Concurrency Theory Lecture 17: Interleaving Semantics of Petri Nets

Joost-Pieter Katoen and Thomas Noll

Lehrstuhl für Informatik 2 Software Modeling and Verification Group

http://moves.rwth-aachen.de/teaching/ws-1718/ct

December 11, 2017

Concurrency Theory

Introduction

Lecture 17: Interleaving Semantics of Petri Nets

Overview

1 Introduction

2 Basic net concepts

The interleaving semantics of Petri nets

4 Sequential runs

5 Summary

Joost-Pieter Katoen and Thomas Noll

Concurrency Theory

Introduction

2/47

-

Lecture 17: Interleaving Semantics of Petri Nets

Joost-Pieter Katoen and Thomas Noll

Overview

1 Introduction

2 Basic net concepts

- 3 The interleaving semantics of Petri nets
- 4 Sequential runs
- **5** Summary

Lecture 17: Interleaving Semantics of Petri Nets

Carl Adam Petri (1926-2010)

The original work¹ does not contain a single (graphical) Petri net!

Joost-Pieter Katoen and Thomas Noll Concurrency Theory

RWTHAACHEN

¹Petri's PhD dissertation, 1962. Joost-Pieter Katoen and Thomas Noll

4/47

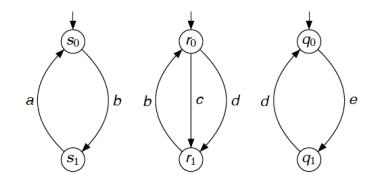
Semantics: executions and traces

Models in the 60s: lambda calculus, finite automata, Turing machines, ...

States: current configurations of the machine

One or more initial states

Possibly some distinguished final states


Transitions: moves between configurations

Lambda calculus	$(\lambda x.xx)(\lambda y.y)$	\longrightarrow	$(\lambda y.y)(\lambda z.z)$
Turing machine	$0010q_1011$	\longrightarrow	$001q_201011$
Finite automaton	q_1	\xrightarrow{a}	q_2
Pushdown automaton	$(q_1, XYYZ)$	\xrightarrow{a}	$(q_2, XYXYYZ)$

Executions: alternating sequences of states and transitions

Joost-Pieter Katoen and Thomas Noll	Concurrency Theory	5/47
Lecture 17: Interleaving Semantics of Petri Nets	Introduction	
Datri nat		
Petri net		

A graphical representation of interacting finite automata:

Petri's question

C.A. Petri points out a discrepancy between how Theoretical Physics and Theoretical Computer Science described systems in 1962:

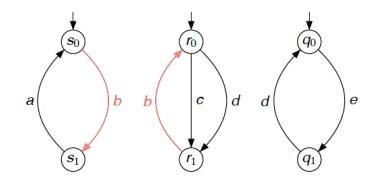
ntroductio

Theoretical Physics describes systems as a collection of interacting particles (subsystems), without a notion of global clock or simultaneity

Theoretical Computer Science describes systems as sequential virtual machines going through a temporally ordered sequence of global states

Petri's question:

Which kind of abstract machine should be used to describe the physical implementation of a Turing machine?


Joost-Pieter Katoen and Thomas Noll

Concurrency Theory

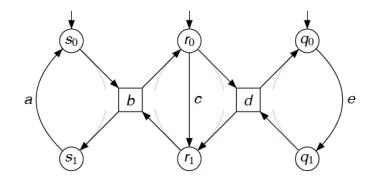
Lecture 17: Interleaving Semantics of Petri Nets Introduction

Petri net


A graphical representation of interacting finite automata:

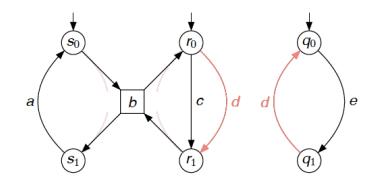
Petri net

A graphical representation of interacting finite automata:


Introduction

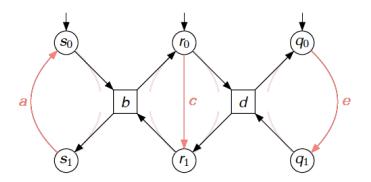
Joost-Pieter Katoen and Thomas Noll	Concurrency Theory	9/47
Lecture 17: Interleaving Semantics of Petri Nets	Introduction	

Petri net

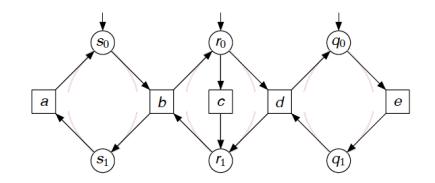

A graphical representation of interacting finite automata:

