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Sequential runs

Sequential run
Let N be an elementary net system. A sequential run of N is a sequence

M0
t1−−→M1

t2−−→ · · ·

of steps of N starting with the initial marking M0. A run can be finite or
infinite. A finite run M0

t1−−→M1
t1−−→ · tn−−→Mn is complete if Mn does not

enable any transition.
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Marking graph

The marking graph of N has as nodes the reachable markings of N and as
edges the reachable steps of N.

A sample elementary net system Its marking graph
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The interleaving semantics of Petri nets

The interleaving semantics of a Petri net is its marking graph.
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Interleaving versus true concurrency

The interleaving thesis:

The total order assumption is a reasonable abstraction, adequate
for practical purposes, and leading to nice mathematics

The true concurrency thesis:

The total order assumption does not correspond to physical
reality and leads to awkward representations of simple
phenomena
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Actions

A distributed run of a net is a partial-order represented as a net whose
basic building blocks are actions1, simple nets

Action
An action is a labeled net A = (Q, { v },G) with •v ∩ v• = ∅ and
•v ∪ v• = Q.
Actions are used to represent transition occurrences of elementary net
systems. If A represents transition t, then elements of Q are labeled with
in- and output places of t and v is labeled t.

1Not to be confused with the notion of action in transition systems.
Joost-Pieter Katoen and Thomas Noll Concurrency Theory 32/52
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Mutual exclusion net and its actions
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Causal nets

A causal net constitutes the basis for a “distributed” run.
It is a (possibly infinite) net which satisfies:
1. It has no place branches: at most one arc ends or starts in a place
2. It is acyclic
3. Each sequence of arcs (flows) has a unique first element
4. The initial marking contains all places without incoming arcs.

Intuition
No place branches, no sequence of arcs forms a loop, and each sequence of
arcs has a first node.
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Causal nets
A causal net constitutes the basis for a distributed run.
It is a possibly infinite net which satisfies:
1. Has no place branches: at most one arc ends or starts in a place
2. Is acyclic
3. Each sequence of arcs (flows) has a first element
4. The initial marking contains all places without incoming arcs

Causal net
A (possibly infinite) net K = (Q,V ,G ,M0) is called a causal net iff:
1. for each q ∈ Q, |•q| 6 1 and |q•| 6 1
2. the transitive closure (called causal order) G+ of G is irreflexive
3. for each node x ∈ Q ∪ V , the set { y | (y , x) ∈ G+ } is finite
4. M0 equals the minimal set of places in K under G+, i.e.,

M0 = ◦K = { q ∈ Q | •q = ∅ }.

Note: the “runs” of the example net (with initial marking) are all causal nets.
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets

Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching. So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching. So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition.

Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching. So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k.

This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching. So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T .

Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching. So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j .

(Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching. So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.)

Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching. So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded.

But by definition every place in a causal net
is non-branching. So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching.

So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching. So also p.

Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Properties of causal nets
Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ . . . . . . tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Proof.
By contraposition. Consider a step sequence of net N and suppose that
p ∈ Mj ∩ tk

• for some p ∈ P and some 0 6 j < k. This is impossible for
j = 0, as by definition of causal nets, M0 has no ingoing arcs, and thus
M0 ∩ t• = ∅ for each t ∈ T . Hence, j > 0. Given that p ∈ Mj (for some
j) and p 6∈ M0, it follows p ∈ ti

• for some 0 < i 6 j . (Some transition
before reaching Mk must have put a token on p.) Thus ti , tk ∈ •p, where
ti 6= tk as F is well-founded. But by definition every place in a causal net
is non-branching. So also p. Contradicting ti , tk ∈ •p for ti 6= tk .

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 36/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Boundedness of causal nets

Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ · · · · · · tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Boundedness of causal nets
Every causal net is one-bounded, i.e., in every marking every place will
hold at most one token.

Proof.
Follows directly from the fact that the initial marking M0 is one-bounded,
and by the above lemma.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 37/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Boundedness of causal nets

Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ · · · · · · tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Boundedness of causal nets
Every causal net is one-bounded, i.e., in every marking every place will
hold at most one token.

Proof.
Follows directly from the fact that the initial marking M0 is one-bounded,
and by the above lemma.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 37/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Boundedness of causal nets

Lemma
Let N = (P,T ,F ,M0) be a causal net. Then every step sequence:

M0
t1−−→M1

t2−−→ · · · · · · tk−−→Mk

of net N satisfies Mj ∩ tk
• = ∅ for all j = 0, . . . , k−1.

Boundedness of causal nets
Every causal net is one-bounded, i.e., in every marking every place will
hold at most one token.

Proof.
Follows directly from the fact that the initial marking M0 is one-bounded,
and by the above lemma.

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 37/52



Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Completeness of a causal net

Absence of superfluous places and transitions
Let N = (P,T ,F ,M0) be a causal net. Then there exists a possibly
infinite step sequence

M0
t1−−→M1

t2−−→ · · · · · · tk−−→Mk
tk+1−−−→ · · ·

of N such that P =
⋃

k>0 Mk and T = { tk | k > 0 }.