Petri net

A graphical representation of interacting finite automata:

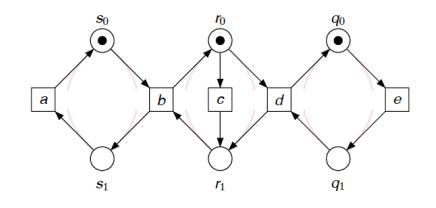

Introduction

Joost-Pieter Katoen and Thomas Noll	Concurrency Theory	10/47
Lecture 17: Interleaving Semantics of Petri Nets	Introduction	
Petri net		


Petri net

A graphical representation of interacting finite automata:

Petri net


A graphical representation of interacting finite automata:

Petri net

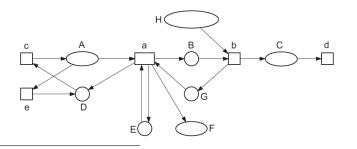
A graphical representation of interacting finite automata:

Introduction

tt-Pieter Katoen and Thomas Noll Concurrency Theory	13/47 Joost-Pieter Katoen and Thomas Noll Concurrency The
re 17: Interleaving Semantics of Petri Nets Basic net concepts	Lecture 17: Interleaving Semantics of Petri Nets Basic net concept
verview	Components of a net
Introduction	A Petri net is a structure with two kinds of elem transitions. They are connected by arcs.
Basic net concepts	A place is represented by a circle or ellipse. A pla always models a passive component: <i>p</i> can store accumulate or show things.
The interleaving semantics of Petri nets	A transition is represented by a square or rectang transition <i>t</i> always models an active component: produce things, consume, transport or change the
Sequential runs Summary	Places and transitions are connected to each othe directed arcs. Graphically, an arc is represented b arrow. An arc models an abstract, sometimes on notional relation between components. Arcs run places to transitions or vice versa.

15/47

Basic net concepts


Nets

Net

A Petri net N is a triple (P, T, F) where:

- \blacktriangleright *P* is the finite set of places
- T is the finite set of transitions with $P \cap T = \emptyset$
- $F \subseteq (P \times T) \cup (T \times P)$ are the arcs²

Places and transitions are generically called nodes.

 ${}^{2}F$ is also called the flow relation.

Joost-Pieter Katoen and Thomas Noll

Lecture 17: Interleaving Semantics of Petri Nets

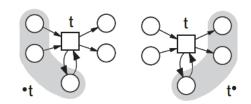
Basic net concepts

Concurrency Theor

Markings

Marking

A marking M of a net N = (P, T, F) is a mapping $M : P \to \mathbb{N}$. For net N = (P, T, F) and marking M_0 , the tuple (P, T, F, M_0) is called an elementary system net. M_0 is the initial marking of N.


Intuition

Note: a marking is a multiset. It defines a distribution of tokens across places. Tokens are depicted as black dots.

The pre- and post-sets

Pre- and post-sets

Let node $x \in P \cup T$. The pre-set of x is defined by: $\bullet x = \{ y \mid (y, x) \in F \}.$ The post-set of x is defined by: $x^{\bullet} = \{ y \mid (x, y) \in F \}.$ Two nodes $x, y \in N$ form a loop if $x \in {}^{\bullet}y$ and $y \in {}^{\bullet}x$.

Joost-Pieter Katoen and Thomas Noll

Concurrency Theor

Lecture 17: Interleaving Semantics of Petri Nets Basic net concepts

Transition firing

Enabling and occurrence of a transition

Let (P, T, F, M) be an elementary system net. Marking M enables a transition t if $M(p) \ge 1$ for each place $p \in t$.

Transition t can occur in marking M if t is enabled at M. Its occurrence leads to marking M', denoted $M \xrightarrow{t} M'$, defined for place $p \in P$ by:

$$M'(p) = M(p) - F(p, t) + F(t, p).$$

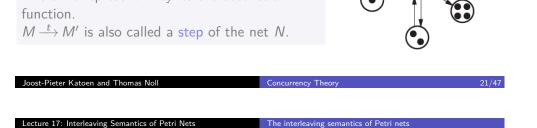
where we represent F by its characteristic function.

Intuition

Transition t is enabled whenever every $p \in t$ holds at least one token. On t's occurrence, one token is removed from each place in t, and one token is put in each place in t^{\bullet} :

$$M'(p) = \begin{cases} M(p) - 1 & \text{if } p \in {}^{\bullet}t \text{ and } p \notin t^{\bullet} \\ M(p) + 1 & \text{if } p \in t^{\bullet} \text{ and } p \notin t \\ M(p) & \text{otherwise} \end{cases}$$

Transition occurrence


Enabling and occurrence of a transition

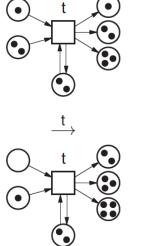
A marking *M* enables a transition *t* if $M(p) \ge 1$ for each place $p \in t$.

Transition t can occur in marking M if t is enabled at M. Its occurrence leads to marking M', denoted $M \xrightarrow{t} M'$, defined for place $p \in P$ by:

$$M'(p) = M(p) - F(p, t) + F(t, p).$$

where we represent F by its characteristic

Basic net concepts


The interleaving semantics of Petri nets

An execution semantics

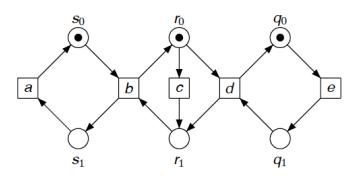
State: marking (distribution of tokens over the net)

Transitions: $M \xrightarrow{t} M'$

Sequential runs: $M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} M_2 \xrightarrow{t_3} \dots$

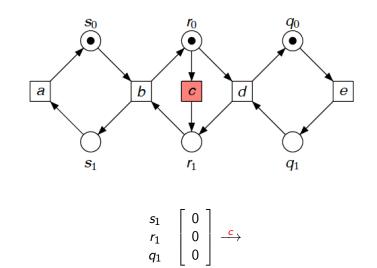
Overview

2 Basic net concepts 3 The interleaving semantics of Petri nets

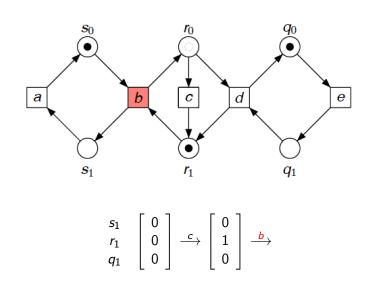

- 4 Sequential runs
- **5** Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory

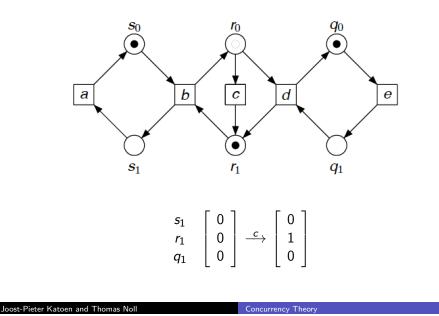
Lecture 17: Interleaving Semantics of Petri Nets


The interleaving semantics of Petri nets

The interleaving semantics of Petri nets

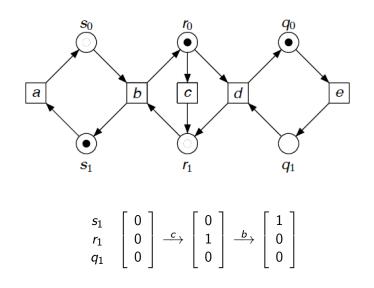


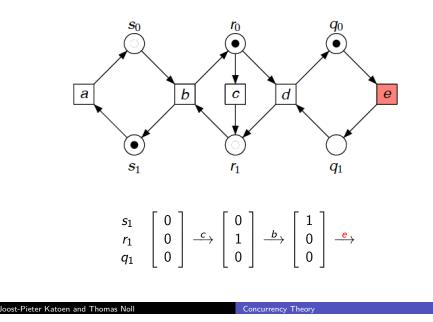
As the marking for s_0 is the complement of s_1 , the marking for s_0 is omitted. The same applies to the places r_0 and q_0 .