Proof.
On the black board.

A causal net thus contains no superfluous places and transitions, as every place is
visited and every transition is fired in the above step sequence.
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Outset and end of a causal net

Outset and end of a causal net
The outset and end of causal net K = (Q,V ,G ,M) are defined by:

◦K = { q ∈ Q | •q = ∅ } and K ◦ = { q ∈ Q | q• = ∅ }.

Places without an incoming arc form the outset ◦K . The places without
an outgoing arc form the end K ◦.
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

What is a distributed run?

Distributed run
A distributed run of a one-bounded elementary net system N is:
1. a labeled causal net KN

2. in which each transition t (with •t and t•) is an action of N.

A distributed run KN of N is complete iff (the marking) ◦K represents the
initial marking of N and (the marking) K ◦N does not enable any transition.

If N is clear from the context we just write K for KN .
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

A distributed run for mutual exclusion
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A distributed run for mutual exclusion

Distributed run of the mutual exclusion algorithm.

Actions Na, Nb, Nc and Nd causally precede Ne . They form a chain.
Na and Nd are not linked by actions; they are causally independent.

The same applies to Nb and Nd and Nc and Nd .
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Expansion of a distributed run for mutual exclusion

A distributed run (top) and its extension with actions b and c.
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

More distributed runs

Various finite distributed runs and an infinite distributed run (right) of net (left).
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Causal order
Opposed to sequential runs, distributed runs show the causal order of
actions.

Nets with identical sequential runs (a occurs before b, or vice versa),

but the left
net has the left distributed run below, the right net both other ones:
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Composition of distributed runs

Composition of distributed runs
For i = 1, 2, let Ki = (Qi ,Vi ,Gi) be causal nets, labeled with `i . Let
(Q1 ∪ V1) ∩ (Q2 ∩ V2) = K ◦1 = ◦K2 and for each place p ∈ K ◦1 let
`1(p) = `2(p). Then the composition of K1 and K2, denoted K1 • K2, is
the causal net (Q1 ∪Q2,V1 ∪V2,G1 ∪G2) labeled with ` with `(x) = `i(x).

Intuition
The composition K • L is formed by identifying the end K◦ of K with the outset
◦L of L. To do this, K◦ and ◦L must represent the same marking.
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

What is a distributed run?

Distributed run
A distributed run of a one-bounded elementary net system N is:
1. a labeled causal net K
2. in which each transition t (with •t and t•) is an action of N.

A distributed run K of N is complete iff (the marking) ◦K represents the
initial marking of N and (the marking) K ◦ does not enable any transition.

Examples on the black board.

Today: a characterization of distributed runs using homomorphisms.
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Net homomorphisms

Homomorphism
A homomorphism from N1 = (P1,T1,F1,M0,1) to N2 = (P2,T2,F2,M0,2)
is a mapping h : P1 ∪ T1 → P2 ∪ T2 such that: 2

1. h(P1) ⊆ P2 and h(T1) ⊆ T2, and
2. ∀t ∈ T1, the restriction of h to •t is a bijection between •t (in N1)

and •h(t) (in N2), and similarly for t• and h(t)•, and
3. the restriction of h to M0,1 is a bijection between M0,1 and M0,2.3

Intuition
A homomorphism is a mapping between nets that preserves the nature of nodes
and the environment of nodes. A homomorphism from N1 to N2 means that N1
can be folded onto a part of N2, or in other words, that N1 can be obtained by
partially unfolding a part of N2.

2Here h(X) for set X of nodes is defined by h(X) =
⋃

x∈X h(x).
3Due to the 1-boundedness, a marking M is a subset of the set P of places.
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Distributed runs

Distributed run using homomorphisms

Distributed run [Best and Fernandez, 1988]

A distributed run of an elementary net system N is a pair (K , h) where K
is a causal net and h is a homomorphism from K to N.4

Intuition
A distributed run (K , h) of N may be viewed as a net K of which the places and
transitions are labeled by places and transitions of N such that the labeling h
forms a net homomorphism from K to N.5

4Best and Fernandez called this a process of a net.
5In the previous lecture, the labeling h was explicitly given as `.
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Examples
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Overview

1 Introduction

2 Nets and markings

3 The true concurrency semantics of Petri nets

4 Distributed runs

5 Summary
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Lecture 18: True Concurrency Semantics of Petri Nets (I) Summary

Summary
I A causal net is a possibly infinite net which is:

I well-founded, acyclic, and has no place branching, and
I whose initial marking are the places without incoming arcs

I Causal nets are one-bounded, and contain no redundant nodes

I A distributed run of N is a causal net whose nodes are labeled with
nodes from N

I A distributed run can be obtained by composing causal nets

I Nets that have the same causal nets are causally equivalent

I Distributed run = the “true concurrency” analogue to a sequential run
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