Joost-Pieter Katoen and Thomas Noll	Concurrency Theory	25/47
Lecture 17: Interleaving Semantics of Petri Nets	The interleaving semantics of Petri nets	

The interleaving semantics of Petri nets

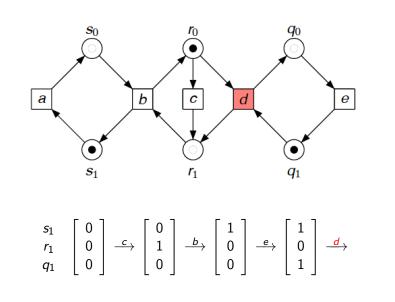

The interleaving semantics of Petri nets

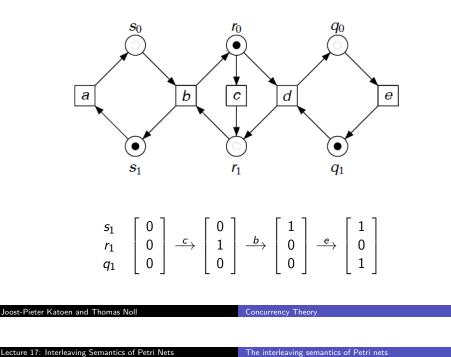


Lecture 17: Interleaving Semantics of Petri Nets

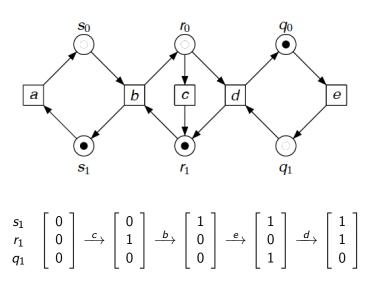
The interleaving semantics of Petri nets

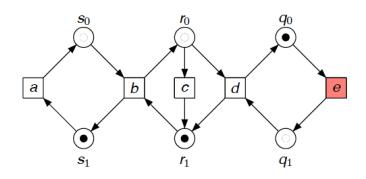
The interleaving semantics of Petri nets




Lecture 17: Interleaving Semantics of Petri Nets

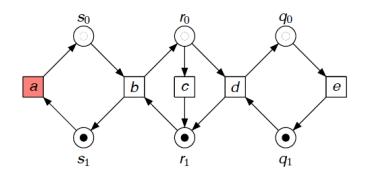
The interleaving semantics of Petri nets


The interleaving semantics of Petri nets



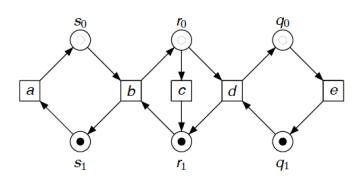
The interleaving semantics of Petri nets

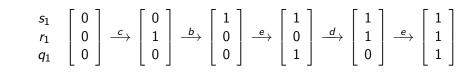
The interleaving semantics of Petri nets



Concurrency Theor

The interleaving semantics of Petri nets

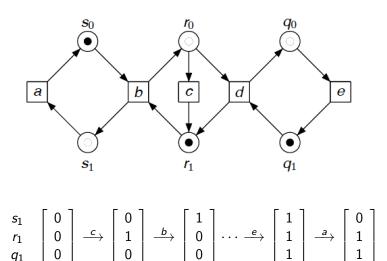

Lecture 17: Interleaving Semantics of Petri Nets

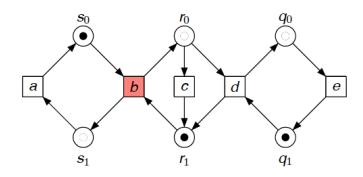

The interleaving semantics of Petri nets

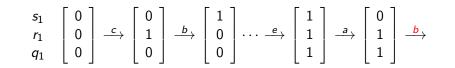
s_1	[0]		[0]		[1]		[1]	\xrightarrow{d}	[1]		1	
r_1	0	\xrightarrow{c}	1	\xrightarrow{b}	0	\xrightarrow{e}	0	\xrightarrow{d}	1	\xrightarrow{e}	1	\xrightarrow{a}
q_1	0		0		0		1		0		1	

The interleaving semantics of Petri nets

Joost-Pieter Katoen and Thomas Noll


Lecture 17: Interleaving Semantics of Petri Nets


The interleaving semantics of Petri nets


Concurrency Theor

The interleaving semantics of Petri nets

The interleaving semantics of Petri nets

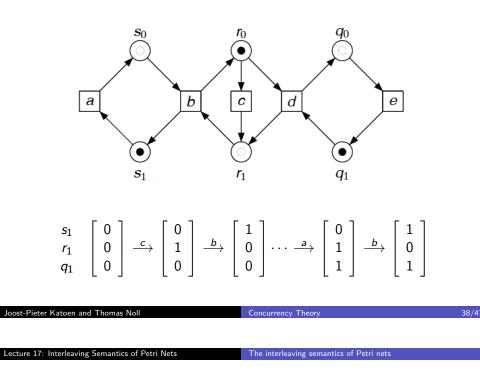
Concurrency Theor

Joost-Pieter Katoen and Thomas Noll

Lecture 17: Interleaving Semantics of Petri Nets

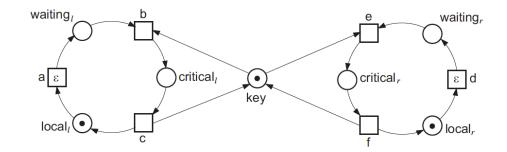
The interleaving semantics of Petri nets

Reachable markings


Step sequence

A sequence of transitions $\sigma = t_1 t_2 \dots t_n$ is an step sequence if there exist markings M_1 through M_n such that:

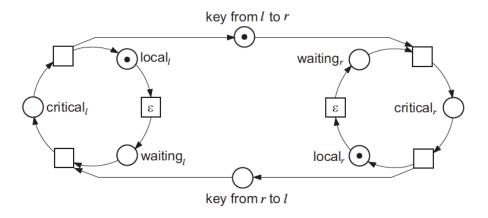
$$M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \cdots \xrightarrow{t_{n-1}} M_{n-1} \xrightarrow{t_n} M_n$$


Marking M_n is reached by the occurrence of σ , denoted $M_0 \xrightarrow{\sigma} M_n$. M is a reachable marking if there exists a step sequence σ with $M_0 \xrightarrow{\sigma} M$.

The interleaving semantics of Petri nets

Mutual exclusion

Two processes cycling through the states local, waiting and critical.


Between transitions b and e a conflict can arise infinitely often. No strategy has been modeled to solve this conflict.

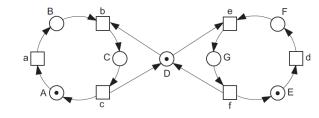
39/47

The interleaving semantics of Petri nets

Mutual exclusion

A strategy where processes are acquired access in an alternating fashion:

Joost-Pieter Katoen and Thomas Noll	Concurrency Theory
Lecture 17: Interleaving Semantics of Petri Nets	Sequential runs
Overview	
1 Introduction	
2 Basic net concepts	
3 The interleaving semantics of Pe	tri nets
4 Sequential runs	
5 Summary	


One-bounded elementary system nets

1-bounded elementary net system

An elementary net system N is called 1-bounded if for each reachable marking M and place p of N:

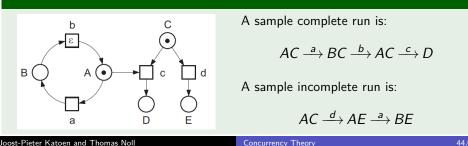
 $M(p) \leq 1.$

Markings of 1-bounded elementary net systems can be described as a string of marked places, e.g., ADE. Two steps begin with this marking: $ADE \xrightarrow{a} BDE$ and $ADE \xrightarrow{\overline{d}} ADF$.

Joost-Pieter Katoen and Thomas No

Concurrency Theor

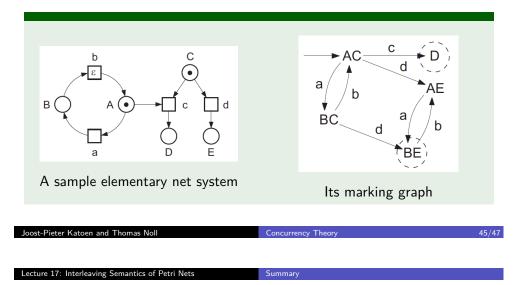
Lecture 17: Interleaving Semantics of Petri Nets Sequential runs


Sequential runs

Sequential run

Let N be an elementary net system. A sequential run of N is a sequence

$$M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_2} \cdots$$


of steps of N starting with the initial marking M_0 . A run can be finite or infinite. A finite run $M_0 \xrightarrow{t_1} M_1 \xrightarrow{t_1} \cdots \xrightarrow{t_n} M_n$ is complete if M_n does not enable any transition.

Sequential runs

Marking graph

The marking graph of N has as nodes the reachable markings of N and as edges the reachable steps of N.

Summary

- ▶ A Petri net consists of places, transitions and arcs
- An elementary net is a Petri net plus a marking
- Firing a single transition in a marking is a step
- ► A sequential run is a sequence of steps starting in the initial marking
- A marking graph has as nodes the reachable markings of the net and as edges its reachable steps.
- ► The marking graph is the interleaving semantics of a net.

Overview

1 Introduction

2 Basic net concepts

3 The interleaving semantics of Petri nets

4 Sequential runs

5 Summary

Joost-Pieter Katoen and Thomas Noll Concurrency Theory 46/